6 in float BacksideIrradiance;
\r
11 uniform vec3 objectColor;
\r
12 uniform vec3 lightColor;
\r
13 uniform vec3 lightPos;
\r
14 uniform vec3 viewPos;
\r
15 uniform float transmittanceScale;
\r
16 uniform int renderState;
\r
17 uniform float powBase;
\r
18 uniform float powFactor;
\r
23 vec3 norm = normalize(Normal);
\r
24 vec3 lightDir = normalize(lightPos - FragPos);
\r
26 float diff = max(dot(norm, lightDir), 0.0);
\r
27 vec3 diffuse = diff * lightColor;
\r
29 float ambientStrength = 0.1;
\r
30 vec3 ambient = ambientStrength * lightColor;
\r
32 float specularStrength = 0.5;
\r
33 vec3 viewDir = normalize(viewPos - FragPos);
\r
34 vec3 reflectDir = reflect(-lightDir, norm);
\r
35 float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
\r
36 vec3 specular = specularStrength * spec * lightColor;
\r
38 vec3 result = (ambient + diffuse + specular) * objectColor;
\r
41 float distanceToBackside = length(FragPos - Backside);
\r
43 if (renderState == 2) {
\r
44 if (distanceToBackside != 0) {
\r
45 // add translucency by amplifying color inverse to the thickness
\r
46 // (1 - diff) is part of the irradiance term,
\r
47 // if the light hits the object straight at 90°
\r
48 // most light is received
\r
49 result += objectColor * pow(powBase, powFactor / pow(distanceToBackside, 0.6)) * transmittanceScale * (1 - diff);
\r
53 FragColor = vec4(result, 1.0f);
\r