6 in float BacksideIrradiance;
\r
11 uniform vec3 objectColor;
\r
12 uniform vec3 lightColor;
\r
13 uniform vec3 lightPos;
\r
14 uniform vec3 viewPos;
\r
15 uniform float transmittanceScale;
\r
16 uniform int renderState;
\r
17 uniform float powBase;
\r
18 uniform float powFactor;
\r
20 uniform float translucencySampleVariances[6];
\r
21 uniform vec3 translucencySampleWeights[6];
\r
25 vec3 norm = normalize(Normal);
\r
26 vec3 lightDir = normalize(lightPos - FragPos);
\r
28 float diff = max(dot(norm, lightDir), 0.0);
\r
29 vec3 diffuse = diff * lightColor;
\r
31 float ambientStrength = 0.1;
\r
32 vec3 ambient = ambientStrength * lightColor;
\r
34 float specularStrength = 0.5;
\r
35 vec3 viewDir = normalize(viewPos - FragPos);
\r
36 vec3 reflectDir = reflect(-lightDir, norm);
\r
37 float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
\r
38 vec3 specular = specularStrength * spec * lightColor;
\r
40 //float distanceToBackside = length(clamp(FragPos - Backside, vec3(0), vec3(1000)));
\r
41 float distanceToBackside = length(FragPos - Backside);
\r
42 //distanceToBackside = distance(Backside, LocalPos);
\r
43 vec3 result = (ambient + diffuse + specular) * objectColor;
\r
45 if (renderState == 3) {
\r
46 if (distanceToBackside != 0) {
\r
47 result += objectColor * pow(powBase, powFactor / pow(distanceToBackside, 0.6)) * transmittanceScale * (1 - diff);
\r
48 // vec3 translucency = vec3(0);
\r
49 // for (int i = 0; i < 6; i++) {
\r
50 // translucency += objectColor * translucencySampleWeights[i] * exp(-pow(distanceToBackside, 2.0) / translucencySampleVariances[i]);
\r
53 // result += translucency * transmittanceScale;
\r
56 //result += objectColor * pow(powBase, -pow(distanceToBackside, 2)) * transmittanceScale * (1 - diff);
\r
57 // if (renderState == 3) {
\r
58 // //result = Backside;
\r
59 // //result = LocalPos;
\r
60 // result = vec3(distanceToBackside);
\r
64 FragColor = vec4(result, 1.0f);
\r
65 //FragColor = vec4(vec3(distanceToBackside), 1);
\r