]> gitweb.ps.run Git - matrix_esp_thesis/blob - ext/olm/lib/crypto-algorithms/aes.c
remove newline
[matrix_esp_thesis] / ext / olm / lib / crypto-algorithms / aes.c
1 /*********************************************************************
2 * Filename:   aes.c
3 * Author:     Brad Conte (brad AT bradconte.com)
4 * Copyright:
5 * Disclaimer: This code is presented "as is" without any guarantees.
6 * Details:    This code is the implementation of the AES algorithm and
7               the CTR, CBC, and CCM modes of operation it can be used in.
8                AES is, specified by the NIST in in publication FIPS PUB 197,
9               availible at:
10                * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf .
11               The CBC and CTR modes of operation are specified by
12               NIST SP 800-38 A, available at:
13                * http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf .
14               The CCM mode of operation is specified by NIST SP80-38 C, available at:
15                * http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
16 *********************************************************************/
17
18 /*************************** HEADER FILES ***************************/
19 #include <stdlib.h>
20 #include <memory.h>
21 #include "aes.h"
22
23 #include <stdio.h>
24 #include <string.h>
25
26 /****************************** MACROS ******************************/
27 // The least significant byte of the word is rotated to the end.
28 #define KE_ROTWORD(x) (((x) << 8) | ((x) >> 24))
29
30 #define TRUE  1
31 #define FALSE 0
32
33 /**************************** DATA TYPES ****************************/
34 #define AES_128_ROUNDS 10
35 #define AES_192_ROUNDS 12
36 #define AES_256_ROUNDS 14
37
38 /*********************** FUNCTION DECLARATIONS **********************/
39 void ccm_prepare_first_ctr_blk(BYTE counter[], const BYTE nonce[], int nonce_len, int payload_len_store_size);
40 void ccm_prepare_first_format_blk(BYTE buf[], int assoc_len, int payload_len, int payload_len_store_size, int mac_len, const BYTE nonce[], int nonce_len);
41 void ccm_format_assoc_data(BYTE buf[], int *end_of_buf, const BYTE assoc[], int assoc_len);
42 void ccm_format_payload_data(BYTE buf[], int *end_of_buf, const BYTE payload[], int payload_len);
43
44 /**************************** VARIABLES *****************************/
45 // This is the specified AES SBox. To look up a substitution value, put the first
46 // nibble in the first index (row) and the second nibble in the second index (column).
47 static const BYTE _olm_aes_sbox[16][16] = {
48         {0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76},
49         {0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0},
50         {0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15},
51         {0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75},
52         {0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84},
53         {0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF},
54         {0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8},
55         {0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2},
56         {0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73},
57         {0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB},
58         {0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79},
59         {0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08},
60         {0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A},
61         {0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E},
62         {0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF},
63         {0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16}
64 };
65
66 static const BYTE _olm_aes_invsbox[16][16] = {
67         {0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB},
68         {0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB},
69         {0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E},
70         {0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25},
71         {0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92},
72         {0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84},
73         {0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06},
74         {0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B},
75         {0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73},
76         {0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E},
77         {0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B},
78         {0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4},
79         {0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F},
80         {0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF},
81         {0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61},
82         {0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D}
83 };
84
85 // This table stores pre-calculated values for all possible GF(2^8) calculations.This
86 // table is only used by the (Inv)MixColumns steps.
87 // USAGE: The second index (column) is the coefficient of multiplication. Only 7 different
88 // coefficients are used: 0x01, 0x02, 0x03, 0x09, 0x0b, 0x0d, 0x0e, but multiplication by
89 // 1 is negligible leaving only 6 coefficients. Each column of the table is devoted to one
90 // of these coefficients, in the ascending order of value, from values 0x00 to 0xFF.
91 static const BYTE gf_mul[256][6] = {
92         {0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x03,0x09,0x0b,0x0d,0x0e},
93         {0x04,0x06,0x12,0x16,0x1a,0x1c},{0x06,0x05,0x1b,0x1d,0x17,0x12},
94         {0x08,0x0c,0x24,0x2c,0x34,0x38},{0x0a,0x0f,0x2d,0x27,0x39,0x36},
95         {0x0c,0x0a,0x36,0x3a,0x2e,0x24},{0x0e,0x09,0x3f,0x31,0x23,0x2a},
96         {0x10,0x18,0x48,0x58,0x68,0x70},{0x12,0x1b,0x41,0x53,0x65,0x7e},
97         {0x14,0x1e,0x5a,0x4e,0x72,0x6c},{0x16,0x1d,0x53,0x45,0x7f,0x62},
98         {0x18,0x14,0x6c,0x74,0x5c,0x48},{0x1a,0x17,0x65,0x7f,0x51,0x46},
99         {0x1c,0x12,0x7e,0x62,0x46,0x54},{0x1e,0x11,0x77,0x69,0x4b,0x5a},
100         {0x20,0x30,0x90,0xb0,0xd0,0xe0},{0x22,0x33,0x99,0xbb,0xdd,0xee},
101         {0x24,0x36,0x82,0xa6,0xca,0xfc},{0x26,0x35,0x8b,0xad,0xc7,0xf2},
102         {0x28,0x3c,0xb4,0x9c,0xe4,0xd8},{0x2a,0x3f,0xbd,0x97,0xe9,0xd6},
103         {0x2c,0x3a,0xa6,0x8a,0xfe,0xc4},{0x2e,0x39,0xaf,0x81,0xf3,0xca},
104         {0x30,0x28,0xd8,0xe8,0xb8,0x90},{0x32,0x2b,0xd1,0xe3,0xb5,0x9e},
105         {0x34,0x2e,0xca,0xfe,0xa2,0x8c},{0x36,0x2d,0xc3,0xf5,0xaf,0x82},
106         {0x38,0x24,0xfc,0xc4,0x8c,0xa8},{0x3a,0x27,0xf5,0xcf,0x81,0xa6},
107         {0x3c,0x22,0xee,0xd2,0x96,0xb4},{0x3e,0x21,0xe7,0xd9,0x9b,0xba},
108         {0x40,0x60,0x3b,0x7b,0xbb,0xdb},{0x42,0x63,0x32,0x70,0xb6,0xd5},
109         {0x44,0x66,0x29,0x6d,0xa1,0xc7},{0x46,0x65,0x20,0x66,0xac,0xc9},
110         {0x48,0x6c,0x1f,0x57,0x8f,0xe3},{0x4a,0x6f,0x16,0x5c,0x82,0xed},
111         {0x4c,0x6a,0x0d,0x41,0x95,0xff},{0x4e,0x69,0x04,0x4a,0x98,0xf1},
112         {0x50,0x78,0x73,0x23,0xd3,0xab},{0x52,0x7b,0x7a,0x28,0xde,0xa5},
113         {0x54,0x7e,0x61,0x35,0xc9,0xb7},{0x56,0x7d,0x68,0x3e,0xc4,0xb9},
114         {0x58,0x74,0x57,0x0f,0xe7,0x93},{0x5a,0x77,0x5e,0x04,0xea,0x9d},
115         {0x5c,0x72,0x45,0x19,0xfd,0x8f},{0x5e,0x71,0x4c,0x12,0xf0,0x81},
116         {0x60,0x50,0xab,0xcb,0x6b,0x3b},{0x62,0x53,0xa2,0xc0,0x66,0x35},
117         {0x64,0x56,0xb9,0xdd,0x71,0x27},{0x66,0x55,0xb0,0xd6,0x7c,0x29},
118         {0x68,0x5c,0x8f,0xe7,0x5f,0x03},{0x6a,0x5f,0x86,0xec,0x52,0x0d},
119         {0x6c,0x5a,0x9d,0xf1,0x45,0x1f},{0x6e,0x59,0x94,0xfa,0x48,0x11},
120         {0x70,0x48,0xe3,0x93,0x03,0x4b},{0x72,0x4b,0xea,0x98,0x0e,0x45},
121         {0x74,0x4e,0xf1,0x85,0x19,0x57},{0x76,0x4d,0xf8,0x8e,0x14,0x59},
122         {0x78,0x44,0xc7,0xbf,0x37,0x73},{0x7a,0x47,0xce,0xb4,0x3a,0x7d},
123         {0x7c,0x42,0xd5,0xa9,0x2d,0x6f},{0x7e,0x41,0xdc,0xa2,0x20,0x61},
124         {0x80,0xc0,0x76,0xf6,0x6d,0xad},{0x82,0xc3,0x7f,0xfd,0x60,0xa3},
125         {0x84,0xc6,0x64,0xe0,0x77,0xb1},{0x86,0xc5,0x6d,0xeb,0x7a,0xbf},
126         {0x88,0xcc,0x52,0xda,0x59,0x95},{0x8a,0xcf,0x5b,0xd1,0x54,0x9b},
127         {0x8c,0xca,0x40,0xcc,0x43,0x89},{0x8e,0xc9,0x49,0xc7,0x4e,0x87},
128         {0x90,0xd8,0x3e,0xae,0x05,0xdd},{0x92,0xdb,0x37,0xa5,0x08,0xd3},
129         {0x94,0xde,0x2c,0xb8,0x1f,0xc1},{0x96,0xdd,0x25,0xb3,0x12,0xcf},
130         {0x98,0xd4,0x1a,0x82,0x31,0xe5},{0x9a,0xd7,0x13,0x89,0x3c,0xeb},
131         {0x9c,0xd2,0x08,0x94,0x2b,0xf9},{0x9e,0xd1,0x01,0x9f,0x26,0xf7},
132         {0xa0,0xf0,0xe6,0x46,0xbd,0x4d},{0xa2,0xf3,0xef,0x4d,0xb0,0x43},
133         {0xa4,0xf6,0xf4,0x50,0xa7,0x51},{0xa6,0xf5,0xfd,0x5b,0xaa,0x5f},
134         {0xa8,0xfc,0xc2,0x6a,0x89,0x75},{0xaa,0xff,0xcb,0x61,0x84,0x7b},
135         {0xac,0xfa,0xd0,0x7c,0x93,0x69},{0xae,0xf9,0xd9,0x77,0x9e,0x67},
136         {0xb0,0xe8,0xae,0x1e,0xd5,0x3d},{0xb2,0xeb,0xa7,0x15,0xd8,0x33},
137         {0xb4,0xee,0xbc,0x08,0xcf,0x21},{0xb6,0xed,0xb5,0x03,0xc2,0x2f},
138         {0xb8,0xe4,0x8a,0x32,0xe1,0x05},{0xba,0xe7,0x83,0x39,0xec,0x0b},
139         {0xbc,0xe2,0x98,0x24,0xfb,0x19},{0xbe,0xe1,0x91,0x2f,0xf6,0x17},
140         {0xc0,0xa0,0x4d,0x8d,0xd6,0x76},{0xc2,0xa3,0x44,0x86,0xdb,0x78},
141         {0xc4,0xa6,0x5f,0x9b,0xcc,0x6a},{0xc6,0xa5,0x56,0x90,0xc1,0x64},
142         {0xc8,0xac,0x69,0xa1,0xe2,0x4e},{0xca,0xaf,0x60,0xaa,0xef,0x40},
143         {0xcc,0xaa,0x7b,0xb7,0xf8,0x52},{0xce,0xa9,0x72,0xbc,0xf5,0x5c},
144         {0xd0,0xb8,0x05,0xd5,0xbe,0x06},{0xd2,0xbb,0x0c,0xde,0xb3,0x08},
145         {0xd4,0xbe,0x17,0xc3,0xa4,0x1a},{0xd6,0xbd,0x1e,0xc8,0xa9,0x14},
146         {0xd8,0xb4,0x21,0xf9,0x8a,0x3e},{0xda,0xb7,0x28,0xf2,0x87,0x30},
147         {0xdc,0xb2,0x33,0xef,0x90,0x22},{0xde,0xb1,0x3a,0xe4,0x9d,0x2c},
148         {0xe0,0x90,0xdd,0x3d,0x06,0x96},{0xe2,0x93,0xd4,0x36,0x0b,0x98},
149         {0xe4,0x96,0xcf,0x2b,0x1c,0x8a},{0xe6,0x95,0xc6,0x20,0x11,0x84},
150         {0xe8,0x9c,0xf9,0x11,0x32,0xae},{0xea,0x9f,0xf0,0x1a,0x3f,0xa0},
151         {0xec,0x9a,0xeb,0x07,0x28,0xb2},{0xee,0x99,0xe2,0x0c,0x25,0xbc},
152         {0xf0,0x88,0x95,0x65,0x6e,0xe6},{0xf2,0x8b,0x9c,0x6e,0x63,0xe8},
153         {0xf4,0x8e,0x87,0x73,0x74,0xfa},{0xf6,0x8d,0x8e,0x78,0x79,0xf4},
154         {0xf8,0x84,0xb1,0x49,0x5a,0xde},{0xfa,0x87,0xb8,0x42,0x57,0xd0},
155         {0xfc,0x82,0xa3,0x5f,0x40,0xc2},{0xfe,0x81,0xaa,0x54,0x4d,0xcc},
156         {0x1b,0x9b,0xec,0xf7,0xda,0x41},{0x19,0x98,0xe5,0xfc,0xd7,0x4f},
157         {0x1f,0x9d,0xfe,0xe1,0xc0,0x5d},{0x1d,0x9e,0xf7,0xea,0xcd,0x53},
158         {0x13,0x97,0xc8,0xdb,0xee,0x79},{0x11,0x94,0xc1,0xd0,0xe3,0x77},
159         {0x17,0x91,0xda,0xcd,0xf4,0x65},{0x15,0x92,0xd3,0xc6,0xf9,0x6b},
160         {0x0b,0x83,0xa4,0xaf,0xb2,0x31},{0x09,0x80,0xad,0xa4,0xbf,0x3f},
161         {0x0f,0x85,0xb6,0xb9,0xa8,0x2d},{0x0d,0x86,0xbf,0xb2,0xa5,0x23},
162         {0x03,0x8f,0x80,0x83,0x86,0x09},{0x01,0x8c,0x89,0x88,0x8b,0x07},
163         {0x07,0x89,0x92,0x95,0x9c,0x15},{0x05,0x8a,0x9b,0x9e,0x91,0x1b},
164         {0x3b,0xab,0x7c,0x47,0x0a,0xa1},{0x39,0xa8,0x75,0x4c,0x07,0xaf},
165         {0x3f,0xad,0x6e,0x51,0x10,0xbd},{0x3d,0xae,0x67,0x5a,0x1d,0xb3},
166         {0x33,0xa7,0x58,0x6b,0x3e,0x99},{0x31,0xa4,0x51,0x60,0x33,0x97},
167         {0x37,0xa1,0x4a,0x7d,0x24,0x85},{0x35,0xa2,0x43,0x76,0x29,0x8b},
168         {0x2b,0xb3,0x34,0x1f,0x62,0xd1},{0x29,0xb0,0x3d,0x14,0x6f,0xdf},
169         {0x2f,0xb5,0x26,0x09,0x78,0xcd},{0x2d,0xb6,0x2f,0x02,0x75,0xc3},
170         {0x23,0xbf,0x10,0x33,0x56,0xe9},{0x21,0xbc,0x19,0x38,0x5b,0xe7},
171         {0x27,0xb9,0x02,0x25,0x4c,0xf5},{0x25,0xba,0x0b,0x2e,0x41,0xfb},
172         {0x5b,0xfb,0xd7,0x8c,0x61,0x9a},{0x59,0xf8,0xde,0x87,0x6c,0x94},
173         {0x5f,0xfd,0xc5,0x9a,0x7b,0x86},{0x5d,0xfe,0xcc,0x91,0x76,0x88},
174         {0x53,0xf7,0xf3,0xa0,0x55,0xa2},{0x51,0xf4,0xfa,0xab,0x58,0xac},
175         {0x57,0xf1,0xe1,0xb6,0x4f,0xbe},{0x55,0xf2,0xe8,0xbd,0x42,0xb0},
176         {0x4b,0xe3,0x9f,0xd4,0x09,0xea},{0x49,0xe0,0x96,0xdf,0x04,0xe4},
177         {0x4f,0xe5,0x8d,0xc2,0x13,0xf6},{0x4d,0xe6,0x84,0xc9,0x1e,0xf8},
178         {0x43,0xef,0xbb,0xf8,0x3d,0xd2},{0x41,0xec,0xb2,0xf3,0x30,0xdc},
179         {0x47,0xe9,0xa9,0xee,0x27,0xce},{0x45,0xea,0xa0,0xe5,0x2a,0xc0},
180         {0x7b,0xcb,0x47,0x3c,0xb1,0x7a},{0x79,0xc8,0x4e,0x37,0xbc,0x74},
181         {0x7f,0xcd,0x55,0x2a,0xab,0x66},{0x7d,0xce,0x5c,0x21,0xa6,0x68},
182         {0x73,0xc7,0x63,0x10,0x85,0x42},{0x71,0xc4,0x6a,0x1b,0x88,0x4c},
183         {0x77,0xc1,0x71,0x06,0x9f,0x5e},{0x75,0xc2,0x78,0x0d,0x92,0x50},
184         {0x6b,0xd3,0x0f,0x64,0xd9,0x0a},{0x69,0xd0,0x06,0x6f,0xd4,0x04},
185         {0x6f,0xd5,0x1d,0x72,0xc3,0x16},{0x6d,0xd6,0x14,0x79,0xce,0x18},
186         {0x63,0xdf,0x2b,0x48,0xed,0x32},{0x61,0xdc,0x22,0x43,0xe0,0x3c},
187         {0x67,0xd9,0x39,0x5e,0xf7,0x2e},{0x65,0xda,0x30,0x55,0xfa,0x20},
188         {0x9b,0x5b,0x9a,0x01,0xb7,0xec},{0x99,0x58,0x93,0x0a,0xba,0xe2},
189         {0x9f,0x5d,0x88,0x17,0xad,0xf0},{0x9d,0x5e,0x81,0x1c,0xa0,0xfe},
190         {0x93,0x57,0xbe,0x2d,0x83,0xd4},{0x91,0x54,0xb7,0x26,0x8e,0xda},
191         {0x97,0x51,0xac,0x3b,0x99,0xc8},{0x95,0x52,0xa5,0x30,0x94,0xc6},
192         {0x8b,0x43,0xd2,0x59,0xdf,0x9c},{0x89,0x40,0xdb,0x52,0xd2,0x92},
193         {0x8f,0x45,0xc0,0x4f,0xc5,0x80},{0x8d,0x46,0xc9,0x44,0xc8,0x8e},
194         {0x83,0x4f,0xf6,0x75,0xeb,0xa4},{0x81,0x4c,0xff,0x7e,0xe6,0xaa},
195         {0x87,0x49,0xe4,0x63,0xf1,0xb8},{0x85,0x4a,0xed,0x68,0xfc,0xb6},
196         {0xbb,0x6b,0x0a,0xb1,0x67,0x0c},{0xb9,0x68,0x03,0xba,0x6a,0x02},
197         {0xbf,0x6d,0x18,0xa7,0x7d,0x10},{0xbd,0x6e,0x11,0xac,0x70,0x1e},
198         {0xb3,0x67,0x2e,0x9d,0x53,0x34},{0xb1,0x64,0x27,0x96,0x5e,0x3a},
199         {0xb7,0x61,0x3c,0x8b,0x49,0x28},{0xb5,0x62,0x35,0x80,0x44,0x26},
200         {0xab,0x73,0x42,0xe9,0x0f,0x7c},{0xa9,0x70,0x4b,0xe2,0x02,0x72},
201         {0xaf,0x75,0x50,0xff,0x15,0x60},{0xad,0x76,0x59,0xf4,0x18,0x6e},
202         {0xa3,0x7f,0x66,0xc5,0x3b,0x44},{0xa1,0x7c,0x6f,0xce,0x36,0x4a},
203         {0xa7,0x79,0x74,0xd3,0x21,0x58},{0xa5,0x7a,0x7d,0xd8,0x2c,0x56},
204         {0xdb,0x3b,0xa1,0x7a,0x0c,0x37},{0xd9,0x38,0xa8,0x71,0x01,0x39},
205         {0xdf,0x3d,0xb3,0x6c,0x16,0x2b},{0xdd,0x3e,0xba,0x67,0x1b,0x25},
206         {0xd3,0x37,0x85,0x56,0x38,0x0f},{0xd1,0x34,0x8c,0x5d,0x35,0x01},
207         {0xd7,0x31,0x97,0x40,0x22,0x13},{0xd5,0x32,0x9e,0x4b,0x2f,0x1d},
208         {0xcb,0x23,0xe9,0x22,0x64,0x47},{0xc9,0x20,0xe0,0x29,0x69,0x49},
209         {0xcf,0x25,0xfb,0x34,0x7e,0x5b},{0xcd,0x26,0xf2,0x3f,0x73,0x55},
210         {0xc3,0x2f,0xcd,0x0e,0x50,0x7f},{0xc1,0x2c,0xc4,0x05,0x5d,0x71},
211         {0xc7,0x29,0xdf,0x18,0x4a,0x63},{0xc5,0x2a,0xd6,0x13,0x47,0x6d},
212         {0xfb,0x0b,0x31,0xca,0xdc,0xd7},{0xf9,0x08,0x38,0xc1,0xd1,0xd9},
213         {0xff,0x0d,0x23,0xdc,0xc6,0xcb},{0xfd,0x0e,0x2a,0xd7,0xcb,0xc5},
214         {0xf3,0x07,0x15,0xe6,0xe8,0xef},{0xf1,0x04,0x1c,0xed,0xe5,0xe1},
215         {0xf7,0x01,0x07,0xf0,0xf2,0xf3},{0xf5,0x02,0x0e,0xfb,0xff,0xfd},
216         {0xeb,0x13,0x79,0x92,0xb4,0xa7},{0xe9,0x10,0x70,0x99,0xb9,0xa9},
217         {0xef,0x15,0x6b,0x84,0xae,0xbb},{0xed,0x16,0x62,0x8f,0xa3,0xb5},
218         {0xe3,0x1f,0x5d,0xbe,0x80,0x9f},{0xe1,0x1c,0x54,0xb5,0x8d,0x91},
219         {0xe7,0x19,0x4f,0xa8,0x9a,0x83},{0xe5,0x1a,0x46,0xa3,0x97,0x8d}
220 };
221
222 /*********************** FUNCTION DEFINITIONS ***********************/
223 // XORs the in and out buffers, storing the result in out. Length is in bytes.
224 void xor_buf(const BYTE in[], BYTE out[], size_t len)
225 {
226         size_t idx;
227
228         for (idx = 0; idx < len; idx++)
229                 out[idx] ^= in[idx];
230 }
231
232 /*******************
233 * AES - CBC
234 *******************/
235 int _olm_aes_encrypt_cbc(const BYTE in[], size_t in_len, BYTE out[], const WORD key[], int keysize, const BYTE iv[])
236 {
237         BYTE buf_in[AES_BLOCK_SIZE], buf_out[AES_BLOCK_SIZE];
238         int blocks, idx;
239
240         if (in_len % AES_BLOCK_SIZE != 0)
241                 return(FALSE);
242
243         blocks = in_len / AES_BLOCK_SIZE;
244
245         memcpy(buf_out, iv, AES_BLOCK_SIZE);
246
247         for (idx = 0; idx < blocks; idx++) {
248                 memcpy(buf_in, &in[idx * AES_BLOCK_SIZE], AES_BLOCK_SIZE);
249                 xor_buf(buf_out, buf_in, AES_BLOCK_SIZE);
250                 _olm_aes_encrypt(buf_in, buf_out, key, keysize);
251                 memcpy(&out[idx * AES_BLOCK_SIZE], buf_out, AES_BLOCK_SIZE);
252         }
253
254         return(TRUE);
255 }
256
257 int _olm_aes_encrypt_cbc_mac(const BYTE in[], size_t in_len, BYTE out[], const WORD key[], int keysize, const BYTE iv[])
258 {
259         BYTE buf_in[AES_BLOCK_SIZE], buf_out[AES_BLOCK_SIZE];
260         int blocks, idx;
261
262         if (in_len % AES_BLOCK_SIZE != 0)
263                 return(FALSE);
264
265         blocks = in_len / AES_BLOCK_SIZE;
266
267         memcpy(buf_out, iv, AES_BLOCK_SIZE);
268
269         for (idx = 0; idx < blocks; idx++) {
270                 memcpy(buf_in, &in[idx * AES_BLOCK_SIZE], AES_BLOCK_SIZE);
271                 xor_buf(buf_out, buf_in, AES_BLOCK_SIZE);
272                 _olm_aes_encrypt(buf_in, buf_out, key, keysize);
273                 // Do not output all encrypted blocks.
274         }
275
276         memcpy(out, buf_out, AES_BLOCK_SIZE);   // Only output the last block.
277
278         return(TRUE);
279 }
280
281 // No need for an _olm_aes_decrypt_cbc() for just CCM.
282
283 /*******************
284 * AES - CTR
285 *******************/
286 void increment_iv(BYTE iv[], int counter_size)
287 {
288         int idx;
289
290         // Use counter_size bytes at the end of the IV as the big-endian integer to increment.
291         for (idx = AES_BLOCK_SIZE - 1; idx >= AES_BLOCK_SIZE - counter_size; idx--) {
292                 iv[idx]++;
293                 if (iv[idx] != 0 || idx == AES_BLOCK_SIZE - counter_size)
294                         break;
295         }
296 }
297
298 // Performs the encryption in-place, the input and output buffers may be the same.
299 // Input may be an arbitrary length (in bytes).
300 void _olm_aes_encrypt_ctr(const BYTE in[], size_t in_len, BYTE out[], const WORD key[], int keysize, const BYTE iv[])
301 {
302         size_t idx = 0, last_block_length;
303         BYTE iv_buf[AES_BLOCK_SIZE], out_buf[AES_BLOCK_SIZE];
304
305         if (in != out)
306                 memcpy(out, in, in_len);
307
308         memcpy(iv_buf, iv, AES_BLOCK_SIZE);
309         last_block_length = in_len - AES_BLOCK_SIZE;
310
311         if (in_len > AES_BLOCK_SIZE) {
312                 for (idx = 0; idx < last_block_length; idx += AES_BLOCK_SIZE) {
313                         _olm_aes_encrypt(iv_buf, out_buf, key, keysize);
314                         xor_buf(out_buf, &out[idx], AES_BLOCK_SIZE);
315                         increment_iv(iv_buf, AES_BLOCK_SIZE);
316                 }
317         }
318
319         _olm_aes_encrypt(iv_buf, out_buf, key, keysize);
320         xor_buf(out_buf, &out[idx], in_len - idx);   // Use the Most Significant bytes.
321 }
322
323 void _olm_aes_decrypt_ctr(const BYTE in[], size_t in_len, BYTE out[], const WORD key[], int keysize, const BYTE iv[])
324 {
325         // CTR encryption is its own inverse function.
326         _olm_aes_encrypt_ctr(in, in_len, out, key, keysize, iv);
327 }
328
329 /*******************
330 * AES - CCM
331 *******************/
332 // out_len = payload_len + assoc_len
333 int _olm_aes_encrypt_ccm(const BYTE payload[], WORD payload_len, const BYTE assoc[], unsigned short assoc_len,
334                     const BYTE nonce[], unsigned short nonce_len, BYTE out[], WORD *out_len,
335                     WORD mac_len, const BYTE key_str[], int keysize)
336 {
337         BYTE temp_iv[AES_BLOCK_SIZE], counter[AES_BLOCK_SIZE], mac[16], *buf;
338         int end_of_buf, payload_len_store_size;
339         WORD key[60];
340
341         if (mac_len != 4 && mac_len != 6 && mac_len != 8 && mac_len != 10 &&
342            mac_len != 12 && mac_len != 14 && mac_len != 16)
343                 return(FALSE);
344
345         if (nonce_len < 7 || nonce_len > 13)
346                 return(FALSE);
347
348         if (assoc_len > 32768 /* = 2^15 */)
349                 return(FALSE);
350
351         buf = (BYTE*)malloc(payload_len + assoc_len + 48 /*Round both payload and associated data up a block size and add an extra block.*/);
352         if (! buf)
353                 return(FALSE);
354
355         // Prepare the key for usage.
356         _olm_aes_key_setup(key_str, key, keysize);
357
358         // Format the first block of the formatted data.
359         payload_len_store_size = AES_BLOCK_SIZE - 1 - nonce_len;
360         ccm_prepare_first_format_blk(buf, assoc_len, payload_len, payload_len_store_size, mac_len, nonce, nonce_len);
361         end_of_buf = AES_BLOCK_SIZE;
362
363         // Format the Associated Data, aka, assoc[].
364         ccm_format_assoc_data(buf, &end_of_buf, assoc, assoc_len);
365
366         // Format the Payload, aka payload[].
367         ccm_format_payload_data(buf, &end_of_buf, payload, payload_len);
368
369         // Create the first counter block.
370         ccm_prepare_first_ctr_blk(counter, nonce, nonce_len, payload_len_store_size);
371
372         // Perform the CBC operation with an IV of zeros on the formatted buffer to calculate the MAC.
373         memset(temp_iv, 0, AES_BLOCK_SIZE);
374         _olm_aes_encrypt_cbc_mac(buf, end_of_buf, mac, key, keysize, temp_iv);
375
376         // Copy the Payload and MAC to the output buffer.
377         memcpy(out, payload, payload_len);
378         memcpy(&out[payload_len], mac, mac_len);
379
380         // Encrypt the Payload with CTR mode with a counter starting at 1.
381         memcpy(temp_iv, counter, AES_BLOCK_SIZE);
382         increment_iv(temp_iv, AES_BLOCK_SIZE - 1 - mac_len);   // Last argument is the byte size of the counting portion of the counter block. /*BUG?*/
383         _olm_aes_encrypt_ctr(out, payload_len, out, key, keysize, temp_iv);
384
385         // Encrypt the MAC with CTR mode with a counter starting at 0.
386         _olm_aes_encrypt_ctr(&out[payload_len], mac_len, &out[payload_len], key, keysize, counter);
387
388         free(buf);
389         *out_len = payload_len + mac_len;
390
391         return(TRUE);
392 }
393
394 // plaintext_len = ciphertext_len - mac_len
395 // Needs a flag for whether the MAC matches.
396 int _olm_aes_decrypt_ccm(const BYTE ciphertext[], WORD ciphertext_len, const BYTE assoc[], unsigned short assoc_len,
397                     const BYTE nonce[], unsigned short nonce_len, BYTE plaintext[], WORD *plaintext_len,
398                     WORD mac_len, int *mac_auth, const BYTE key_str[], int keysize)
399 {
400         BYTE temp_iv[AES_BLOCK_SIZE], counter[AES_BLOCK_SIZE], mac[16], mac_buf[16], *buf;
401         int end_of_buf, plaintext_len_store_size;
402         WORD key[60];
403
404         if (ciphertext_len <= mac_len)
405                 return(FALSE);
406
407         buf = (BYTE*)malloc(assoc_len + ciphertext_len /*ciphertext_len = plaintext_len + mac_len*/ + 48);
408         if (! buf)
409                 return(FALSE);
410
411         // Prepare the key for usage.
412         _olm_aes_key_setup(key_str, key, keysize);
413
414         // Copy the plaintext and MAC to the output buffers.
415         *plaintext_len = ciphertext_len - mac_len;
416         plaintext_len_store_size = AES_BLOCK_SIZE - 1 - nonce_len;
417         memcpy(plaintext, ciphertext, *plaintext_len);
418         memcpy(mac, &ciphertext[*plaintext_len], mac_len);
419
420         // Prepare the first counter block for use in decryption.
421         ccm_prepare_first_ctr_blk(counter, nonce, nonce_len, plaintext_len_store_size);
422
423         // Decrypt the Payload with CTR mode with a counter starting at 1.
424         memcpy(temp_iv, counter, AES_BLOCK_SIZE);
425         increment_iv(temp_iv, AES_BLOCK_SIZE - 1 - mac_len);   // (AES_BLOCK_SIZE - 1 - mac_len) is the byte size of the counting portion of the counter block.
426         _olm_aes_decrypt_ctr(plaintext, *plaintext_len, plaintext, key, keysize, temp_iv);
427
428         // Setting mac_auth to NULL disables the authentication check.
429         if (mac_auth != NULL) {
430                 // Decrypt the MAC with CTR mode with a counter starting at 0.
431                 _olm_aes_decrypt_ctr(mac, mac_len, mac, key, keysize, counter);
432
433                 // Format the first block of the formatted data.
434                 plaintext_len_store_size = AES_BLOCK_SIZE - 1 - nonce_len;
435                 ccm_prepare_first_format_blk(buf, assoc_len, *plaintext_len, plaintext_len_store_size, mac_len, nonce, nonce_len);
436                 end_of_buf = AES_BLOCK_SIZE;
437
438                 // Format the Associated Data into the authentication buffer.
439                 ccm_format_assoc_data(buf, &end_of_buf, assoc, assoc_len);
440
441                 // Format the Payload into the authentication buffer.
442                 ccm_format_payload_data(buf, &end_of_buf, plaintext, *plaintext_len);
443
444                 // Perform the CBC operation with an IV of zeros on the formatted buffer to calculate the MAC.
445                 memset(temp_iv, 0, AES_BLOCK_SIZE);
446                 _olm_aes_encrypt_cbc_mac(buf, end_of_buf, mac_buf, key, keysize, temp_iv);
447
448                 // Compare the calculated MAC against the MAC embedded in the ciphertext to see if they are the same.
449                 if (! memcmp(mac, mac_buf, mac_len)) {
450                         *mac_auth = TRUE;
451                 }
452                 else {
453                         *mac_auth = FALSE;
454                         memset(plaintext, 0, *plaintext_len);
455                 }
456         }
457
458         free(buf);
459
460         return(TRUE);
461 }
462
463 // Creates the first counter block. First byte is flags, then the nonce, then the incremented part.
464 void ccm_prepare_first_ctr_blk(BYTE counter[], const BYTE nonce[], int nonce_len, int payload_len_store_size)
465 {
466         memset(counter, 0, AES_BLOCK_SIZE);
467         counter[0] = (payload_len_store_size - 1) & 0x07;
468         memcpy(&counter[1], nonce, nonce_len);
469 }
470
471 void ccm_prepare_first_format_blk(BYTE buf[], int assoc_len, int payload_len, int payload_len_store_size, int mac_len, const BYTE nonce[], int nonce_len)
472 {
473         // Set the flags for the first byte of the first block.
474         buf[0] = ((((mac_len - 2) / 2) & 0x07) << 3) | ((payload_len_store_size - 1) & 0x07);
475         if (assoc_len > 0)
476                 buf[0] += 0x40;
477         // Format the rest of the first block, storing the nonce and the size of the payload.
478         memcpy(&buf[1], nonce, nonce_len);
479         memset(&buf[1 + nonce_len], 0, AES_BLOCK_SIZE - 1 - nonce_len);
480         buf[15] = payload_len & 0x000000FF;
481         buf[14] = (payload_len >> 8) & 0x000000FF;
482 }
483
484 void ccm_format_assoc_data(BYTE buf[], int *end_of_buf, const BYTE assoc[], int assoc_len)
485 {
486         int pad;
487
488         buf[*end_of_buf + 1] = assoc_len & 0x00FF;
489         buf[*end_of_buf] = (assoc_len >> 8) & 0x00FF;
490         *end_of_buf += 2;
491         memcpy(&buf[*end_of_buf], assoc, assoc_len);
492         *end_of_buf += assoc_len;
493         pad = AES_BLOCK_SIZE - (*end_of_buf % AES_BLOCK_SIZE); /*BUG?*/
494         memset(&buf[*end_of_buf], 0, pad);
495         *end_of_buf += pad;
496 }
497
498 void ccm_format_payload_data(BYTE buf[], int *end_of_buf, const BYTE payload[], int payload_len)
499 {
500         int pad;
501
502         memcpy(&buf[*end_of_buf], payload, payload_len);
503         *end_of_buf += payload_len;
504         pad = *end_of_buf % AES_BLOCK_SIZE;
505         if (pad != 0)
506                 pad = AES_BLOCK_SIZE - pad;
507         memset(&buf[*end_of_buf], 0, pad);
508         *end_of_buf += pad;
509 }
510
511 /*******************
512 * AES
513 *******************/
514 /////////////////
515 // KEY EXPANSION
516 /////////////////
517
518 // Substitutes a word using the AES S-Box.
519 WORD SubWord(WORD word)
520 {
521         unsigned int result;
522
523         result = (int)_olm_aes_sbox[(word >> 4) & 0x0000000F][word & 0x0000000F];
524         result += (int)_olm_aes_sbox[(word >> 12) & 0x0000000F][(word >> 8) & 0x0000000F] << 8;
525         result += (int)_olm_aes_sbox[(word >> 20) & 0x0000000F][(word >> 16) & 0x0000000F] << 16;
526         result += (int)_olm_aes_sbox[(word >> 28) & 0x0000000F][(word >> 24) & 0x0000000F] << 24;
527         return(result);
528 }
529
530 // Performs the action of generating the keys that will be used in every round of
531 // encryption. "key" is the user-supplied input key, "w" is the output key schedule,
532 // "keysize" is the length in bits of "key", must be 128, 192, or 256.
533 void _olm_aes_key_setup(const BYTE key[], WORD w[], int keysize)
534 {
535         int Nb=4,Nr,Nk,idx;
536         WORD temp,Rcon[]={0x01000000,0x02000000,0x04000000,0x08000000,0x10000000,0x20000000,
537                           0x40000000,0x80000000,0x1b000000,0x36000000,0x6c000000,0xd8000000,
538                           0xab000000,0x4d000000,0x9a000000};
539
540         switch (keysize) {
541                 case 128: Nr = 10; Nk = 4; break;
542                 case 192: Nr = 12; Nk = 6; break;
543                 case 256: Nr = 14; Nk = 8; break;
544                 default: return;
545         }
546
547         for (idx=0; idx < Nk; ++idx) {
548                 w[idx] = ((key[4 * idx]) << 24) | ((key[4 * idx + 1]) << 16) |
549                                    ((key[4 * idx + 2]) << 8) | ((key[4 * idx + 3]));
550         }
551
552         for (idx = Nk; idx < Nb * (Nr+1); ++idx) {
553                 temp = w[idx - 1];
554                 if ((idx % Nk) == 0)
555                         temp = SubWord(KE_ROTWORD(temp)) ^ Rcon[(idx-1)/Nk];
556                 else if (Nk > 6 && (idx % Nk) == 4)
557                         temp = SubWord(temp);
558                 w[idx] = w[idx-Nk] ^ temp;
559         }
560 }
561
562 /////////////////
563 // ADD ROUND KEY
564 /////////////////
565
566 // Performs the AddRoundKey step. Each round has its own pre-generated 16-byte key in the
567 // form of 4 integers (the "w" array). Each integer is XOR'd by one column of the state.
568 // Also performs the job of InvAddRoundKey(); since the function is a simple XOR process,
569 // it is its own inverse.
570 void AddRoundKey(BYTE state[][4], const WORD w[])
571 {
572         BYTE subkey[4];
573
574         // memcpy(subkey,&w[idx],4); // Not accurate for big endian machines
575         // Subkey 1
576         subkey[0] = w[0] >> 24;
577         subkey[1] = w[0] >> 16;
578         subkey[2] = w[0] >> 8;
579         subkey[3] = w[0];
580         state[0][0] ^= subkey[0];
581         state[1][0] ^= subkey[1];
582         state[2][0] ^= subkey[2];
583         state[3][0] ^= subkey[3];
584         // Subkey 2
585         subkey[0] = w[1] >> 24;
586         subkey[1] = w[1] >> 16;
587         subkey[2] = w[1] >> 8;
588         subkey[3] = w[1];
589         state[0][1] ^= subkey[0];
590         state[1][1] ^= subkey[1];
591         state[2][1] ^= subkey[2];
592         state[3][1] ^= subkey[3];
593         // Subkey 3
594         subkey[0] = w[2] >> 24;
595         subkey[1] = w[2] >> 16;
596         subkey[2] = w[2] >> 8;
597         subkey[3] = w[2];
598         state[0][2] ^= subkey[0];
599         state[1][2] ^= subkey[1];
600         state[2][2] ^= subkey[2];
601         state[3][2] ^= subkey[3];
602         // Subkey 4
603         subkey[0] = w[3] >> 24;
604         subkey[1] = w[3] >> 16;
605         subkey[2] = w[3] >> 8;
606         subkey[3] = w[3];
607         state[0][3] ^= subkey[0];
608         state[1][3] ^= subkey[1];
609         state[2][3] ^= subkey[2];
610         state[3][3] ^= subkey[3];
611 }
612
613 /////////////////
614 // (Inv)SubBytes
615 /////////////////
616
617 // Performs the SubBytes step. All bytes in the state are substituted with a
618 // pre-calculated value from a lookup table.
619 void SubBytes(BYTE state[][4])
620 {
621         state[0][0] = _olm_aes_sbox[state[0][0] >> 4][state[0][0] & 0x0F];
622         state[0][1] = _olm_aes_sbox[state[0][1] >> 4][state[0][1] & 0x0F];
623         state[0][2] = _olm_aes_sbox[state[0][2] >> 4][state[0][2] & 0x0F];
624         state[0][3] = _olm_aes_sbox[state[0][3] >> 4][state[0][3] & 0x0F];
625         state[1][0] = _olm_aes_sbox[state[1][0] >> 4][state[1][0] & 0x0F];
626         state[1][1] = _olm_aes_sbox[state[1][1] >> 4][state[1][1] & 0x0F];
627         state[1][2] = _olm_aes_sbox[state[1][2] >> 4][state[1][2] & 0x0F];
628         state[1][3] = _olm_aes_sbox[state[1][3] >> 4][state[1][3] & 0x0F];
629         state[2][0] = _olm_aes_sbox[state[2][0] >> 4][state[2][0] & 0x0F];
630         state[2][1] = _olm_aes_sbox[state[2][1] >> 4][state[2][1] & 0x0F];
631         state[2][2] = _olm_aes_sbox[state[2][2] >> 4][state[2][2] & 0x0F];
632         state[2][3] = _olm_aes_sbox[state[2][3] >> 4][state[2][3] & 0x0F];
633         state[3][0] = _olm_aes_sbox[state[3][0] >> 4][state[3][0] & 0x0F];
634         state[3][1] = _olm_aes_sbox[state[3][1] >> 4][state[3][1] & 0x0F];
635         state[3][2] = _olm_aes_sbox[state[3][2] >> 4][state[3][2] & 0x0F];
636         state[3][3] = _olm_aes_sbox[state[3][3] >> 4][state[3][3] & 0x0F];
637 }
638
639 void InvSubBytes(BYTE state[][4])
640 {
641         state[0][0] = _olm_aes_invsbox[state[0][0] >> 4][state[0][0] & 0x0F];
642         state[0][1] = _olm_aes_invsbox[state[0][1] >> 4][state[0][1] & 0x0F];
643         state[0][2] = _olm_aes_invsbox[state[0][2] >> 4][state[0][2] & 0x0F];
644         state[0][3] = _olm_aes_invsbox[state[0][3] >> 4][state[0][3] & 0x0F];
645         state[1][0] = _olm_aes_invsbox[state[1][0] >> 4][state[1][0] & 0x0F];
646         state[1][1] = _olm_aes_invsbox[state[1][1] >> 4][state[1][1] & 0x0F];
647         state[1][2] = _olm_aes_invsbox[state[1][2] >> 4][state[1][2] & 0x0F];
648         state[1][3] = _olm_aes_invsbox[state[1][3] >> 4][state[1][3] & 0x0F];
649         state[2][0] = _olm_aes_invsbox[state[2][0] >> 4][state[2][0] & 0x0F];
650         state[2][1] = _olm_aes_invsbox[state[2][1] >> 4][state[2][1] & 0x0F];
651         state[2][2] = _olm_aes_invsbox[state[2][2] >> 4][state[2][2] & 0x0F];
652         state[2][3] = _olm_aes_invsbox[state[2][3] >> 4][state[2][3] & 0x0F];
653         state[3][0] = _olm_aes_invsbox[state[3][0] >> 4][state[3][0] & 0x0F];
654         state[3][1] = _olm_aes_invsbox[state[3][1] >> 4][state[3][1] & 0x0F];
655         state[3][2] = _olm_aes_invsbox[state[3][2] >> 4][state[3][2] & 0x0F];
656         state[3][3] = _olm_aes_invsbox[state[3][3] >> 4][state[3][3] & 0x0F];
657 }
658
659 /////////////////
660 // (Inv)ShiftRows
661 /////////////////
662
663 // Performs the ShiftRows step. All rows are shifted cylindrically to the left.
664 void ShiftRows(BYTE state[][4])
665 {
666         int t;
667
668         // Shift left by 1
669         t = state[1][0];
670         state[1][0] = state[1][1];
671         state[1][1] = state[1][2];
672         state[1][2] = state[1][3];
673         state[1][3] = t;
674         // Shift left by 2
675         t = state[2][0];
676         state[2][0] = state[2][2];
677         state[2][2] = t;
678         t = state[2][1];
679         state[2][1] = state[2][3];
680         state[2][3] = t;
681         // Shift left by 3
682         t = state[3][0];
683         state[3][0] = state[3][3];
684         state[3][3] = state[3][2];
685         state[3][2] = state[3][1];
686         state[3][1] = t;
687 }
688
689 // All rows are shifted cylindrically to the right.
690 void InvShiftRows(BYTE state[][4])
691 {
692         int t;
693
694         // Shift right by 1
695         t = state[1][3];
696         state[1][3] = state[1][2];
697         state[1][2] = state[1][1];
698         state[1][1] = state[1][0];
699         state[1][0] = t;
700         // Shift right by 2
701         t = state[2][3];
702         state[2][3] = state[2][1];
703         state[2][1] = t;
704         t = state[2][2];
705         state[2][2] = state[2][0];
706         state[2][0] = t;
707         // Shift right by 3
708         t = state[3][3];
709         state[3][3] = state[3][0];
710         state[3][0] = state[3][1];
711         state[3][1] = state[3][2];
712         state[3][2] = t;
713 }
714
715 /////////////////
716 // (Inv)MixColumns
717 /////////////////
718
719 // Performs the MixColums step. The state is multiplied by itself using matrix
720 // multiplication in a Galios Field 2^8. All multiplication is pre-computed in a table.
721 // Addition is equivilent to XOR. (Must always make a copy of the column as the original
722 // values will be destoyed.)
723 void MixColumns(BYTE state[][4])
724 {
725         BYTE col[4];
726
727         // Column 1
728         col[0] = state[0][0];
729         col[1] = state[1][0];
730         col[2] = state[2][0];
731         col[3] = state[3][0];
732         state[0][0] = gf_mul[col[0]][0];
733         state[0][0] ^= gf_mul[col[1]][1];
734         state[0][0] ^= col[2];
735         state[0][0] ^= col[3];
736         state[1][0] = col[0];
737         state[1][0] ^= gf_mul[col[1]][0];
738         state[1][0] ^= gf_mul[col[2]][1];
739         state[1][0] ^= col[3];
740         state[2][0] = col[0];
741         state[2][0] ^= col[1];
742         state[2][0] ^= gf_mul[col[2]][0];
743         state[2][0] ^= gf_mul[col[3]][1];
744         state[3][0] = gf_mul[col[0]][1];
745         state[3][0] ^= col[1];
746         state[3][0] ^= col[2];
747         state[3][0] ^= gf_mul[col[3]][0];
748         // Column 2
749         col[0] = state[0][1];
750         col[1] = state[1][1];
751         col[2] = state[2][1];
752         col[3] = state[3][1];
753         state[0][1] = gf_mul[col[0]][0];
754         state[0][1] ^= gf_mul[col[1]][1];
755         state[0][1] ^= col[2];
756         state[0][1] ^= col[3];
757         state[1][1] = col[0];
758         state[1][1] ^= gf_mul[col[1]][0];
759         state[1][1] ^= gf_mul[col[2]][1];
760         state[1][1] ^= col[3];
761         state[2][1] = col[0];
762         state[2][1] ^= col[1];
763         state[2][1] ^= gf_mul[col[2]][0];
764         state[2][1] ^= gf_mul[col[3]][1];
765         state[3][1] = gf_mul[col[0]][1];
766         state[3][1] ^= col[1];
767         state[3][1] ^= col[2];
768         state[3][1] ^= gf_mul[col[3]][0];
769         // Column 3
770         col[0] = state[0][2];
771         col[1] = state[1][2];
772         col[2] = state[2][2];
773         col[3] = state[3][2];
774         state[0][2] = gf_mul[col[0]][0];
775         state[0][2] ^= gf_mul[col[1]][1];
776         state[0][2] ^= col[2];
777         state[0][2] ^= col[3];
778         state[1][2] = col[0];
779         state[1][2] ^= gf_mul[col[1]][0];
780         state[1][2] ^= gf_mul[col[2]][1];
781         state[1][2] ^= col[3];
782         state[2][2] = col[0];
783         state[2][2] ^= col[1];
784         state[2][2] ^= gf_mul[col[2]][0];
785         state[2][2] ^= gf_mul[col[3]][1];
786         state[3][2] = gf_mul[col[0]][1];
787         state[3][2] ^= col[1];
788         state[3][2] ^= col[2];
789         state[3][2] ^= gf_mul[col[3]][0];
790         // Column 4
791         col[0] = state[0][3];
792         col[1] = state[1][3];
793         col[2] = state[2][3];
794         col[3] = state[3][3];
795         state[0][3] = gf_mul[col[0]][0];
796         state[0][3] ^= gf_mul[col[1]][1];
797         state[0][3] ^= col[2];
798         state[0][3] ^= col[3];
799         state[1][3] = col[0];
800         state[1][3] ^= gf_mul[col[1]][0];
801         state[1][3] ^= gf_mul[col[2]][1];
802         state[1][3] ^= col[3];
803         state[2][3] = col[0];
804         state[2][3] ^= col[1];
805         state[2][3] ^= gf_mul[col[2]][0];
806         state[2][3] ^= gf_mul[col[3]][1];
807         state[3][3] = gf_mul[col[0]][1];
808         state[3][3] ^= col[1];
809         state[3][3] ^= col[2];
810         state[3][3] ^= gf_mul[col[3]][0];
811 }
812
813 void InvMixColumns(BYTE state[][4])
814 {
815         BYTE col[4];
816
817         // Column 1
818         col[0] = state[0][0];
819         col[1] = state[1][0];
820         col[2] = state[2][0];
821         col[3] = state[3][0];
822         state[0][0] = gf_mul[col[0]][5];
823         state[0][0] ^= gf_mul[col[1]][3];
824         state[0][0] ^= gf_mul[col[2]][4];
825         state[0][0] ^= gf_mul[col[3]][2];
826         state[1][0] = gf_mul[col[0]][2];
827         state[1][0] ^= gf_mul[col[1]][5];
828         state[1][0] ^= gf_mul[col[2]][3];
829         state[1][0] ^= gf_mul[col[3]][4];
830         state[2][0] = gf_mul[col[0]][4];
831         state[2][0] ^= gf_mul[col[1]][2];
832         state[2][0] ^= gf_mul[col[2]][5];
833         state[2][0] ^= gf_mul[col[3]][3];
834         state[3][0] = gf_mul[col[0]][3];
835         state[3][0] ^= gf_mul[col[1]][4];
836         state[3][0] ^= gf_mul[col[2]][2];
837         state[3][0] ^= gf_mul[col[3]][5];
838         // Column 2
839         col[0] = state[0][1];
840         col[1] = state[1][1];
841         col[2] = state[2][1];
842         col[3] = state[3][1];
843         state[0][1] = gf_mul[col[0]][5];
844         state[0][1] ^= gf_mul[col[1]][3];
845         state[0][1] ^= gf_mul[col[2]][4];
846         state[0][1] ^= gf_mul[col[3]][2];
847         state[1][1] = gf_mul[col[0]][2];
848         state[1][1] ^= gf_mul[col[1]][5];
849         state[1][1] ^= gf_mul[col[2]][3];
850         state[1][1] ^= gf_mul[col[3]][4];
851         state[2][1] = gf_mul[col[0]][4];
852         state[2][1] ^= gf_mul[col[1]][2];
853         state[2][1] ^= gf_mul[col[2]][5];
854         state[2][1] ^= gf_mul[col[3]][3];
855         state[3][1] = gf_mul[col[0]][3];
856         state[3][1] ^= gf_mul[col[1]][4];
857         state[3][1] ^= gf_mul[col[2]][2];
858         state[3][1] ^= gf_mul[col[3]][5];
859         // Column 3
860         col[0] = state[0][2];
861         col[1] = state[1][2];
862         col[2] = state[2][2];
863         col[3] = state[3][2];
864         state[0][2] = gf_mul[col[0]][5];
865         state[0][2] ^= gf_mul[col[1]][3];
866         state[0][2] ^= gf_mul[col[2]][4];
867         state[0][2] ^= gf_mul[col[3]][2];
868         state[1][2] = gf_mul[col[0]][2];
869         state[1][2] ^= gf_mul[col[1]][5];
870         state[1][2] ^= gf_mul[col[2]][3];
871         state[1][2] ^= gf_mul[col[3]][4];
872         state[2][2] = gf_mul[col[0]][4];
873         state[2][2] ^= gf_mul[col[1]][2];
874         state[2][2] ^= gf_mul[col[2]][5];
875         state[2][2] ^= gf_mul[col[3]][3];
876         state[3][2] = gf_mul[col[0]][3];
877         state[3][2] ^= gf_mul[col[1]][4];
878         state[3][2] ^= gf_mul[col[2]][2];
879         state[3][2] ^= gf_mul[col[3]][5];
880         // Column 4
881         col[0] = state[0][3];
882         col[1] = state[1][3];
883         col[2] = state[2][3];
884         col[3] = state[3][3];
885         state[0][3] = gf_mul[col[0]][5];
886         state[0][3] ^= gf_mul[col[1]][3];
887         state[0][3] ^= gf_mul[col[2]][4];
888         state[0][3] ^= gf_mul[col[3]][2];
889         state[1][3] = gf_mul[col[0]][2];
890         state[1][3] ^= gf_mul[col[1]][5];
891         state[1][3] ^= gf_mul[col[2]][3];
892         state[1][3] ^= gf_mul[col[3]][4];
893         state[2][3] = gf_mul[col[0]][4];
894         state[2][3] ^= gf_mul[col[1]][2];
895         state[2][3] ^= gf_mul[col[2]][5];
896         state[2][3] ^= gf_mul[col[3]][3];
897         state[3][3] = gf_mul[col[0]][3];
898         state[3][3] ^= gf_mul[col[1]][4];
899         state[3][3] ^= gf_mul[col[2]][2];
900         state[3][3] ^= gf_mul[col[3]][5];
901 }
902
903 /////////////////
904 // (En/De)Crypt
905 /////////////////
906
907 void _olm_aes_encrypt(const BYTE in[], BYTE out[], const WORD key[], int keysize)
908 {
909         BYTE state[4][4];
910
911         // Copy input array (should be 16 bytes long) to a matrix (sequential bytes are ordered
912         // by row, not col) called "state" for processing.
913         // *** Implementation note: The official AES documentation references the state by
914         // column, then row. Accessing an element in C requires row then column. Thus, all state
915         // references in AES must have the column and row indexes reversed for C implementation.
916         state[0][0] = in[0];
917         state[1][0] = in[1];
918         state[2][0] = in[2];
919         state[3][0] = in[3];
920         state[0][1] = in[4];
921         state[1][1] = in[5];
922         state[2][1] = in[6];
923         state[3][1] = in[7];
924         state[0][2] = in[8];
925         state[1][2] = in[9];
926         state[2][2] = in[10];
927         state[3][2] = in[11];
928         state[0][3] = in[12];
929         state[1][3] = in[13];
930         state[2][3] = in[14];
931         state[3][3] = in[15];
932
933         // Perform the necessary number of rounds. The round key is added first.
934         // The last round does not perform the MixColumns step.
935         AddRoundKey(state,&key[0]);
936         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[4]);
937         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[8]);
938         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[12]);
939         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[16]);
940         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[20]);
941         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[24]);
942         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[28]);
943         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[32]);
944         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[36]);
945         if (keysize != 128) {
946                 SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[40]);
947                 SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[44]);
948                 if (keysize != 192) {
949                         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[48]);
950                         SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[52]);
951                         SubBytes(state); ShiftRows(state); AddRoundKey(state,&key[56]);
952                 }
953                 else {
954                         SubBytes(state); ShiftRows(state); AddRoundKey(state,&key[48]);
955                 }
956         }
957         else {
958                 SubBytes(state); ShiftRows(state); AddRoundKey(state,&key[40]);
959         }
960
961         // Copy the state to the output array.
962         out[0] = state[0][0];
963         out[1] = state[1][0];
964         out[2] = state[2][0];
965         out[3] = state[3][0];
966         out[4] = state[0][1];
967         out[5] = state[1][1];
968         out[6] = state[2][1];
969         out[7] = state[3][1];
970         out[8] = state[0][2];
971         out[9] = state[1][2];
972         out[10] = state[2][2];
973         out[11] = state[3][2];
974         out[12] = state[0][3];
975         out[13] = state[1][3];
976         out[14] = state[2][3];
977         out[15] = state[3][3];
978 }
979
980 void _olm_aes_decrypt(const BYTE in[], BYTE out[], const WORD key[], int keysize)
981 {
982         BYTE state[4][4];
983
984         // Copy the input to the state.
985         state[0][0] = in[0];
986         state[1][0] = in[1];
987         state[2][0] = in[2];
988         state[3][0] = in[3];
989         state[0][1] = in[4];
990         state[1][1] = in[5];
991         state[2][1] = in[6];
992         state[3][1] = in[7];
993         state[0][2] = in[8];
994         state[1][2] = in[9];
995         state[2][2] = in[10];
996         state[3][2] = in[11];
997         state[0][3] = in[12];
998         state[1][3] = in[13];
999         state[2][3] = in[14];
1000         state[3][3] = in[15];
1001
1002         // Perform the necessary number of rounds. The round key is added first.
1003         // The last round does not perform the MixColumns step.
1004         if (keysize > 128) {
1005                 if (keysize > 192) {
1006                         AddRoundKey(state,&key[56]);
1007                         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[52]);InvMixColumns(state);
1008                         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[48]);InvMixColumns(state);
1009                 }
1010                 else {
1011                         AddRoundKey(state,&key[48]);
1012                 }
1013                 InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[44]);InvMixColumns(state);
1014                 InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[40]);InvMixColumns(state);
1015         }
1016         else {
1017                 AddRoundKey(state,&key[40]);
1018         }
1019         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[36]);InvMixColumns(state);
1020         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[32]);InvMixColumns(state);
1021         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[28]);InvMixColumns(state);
1022         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[24]);InvMixColumns(state);
1023         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[20]);InvMixColumns(state);
1024         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[16]);InvMixColumns(state);
1025         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[12]);InvMixColumns(state);
1026         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[8]);InvMixColumns(state);
1027         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[4]);InvMixColumns(state);
1028         InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[0]);
1029
1030         // Copy the state to the output array.
1031         out[0] = state[0][0];
1032         out[1] = state[1][0];
1033         out[2] = state[2][0];
1034         out[3] = state[3][0];
1035         out[4] = state[0][1];
1036         out[5] = state[1][1];
1037         out[6] = state[2][1];
1038         out[7] = state[3][1];
1039         out[8] = state[0][2];
1040         out[9] = state[1][2];
1041         out[10] = state[2][2];
1042         out[11] = state[3][2];
1043         out[12] = state[0][3];
1044         out[13] = state[1][3];
1045         out[14] = state[2][3];
1046         out[15] = state[3][3];
1047 }
1048
1049 /*******************
1050 ** AES DEBUGGING FUNCTIONS
1051 *******************/
1052 /*
1053 // This prints the "state" grid as a linear hex string.
1054 void print_state(BYTE state[][4])
1055 {
1056         int idx,idx2;
1057
1058         for (idx=0; idx < 4; idx++)
1059                 for (idx2=0; idx2 < 4; idx2++)
1060                         printf("%02x",state[idx2][idx]);
1061         printf("\n");
1062 }
1063
1064 // This prints the key (4 consecutive ints) used for a given round as a linear hex string.
1065 void print_rnd_key(WORD key[])
1066 {
1067         int idx;
1068
1069         for (idx=0; idx < 4; idx++)
1070                 printf("%08x",key[idx]);
1071         printf("\n");
1072 }
1073 */