X-Git-Url: https://gitweb.ps.run/cloth_sim/blobdiff_plain/e05a5c0a7aa891179af219eff0df34647acc8eb3..eac8eb4ec5115f16fc17b94fb194fdc1c005ddb5:/Scripts/cloth.js diff --git a/Scripts/cloth.js b/Scripts/cloth.js index 9389ef6..712ed63 100644 --- a/Scripts/cloth.js +++ b/Scripts/cloth.js @@ -1,114 +1,94 @@ -/** - * Convenience Function for calculating the distance between two vectors - * because THREE JS Vector functions mutate variables - * @param {Vector3} a - Vector A - * @param {Vector3} b - Vector B - */ -function vectorLength(a, b) { - let v1 = new THREE.Vector3(); - v1.set(a.x, a.y, a.z); - let v2 = new THREE.Vector3(); - v2.set(b.x, b.y, b.z); - - return v1.sub(v2).length(); -} +const DAMPING = 0.03; +const DRAG = 1 - DAMPING; +const MASS = 0.1; +const GRAVITY = new THREE.Vector3(0, -9.81 * MASS, 0); +const K = 1; +const MAX_STRETCH = 1.5; + +const options = { + wind: true, +}; + +class Spring { + constructor(p1, p2, restDist) { + this.p1 = p1; + this.p2 = p2; + this.restDist = restDist; + } -/** - * Class representing a quad face - * Each face consists of two triangular mesh faces - * containts four indices for determining vertices - * and six springs, one between each of the vertices - */ -export class Face { - a; - b; - c; - d; - - springs = []; - - constructor(a, b, c, d) { - this.a = a; - this.b = b; - this.c = c; - this.d = d; + satisfy() { + /** calculate current spring length */ + const diff = this.p2.position.clone().sub(this.p1.position); + const currentDist = diff.length(); + if (currentDist == 0) return; + if (currentDist <= this.restDist) return; + //const correction = diff.multiplyScalar(1 - (this.restDist / currentDist)); + + /** calculate necessary correction length and direction */ + const correction = diff.multiplyScalar((currentDist - this.restDist) / currentDist); + correction.multiplyScalar(K); + const correctionHalf = correction.multiplyScalar(0.5); + + let p1movable = this.p1.movable && this.p1.movableTmp; + let p2movable = this.p2.movable && this.p2.movableTmp; + + /** apply correction if masses aren't fixed */ + /** divide correction if both are movable */ + if (p1movable && p2movable) { + this.p1.position.add(correctionHalf); + this.p2.position.sub(correctionHalf); + } else if (! p1movable && p2movable) { + this.p2.position.sub(correction); + } else if (p1movable && ! p2movable) { + this.p1.position.add(correction); + } } } -/** - * Class representing a single spring - * has a current and resting length - * and indices to the two connected vertices - */ -export class Spring { - restLength; - currentLength; - index1; - index2; - - - /** - * set vertex indices - * and calculate inital length based on the - * vertex positions - * @param {Array} vertices - * @param {number} index1 - * @param {number} index2 - */ - constructor(vertices, index1, index2) { - this.index1 = index1; - this.index2 = index2; +class Mass { + movableTmp = true; + movable = true; - let length = vectorLength(vertices[index1], vertices[index2]); - this.restLength = length; - this.currentLength = length; + constructor(x, y, z, mass) { + this.position = new THREE.Vector3(x, y, z); + this.previous = new THREE.Vector3(x, y, z); + this.acceleration = new THREE.Vector3(0, 0, 0); + this.mass = mass; } - - getDirection(vertices) { - let direction = new THREE.Vector3( - vertices[this.index1].x, - vertices[this.index1].y, - vertices[this.index1].z + addForce(force) { + this.acceleration.add( + force.clone().multiplyScalar(1/this.mass) ); + } + verlet(dt) { + // verlet algorithm + // next position = 2 * current Position - previous position + acceleration * (passed time)^2 + // acceleration (dv/dt) = F(net) + /** calculate velocity */ + const nextPosition = this.position.clone().sub(this.previous); + /** apply drag */ + nextPosition.multiplyScalar(DRAG); + /** add to current position and add acceleration */ + nextPosition.add(this.position); + nextPosition.add(this.acceleration.multiplyScalar(dt*dt)); + + if (this.movable && this.movableTmp) { + this.previous = this.position; + this.position = nextPosition; + } - direction.sub(vertices[this.index2]); - direction.divideScalar(vectorLength(vertices[this.index1], vertices[this.index2])); - - return direction; + /** reset for next frame */ + this.acceleration.set(0, 0, 0); } } -/** - * Class representing a single piece of cloth - * contains THREE JS geometry, - * logically represented by an array of adjacent faces - * and vertex weights which are accessed by the same - * indices as the vertices in the Mesh - */ -export class Cloth { - VertexWeight = 1; - - geometry = new THREE.Geometry(); - - faces = []; - - vertexWeights = []; - - - - /** - * creates a rectangular piece of cloth - * takes the size of the cloth - * and the number of vertices it should be composed of - * @param {number} width - width of the cloth - * @param {number} height - height of the cloth - * @param {number} numPointsWidth - number of vertices in horizontal direction - * @param {number} numPointsHeight - number of vertices in vertical direction - */ - createBasic(width, height, numPointsWidth, numPointsHeight) { - /** resulting vertices and faces */ - let vertices = []; - let faces = []; +class Cloth { + constructor(width, height, numPointsWidth, numPointsHeight) { + this.width = width; + this.height = height; + this.numPointsWidth = numPointsWidth; + this.numPointsHeight = numPointsHeight; + this.windFactor = new THREE.Vector3(3, 2, 2); /** * distance between two vertices horizontally/vertically @@ -120,316 +100,218 @@ export class Cloth { /** * iterate over the number of vertices in x/y axis - * and add a new Vector3 to "vertices" + * and add a new Particle to "masses" */ + this.masses = []; for (let y = 0; y < numPointsHeight; y++) { for (let x = 0; x < numPointsWidth; x++) { - vertices.push( - new THREE.Vector3(x * stepWidth, height - y * stepHeight, 0) + this.masses.push( + new Mass( + (x - ((numPointsWidth-1)/2)) * stepWidth, + height - (y + ((numPointsHeight-1)/2)) * stepHeight, + 0, + MASS) ); } } + /** attach cloth to flag pole */ + const n = 3; + for (let i = 0; i < numPointsHeight; i++) + this.masses[this.getVertexIndex(0, i)].movable = false; + + const REST_DIST_X = width / (numPointsWidth-1); + const REST_DIST_Y = height / (numPointsHeight-1); + /** - * helper function to calculate index of vertex - * in "vertices" array based on its x and y positions - * in the mesh - * @param {number} x - x index of vertex - * @param {number} y - y index of vertex + * generate springs (constraints) */ - function getVertexIndex(x, y) { - return y * numPointsWidth + x; + this.springs = []; + for (let y = 0; y < numPointsHeight; y++) { + for (let x = 0; x < numPointsWidth; x++) { + if (x < numPointsWidth-1) { + this.springs.push(new Spring( + this.masses[this.getVertexIndex(x, y)], + this.masses[this.getVertexIndex(x+1, y)], + REST_DIST_X + )); + } + if (y < numPointsHeight-1) { + this.springs.push(new Spring( + this.masses[this.getVertexIndex(x, y)], + this.masses[this.getVertexIndex(x, y+1)], + REST_DIST_Y + )); + } + } + } + } + generateGeometry() { + const geometry = new THREE.BufferGeometry(); + + const vertices = []; + const indices = []; + const uvs = []; + + /** create one vertex and one uv coordinate per mass */ + for (let i in this.masses) { + let particle = this.masses[i]; + vertices.push( + particle.position.x, + particle.position.y, + particle.position.z); + uvs.push( + this.getX(i) / (this.numPointsWidth-1), + 1 - (this.getY(i) / (this.numPointsHeight-1)) + ); } /** * generate faces based on 4 vertices * and 6 springs each */ - for (let y = 0; y < numPointsHeight - 1; y++) { - for (let x = 0; x < numPointsWidth - 1; x++) { - let newFace = new Face( - getVertexIndex(x, y), - getVertexIndex(x, y + 1), - getVertexIndex(x + 1, y), - getVertexIndex(x + 1, y + 1), + for (let y = 0; y < this.numPointsHeight - 1; y++) { + for (let x = 0; x < this.numPointsWidth - 1; x++) { + indices.push( + this.getVertexIndex(x, y), + this.getVertexIndex(x+1, y), + this.getVertexIndex(x+1, y+1) + ); + indices.push( + this.getVertexIndex(x, y), + this.getVertexIndex(x+1, y+1), + this.getVertexIndex(x, y+1) ); - - newFace.springs.push(new Spring(vertices, getVertexIndex(x, y), getVertexIndex(x + 1, y))); - newFace.springs.push(new Spring(vertices, getVertexIndex(x, y), getVertexIndex(x, y + 1))); - newFace.springs.push(new Spring(vertices, getVertexIndex(x, y), getVertexIndex(x + 1, y + 1))); - newFace.springs.push(new Spring(vertices, getVertexIndex(x + 1, y), getVertexIndex(x, y + 1))); - newFace.springs.push(new Spring(vertices, getVertexIndex(x + 1, y), getVertexIndex(x + 1, y + 1))); - newFace.springs.push(new Spring(vertices, getVertexIndex(x, y + 1), getVertexIndex(x + 1, y + 1))); - - faces.push(newFace); } } - /** - * call createExplicit - * with generated vertices and faces - */ - this.createExplicit(vertices, faces); - } - - /** - * Generate THREE JS Geometry - * (list of vertices and list of indices representing triangles) - * and calculate the weight of each face and split it between - * surrounding vertices - * @param {Array} vertices - * @param {Array} faces - */ - createExplicit(vertices, faces) { + /** set up geometry */ + geometry.setIndex(indices); + geometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3)); + geometry.setAttribute('uv', new THREE.Float32BufferAttribute(uvs, 2)); + geometry.computeBoundingSphere(); + geometry.computeVertexNormals(); - /** - * Copy vertices and initialize vertex weights to 0 - */ - for (let i in vertices) { - this.geometry.vertices.push(vertices[i]); - this.previousPositions.push(vertices[i]); - this.vertexWeights.push(0); - } - /** - * copy faces, - * generate two triangles per face, - * calculate weight of face as its area - * and split between the 4 vertices - */ - for (let i in faces) { - let face = faces[i]; - - /** copy faces to class member */ - this.faces.push(face); - - /** generate triangles */ - this.geometry.faces.push(new THREE.Face3( - face.a, face.b, face.c - )); - this.geometry.faces.push(new THREE.Face3( - face.c, face.b, face.d - )); - - /** - * calculate area of face as combined area of - * its two composing triangles - */ - let xLength = vectorLength(this.geometry.vertices[face.b], this.geometry.vertices[face.a]); - let yLength = vectorLength(this.geometry.vertices[face.c], this.geometry.vertices[face.a]); - let weight = xLength * yLength / 2; - - xLength = vectorLength(this.geometry.vertices[face.b], this.geometry.vertices[face.d]); - yLength = vectorLength(this.geometry.vertices[face.c], this.geometry.vertices[face.d]); - weight += xLength * yLength / 2; - - /** - * split weight equally between four surrounding vertices - */ - this.vertexWeights[face.a] += weight / 4; - this.vertexWeights[face.b] += weight / 4; - this.vertexWeights[face.c] += weight / 4; - this.vertexWeights[face.d] += weight / 4; - } - - /** - * let THREE JS compute bounding sphere around generated mesh - * needed for View Frustum Culling internally - */ - this.geometry.computeBoundingSphere(); + return geometry; } - - /** - * generate a debug mesh for visualizing - * vertices and springs of the cloth - * and add it to scene for rendering - * @param {Scene} scene - Scene to add Debug Mesh to - */ - createDebugMesh(scene) { - /** - * helper function to generate a single line - * between two Vertices with a given color - * @param {Vector3} from - * @param {Vector3} to - * @param {number} color - */ - function addLine(from, to, color) { - let geometry = new THREE.Geometry(); - geometry.vertices.push(from); - geometry.vertices.push(to); - let material = new THREE.LineBasicMaterial({ color: color, linewidth: 10 }); - let line = new THREE.Line(geometry, material); - line.renderOrder = 1; - scene.add(line); - } - /** - * helper function to generate a small sphere - * at a given Vertex Position with color - * @param {Vector3} point - * @param {number} color - */ - function addPoint(point, color) { - const geometry = new THREE.SphereGeometry(0.05, 32, 32); - const material = new THREE.MeshBasicMaterial({ color: color }); - const sphere = new THREE.Mesh(geometry, material); - sphere.position.set(point.x, point.y, point.z); - scene.add(sphere); - } - - let lineColor = 0x000000; - let pointColor = 0xff00000; - - /** - * generate one line for each of the 6 springs - * and one point for each of the 4 vertices - * for all of the faces - */ - for (let i in this.faces) { - let face = this.faces[i]; - addLine(this.geometry.vertices[face.a], this.geometry.vertices[face.b], lineColor); - addLine(this.geometry.vertices[face.a], this.geometry.vertices[face.c], lineColor); - addLine(this.geometry.vertices[face.a], this.geometry.vertices[face.d], lineColor); - addLine(this.geometry.vertices[face.b], this.geometry.vertices[face.c], lineColor); - addLine(this.geometry.vertices[face.b], this.geometry.vertices[face.d], lineColor); - addLine(this.geometry.vertices[face.c], this.geometry.vertices[face.d], lineColor); - - addPoint(this.geometry.vertices[face.a], pointColor); - addPoint(this.geometry.vertices[face.b], pointColor); - addPoint(this.geometry.vertices[face.c], pointColor); - addPoint(this.geometry.vertices[face.d], pointColor); + updateGeometry(geometry) { + /** update vertex positions in place */ + const positions = geometry.attributes.position.array; + for (let i in this.masses) { + let p = this.masses[i]; + positions[i*3+0] = p.position.x; + positions[i*3+1] = p.position.y; + positions[i*3+2] = p.position.z; } + /** update internally and recalculate bounding volume */ + geometry.attributes.position.needsUpdate = true; + geometry.computeBoundingSphere(); + geometry.computeVertexNormals(); } - - previousPositions = []; - time = 0; - /** - * - * @param {number} dt - */ simulate(dt) { - - - - for (let i in this.geometry.vertices) { - let currentPosition; - let acceleration = this.getAcceleration(i, dt); - - currentPosition = this.verlet(this.geometry.vertices[i], this.previousPositions[i], acceleration, dt/2000); - - this.previousPositions[i] = currentPosition; - this.geometry.vertices[i] = currentPosition; - + let now = performance.now(); + for (let mass of this.masses) { + /** accumulate acceleration: + * - wind + * - gravity + */ + let vertex = mass.position; + let fWind = new THREE.Vector3( + this.windFactor.x * (Math.sin(vertex.x * vertex.y * now)+1), + this.windFactor.y * Math.cos(vertex.z * now), + this.windFactor.z * Math.sin(Math.cos(5 * vertex.x * vertex.y * vertex.z)) + ); + // normalize then multiply? + if (options.wind) + mass.addForce(fWind); + // calculate wind with normal? + + mass.addForce(GRAVITY); + + /** integrate motion */ + mass.verlet(dt); } - console.log(this.geometry.vertices[0]); - this.time += dt; - /** - * let THREE JS compute bounding sphere around generated mesh - * needed for View Frustum Culling internally - */ - - this.geometry.verticesNeedUpdate = true; - this.geometry.elementsNeedUpdate = true; - this.geometry.computeBoundingSphere(); + /** run satisfy step */ + for (let constraint of this.springs) { + constraint.satisfy(); + } + /** prevent self-intersections */ + this.intersect(); } - - -/** - * Equation of motion for each vertex which represents the acceleration - * @param {number} vertexIndex The index of the current vertex whose acceleration should be calculated - * @param {number} dt The time passed since last frame - */ -getAcceleration(vertexIndex, dt) { - - let vertex = this.geometry.vertices[vertexIndex]; - - // Mass of vertex - let M = this.vertexWeights[vertexIndex]; - // constant gravity - let g = new THREE.Vector3(0, -1.8, 0); - // stiffness - let k = 5; - - // Wind vector - let fWind = new THREE.Vector3( - Math.sin(vertex.x * vertex.y * this.time), - Math.cos(vertex.z* this.time), - Math.sin(Math.cos(5 * vertex.x * vertex.y * vertex.z)) - ); - - /** - * constant determined by the properties of the surrounding fluids (air) - * achievement of cloth effects through try out - * */ - let a = 1; - - let velocity = new THREE.Vector3( - (vertex.x - this.previousPositions[vertexIndex].x) / dt, - (vertex.y - this.previousPositions[vertexIndex].y) / dt, - (vertex.z - this.previousPositions[vertexIndex].z) / dt - ); - - - let fAirResistance = velocity.multiplyScalar(-a); - - let springSum = new THREE.Vector3(0, 0, 0); - - // Get the bounding springs and add them to the needed springs - for (let i in this.faces) { - if (this.faces[i].a == vertexIndex || this.faces[i].b == vertexIndex || this.faces[i].c == vertexIndex || this.faces[i].d == vertexIndex) { - for (let j in this.faces[i].springs) { - if (this.faces[i].springs[j].index1 == vertexIndex || this.faces[i].springs[j].index2 == vertexIndex) { - - let spring = this.faces[i].springs[j]; - let springDirection = spring.getDirection(this.geometry.vertices); - - - if (this.faces[i].springs[j].index1 == vertexIndex) - springDirection.multiplyScalar(-1); - - springSum.add(springDirection.multiplyScalar(k * (spring.currentLength - spring.restLength))); - + intersect() { + for (let i in this.masses) { + for (let j in this.masses) { + let p1 = this.masses[i]; + let p2 = this.masses[j]; + + p1.movableTmp = true; + p2.movableTmp = true; + + /** skip if i == j or if masses are adjacent */ + if (i == j || (Math.abs(this.getX(i) - this.getX(j)) == 1 && Math.abs(this.getY(i) - this.getY(j)) == 1)) + continue; + + /** calculate distance of points */ + let dist = p1.position.distanceTo(p2.position); + /** calculate minimal resting distance (largest distance that should not be fallen below) */ + let collisionDistance = Math.min(this.width / this.numPointsWidth, this.height / this.numPointsHeight); + // collisionDistance /= 2; + /** calculate "sphere intersection" */ + if (dist < collisionDistance) { + // p1.movableTmp = false; + // p2.movableTmp = false; + + /** vectors from p1 to p2 and the other way round */ + let diffP2P1 = p1.position.clone().sub(p2.position).normalize(); + diffP2P1.multiplyScalar((collisionDistance - dist) * 1.001 / 2); + let diffP1P2 = diffP2P1.clone().multiplyScalar(-1); + + // let v1 = p1.position.clone().sub(p1.previous).normalize(); + // let v2 = p2.position.clone().sub(p2.previous).normalize(); + + // let factor1 = (Math.PI - Math.acos(v1.dot(diffP2P1))) / Math.PI * 2; + // let factor2 = (Math.PI - Math.acos(v2.dot(diffP1P2))) / Math.PI * 2; + + /** move masses apart */ + if (p1.movable) + p1.position.add(diffP2P1); + //p1.position.add(diffP2P1.multiplyScalar(factor1)); + if (p2.movable) + p2.position.add(diffP1P2); + //p2.position.add(diffP1P2.multiplyScalar(factor2)); } } } } + blow(camPos, intersects) { + let face = intersects[0].face; + /** vector from cam to intersection (wind) */ + let dir = intersects[0].point.clone().sub(camPos).multiplyScalar(100); + /** apply to all vertices of affected face */ + this.masses[face.a].addForce(dir); + this.masses[face.b].addForce(dir); + this.masses[face.c].addForce(dir); + } + drag(mousePosWorld, index) { + /** calculate vector from vertex to cursor */ + let dir = mousePosWorld.clone().sub(this.masses[index].position).multiplyScalar(200); + /** apply to grabbed vertex */ + this.masses[index].addForce(dir); + } - - let result = new THREE.Vector3(1, 1, 1); - - - result.multiplyScalar(M).multiply(g).add(fWind).add(fAirResistance).sub(springSum); - - - return result; - - -} - -/** - * The Verlet algorithm as an integrator - * to get the next position of a vertex - * @param {Vector3} currentPosition - * @param {Vector3} previousPosition - * @param {Vector3} acceleration - * @param {number} passedTime The delta time since last frame - */ -verlet(currentPosition, previousPosition, acceleration, passedTime) { - // verlet algorithm - // next position = 2 * current Position - previous position + acceleration * (passed time)^2 - // acceleration (dv/dt) = F(net) - // Dependency for one vertex: gravity, fluids/air, springs - - let nextPosition = new THREE.Vector3( - 2 * currentPosition.x - previousPosition.x + acceleration.x * (passedTime * passedTime), - 2 * currentPosition.y - previousPosition.y + acceleration.y * (passedTime * passedTime), - 2 * currentPosition.z - previousPosition.z + acceleration.z * (passedTime * passedTime), - ); - - return nextPosition; -} - - -} - + /** + * helper function to calculate index of vertex + * in "vertices" array based on its x and y positions + * in the mesh + * @param {number} x - x index of vertex + * @param {number} y - y index of vertex + */ + getVertexIndex(x, y) { + return y * this.numPointsWidth + x; + } + getX(i) { return i % this.numPointsWidth; } + getY(i) { return Math.floor(i / this.numPointsWidth); } +} \ No newline at end of file