X-Git-Url: https://gitweb.ps.run/cloth_sim/blobdiff_plain/323d38f395da1cae25ba629d3365c37c30f53fdf..refs/heads/refactoring:/Scripts/cloth.js?ds=sidebyside diff --git a/Scripts/cloth.js b/Scripts/cloth.js index 05ff6f1..712ed63 100644 --- a/Scripts/cloth.js +++ b/Scripts/cloth.js @@ -1,10 +1,54 @@ -// cloth rendering -// simulate -// setup scene - +const DAMPING = 0.03; +const DRAG = 1 - DAMPING; const MASS = 0.1; +const GRAVITY = new THREE.Vector3(0, -9.81 * MASS, 0); +const K = 1; +const MAX_STRETCH = 1.5; + +const options = { + wind: true, +}; + +class Spring { + constructor(p1, p2, restDist) { + this.p1 = p1; + this.p2 = p2; + this.restDist = restDist; + } + + satisfy() { + /** calculate current spring length */ + const diff = this.p2.position.clone().sub(this.p1.position); + const currentDist = diff.length(); + if (currentDist == 0) return; + if (currentDist <= this.restDist) return; + //const correction = diff.multiplyScalar(1 - (this.restDist / currentDist)); + + /** calculate necessary correction length and direction */ + const correction = diff.multiplyScalar((currentDist - this.restDist) / currentDist); + correction.multiplyScalar(K); + const correctionHalf = correction.multiplyScalar(0.5); + + let p1movable = this.p1.movable && this.p1.movableTmp; + let p2movable = this.p2.movable && this.p2.movableTmp; + + /** apply correction if masses aren't fixed */ + /** divide correction if both are movable */ + if (p1movable && p2movable) { + this.p1.position.add(correctionHalf); + this.p2.position.sub(correctionHalf); + } else if (! p1movable && p2movable) { + this.p2.position.sub(correction); + } else if (p1movable && ! p2movable) { + this.p1.position.add(correction); + } + } +} + +class Mass { + movableTmp = true; + movable = true; -class Particle { constructor(x, y, z, mass) { this.position = new THREE.Vector3(x, y, z); this.previous = new THREE.Vector3(x, y, z); @@ -12,10 +56,29 @@ class Particle { this.mass = mass; } addForce(force) { - + this.acceleration.add( + force.clone().multiplyScalar(1/this.mass) + ); } verlet(dt) { + // verlet algorithm + // next position = 2 * current Position - previous position + acceleration * (passed time)^2 + // acceleration (dv/dt) = F(net) + /** calculate velocity */ + const nextPosition = this.position.clone().sub(this.previous); + /** apply drag */ + nextPosition.multiplyScalar(DRAG); + /** add to current position and add acceleration */ + nextPosition.add(this.position); + nextPosition.add(this.acceleration.multiplyScalar(dt*dt)); + if (this.movable && this.movableTmp) { + this.previous = this.position; + this.position = nextPosition; + } + + /** reset for next frame */ + this.acceleration.set(0, 0, 0); } } @@ -25,6 +88,7 @@ class Cloth { this.height = height; this.numPointsWidth = numPointsWidth; this.numPointsHeight = numPointsHeight; + this.windFactor = new THREE.Vector3(3, 2, 2); /** * distance between two vertices horizontally/vertically @@ -36,13 +100,13 @@ class Cloth { /** * iterate over the number of vertices in x/y axis - * and add a new Particle to "particles" + * and add a new Particle to "masses" */ - this.particles = []; + this.masses = []; for (let y = 0; y < numPointsHeight; y++) { for (let x = 0; x < numPointsWidth; x++) { - this.particles.push( - new Particle( + this.masses.push( + new Mass( (x - ((numPointsWidth-1)/2)) * stepWidth, height - (y + ((numPointsHeight-1)/2)) * stepHeight, 0, @@ -50,63 +114,204 @@ class Cloth { ); } } + + /** attach cloth to flag pole */ + const n = 3; + for (let i = 0; i < numPointsHeight; i++) + this.masses[this.getVertexIndex(0, i)].movable = false; + + const REST_DIST_X = width / (numPointsWidth-1); + const REST_DIST_Y = height / (numPointsHeight-1); + + /** + * generate springs (constraints) + */ + this.springs = []; + for (let y = 0; y < numPointsHeight; y++) { + for (let x = 0; x < numPointsWidth; x++) { + if (x < numPointsWidth-1) { + this.springs.push(new Spring( + this.masses[this.getVertexIndex(x, y)], + this.masses[this.getVertexIndex(x+1, y)], + REST_DIST_X + )); + } + if (y < numPointsHeight-1) { + this.springs.push(new Spring( + this.masses[this.getVertexIndex(x, y)], + this.masses[this.getVertexIndex(x, y+1)], + REST_DIST_Y + )); + } + } + } } generateGeometry() { const geometry = new THREE.BufferGeometry(); const vertices = []; - const normals = []; const indices = []; + const uvs = []; - for (let particle of this.particles) { + /** create one vertex and one uv coordinate per mass */ + for (let i in this.masses) { + let particle = this.masses[i]; vertices.push( particle.position.x, particle.position.y, particle.position.z); - } - - const numPointsWidth = this.numPointsWidth; - const numPointsHeight = this.numPointsHeight; - - /** - * helper function to calculate index of vertex - * in "vertices" array based on its x and y positions - * in the mesh - * @param {number} x - x index of vertex - * @param {number} y - y index of vertex - */ - function getVertexIndex(x, y) { - return y * numPointsWidth + x; + uvs.push( + this.getX(i) / (this.numPointsWidth-1), + 1 - (this.getY(i) / (this.numPointsHeight-1)) + ); } /** * generate faces based on 4 vertices * and 6 springs each */ - for (let y = 0; y < numPointsHeight - 1; y++) { - for (let x = 0; x < numPointsWidth - 1; x++) { + for (let y = 0; y < this.numPointsHeight - 1; y++) { + for (let x = 0; x < this.numPointsWidth - 1; x++) { indices.push( - getVertexIndex(x, y), - getVertexIndex(x+1, y), - getVertexIndex(x+1, y+1) + this.getVertexIndex(x, y), + this.getVertexIndex(x+1, y), + this.getVertexIndex(x+1, y+1) ); indices.push( - getVertexIndex(x, y), - getVertexIndex(x+1, y+1), - getVertexIndex(x, y+1) + this.getVertexIndex(x, y), + this.getVertexIndex(x+1, y+1), + this.getVertexIndex(x, y+1) ); } } + /** set up geometry */ geometry.setIndex(indices); geometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3)); - //geometry.setAttribute('normal', new THREE.Float32BufferAttribute(normals, 3)); + geometry.setAttribute('uv', new THREE.Float32BufferAttribute(uvs, 2)); geometry.computeBoundingSphere(); geometry.computeVertexNormals(); return geometry; } updateGeometry(geometry) { + /** update vertex positions in place */ + const positions = geometry.attributes.position.array; + for (let i in this.masses) { + let p = this.masses[i]; + positions[i*3+0] = p.position.x; + positions[i*3+1] = p.position.y; + positions[i*3+2] = p.position.z; + } + /** update internally and recalculate bounding volume */ + geometry.attributes.position.needsUpdate = true; + geometry.computeBoundingSphere(); + geometry.computeVertexNormals(); + } + simulate(dt) { + let now = performance.now(); + for (let mass of this.masses) { + /** accumulate acceleration: + * - wind + * - gravity + */ + let vertex = mass.position; + let fWind = new THREE.Vector3( + this.windFactor.x * (Math.sin(vertex.x * vertex.y * now)+1), + this.windFactor.y * Math.cos(vertex.z * now), + this.windFactor.z * Math.sin(Math.cos(5 * vertex.x * vertex.y * vertex.z)) + ); + // normalize then multiply? + if (options.wind) + mass.addForce(fWind); + // calculate wind with normal? + + mass.addForce(GRAVITY); + + /** integrate motion */ + mass.verlet(dt); + } + + /** run satisfy step */ + for (let constraint of this.springs) { + constraint.satisfy(); + } + + /** prevent self-intersections */ + this.intersect(); + } + + intersect() { + for (let i in this.masses) { + for (let j in this.masses) { + let p1 = this.masses[i]; + let p2 = this.masses[j]; + + p1.movableTmp = true; + p2.movableTmp = true; + + /** skip if i == j or if masses are adjacent */ + if (i == j || (Math.abs(this.getX(i) - this.getX(j)) == 1 && Math.abs(this.getY(i) - this.getY(j)) == 1)) + continue; + + /** calculate distance of points */ + let dist = p1.position.distanceTo(p2.position); + /** calculate minimal resting distance (largest distance that should not be fallen below) */ + let collisionDistance = Math.min(this.width / this.numPointsWidth, this.height / this.numPointsHeight); + // collisionDistance /= 2; + /** calculate "sphere intersection" */ + if (dist < collisionDistance) { + // p1.movableTmp = false; + // p2.movableTmp = false; + + /** vectors from p1 to p2 and the other way round */ + let diffP2P1 = p1.position.clone().sub(p2.position).normalize(); + diffP2P1.multiplyScalar((collisionDistance - dist) * 1.001 / 2); + let diffP1P2 = diffP2P1.clone().multiplyScalar(-1); + + // let v1 = p1.position.clone().sub(p1.previous).normalize(); + // let v2 = p2.position.clone().sub(p2.previous).normalize(); + + // let factor1 = (Math.PI - Math.acos(v1.dot(diffP2P1))) / Math.PI * 2; + // let factor2 = (Math.PI - Math.acos(v2.dot(diffP1P2))) / Math.PI * 2; + + /** move masses apart */ + if (p1.movable) + p1.position.add(diffP2P1); + //p1.position.add(diffP2P1.multiplyScalar(factor1)); + if (p2.movable) + p2.position.add(diffP1P2); + //p2.position.add(diffP1P2.multiplyScalar(factor2)); + } + } + } + } + blow(camPos, intersects) { + let face = intersects[0].face; + /** vector from cam to intersection (wind) */ + let dir = intersects[0].point.clone().sub(camPos).multiplyScalar(100); + /** apply to all vertices of affected face */ + this.masses[face.a].addForce(dir); + this.masses[face.b].addForce(dir); + this.masses[face.c].addForce(dir); + } + drag(mousePosWorld, index) { + /** calculate vector from vertex to cursor */ + let dir = mousePosWorld.clone().sub(this.masses[index].position).multiplyScalar(200); + /** apply to grabbed vertex */ + this.masses[index].addForce(dir); + } + /** + * helper function to calculate index of vertex + * in "vertices" array based on its x and y positions + * in the mesh + * @param {number} x - x index of vertex + * @param {number} y - y index of vertex + */ + getVertexIndex(x, y) { + return y * this.numPointsWidth + x; } + getX(i) { return i % this.numPointsWidth; } + getY(i) { return Math.floor(i / this.numPointsWidth); } } \ No newline at end of file