--- /dev/null
+// threejs.org/license
+(function (global, factory) {
+ typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
+ typeof define === 'function' && define.amd ? define(['exports'], factory) :
+ (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
+}(this, (function (exports) { 'use strict';
+
+ // Polyfills
+ if (Number.EPSILON === undefined) {
+ Number.EPSILON = Math.pow(2, -52);
+ }
+
+ if (Number.isInteger === undefined) {
+ // Missing in IE
+ // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger
+ Number.isInteger = function (value) {
+ return typeof value === 'number' && isFinite(value) && Math.floor(value) === value;
+ };
+ } //
+
+
+ if (Math.sign === undefined) {
+ // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign
+ Math.sign = function (x) {
+ return x < 0 ? -1 : x > 0 ? 1 : +x;
+ };
+ }
+
+ if ('name' in Function.prototype === false) {
+ // Missing in IE
+ // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
+ Object.defineProperty(Function.prototype, 'name', {
+ get: function get() {
+ return this.toString().match(/^\s*function\s*([^\(\s]*)/)[1];
+ }
+ });
+ }
+
+ if (Object.assign === undefined) {
+ // Missing in IE
+ // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
+ Object.assign = function (target) {
+
+ if (target === undefined || target === null) {
+ throw new TypeError('Cannot convert undefined or null to object');
+ }
+
+ var output = Object(target);
+
+ for (var index = 1; index < arguments.length; index++) {
+ var source = arguments[index];
+
+ if (source !== undefined && source !== null) {
+ for (var nextKey in source) {
+ if (Object.prototype.hasOwnProperty.call(source, nextKey)) {
+ output[nextKey] = source[nextKey];
+ }
+ }
+ }
+ }
+
+ return output;
+ };
+ }
+
+ /**
+ * Copyright (c) 2014-present, Facebook, Inc.
+ *
+ * This source code is licensed under the MIT license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+ var runtime = function (exports) {
+
+ var Op = Object.prototype;
+ var hasOwn = Op.hasOwnProperty;
+ var undefined$1; // More compressible than void 0.
+
+ var $Symbol = typeof Symbol === "function" ? Symbol : {};
+ var iteratorSymbol = $Symbol.iterator || "@@iterator";
+ var asyncIteratorSymbol = $Symbol.asyncIterator || "@@asyncIterator";
+ var toStringTagSymbol = $Symbol.toStringTag || "@@toStringTag";
+
+ function define(obj, key, value) {
+ Object.defineProperty(obj, key, {
+ value: value,
+ enumerable: true,
+ configurable: true,
+ writable: true
+ });
+ return obj[key];
+ }
+
+ try {
+ // IE 8 has a broken Object.defineProperty that only works on DOM objects.
+ define({}, "");
+ } catch (err) {
+ define = function define(obj, key, value) {
+ return obj[key] = value;
+ };
+ }
+
+ function wrap(innerFn, outerFn, self, tryLocsList) {
+ // If outerFn provided and outerFn.prototype is a Generator, then outerFn.prototype instanceof Generator.
+ var protoGenerator = outerFn && outerFn.prototype instanceof Generator ? outerFn : Generator;
+ var generator = Object.create(protoGenerator.prototype);
+ var context = new Context(tryLocsList || []); // The ._invoke method unifies the implementations of the .next,
+ // .throw, and .return methods.
+
+ generator._invoke = makeInvokeMethod(innerFn, self, context);
+ return generator;
+ }
+
+ exports.wrap = wrap; // Try/catch helper to minimize deoptimizations. Returns a completion
+ // record like context.tryEntries[i].completion. This interface could
+ // have been (and was previously) designed to take a closure to be
+ // invoked without arguments, but in all the cases we care about we
+ // already have an existing method we want to call, so there's no need
+ // to create a new function object. We can even get away with assuming
+ // the method takes exactly one argument, since that happens to be true
+ // in every case, so we don't have to touch the arguments object. The
+ // only additional allocation required is the completion record, which
+ // has a stable shape and so hopefully should be cheap to allocate.
+
+ function tryCatch(fn, obj, arg) {
+ try {
+ return {
+ type: "normal",
+ arg: fn.call(obj, arg)
+ };
+ } catch (err) {
+ return {
+ type: "throw",
+ arg: err
+ };
+ }
+ }
+
+ var GenStateSuspendedStart = "suspendedStart";
+ var GenStateSuspendedYield = "suspendedYield";
+ var GenStateExecuting = "executing";
+ var GenStateCompleted = "completed"; // Returning this object from the innerFn has the same effect as
+ // breaking out of the dispatch switch statement.
+
+ var ContinueSentinel = {}; // Dummy constructor functions that we use as the .constructor and
+ // .constructor.prototype properties for functions that return Generator
+ // objects. For full spec compliance, you may wish to configure your
+ // minifier not to mangle the names of these two functions.
+
+ function Generator() {}
+
+ function GeneratorFunction() {}
+
+ function GeneratorFunctionPrototype() {} // This is a polyfill for %IteratorPrototype% for environments that
+ // don't natively support it.
+
+
+ var IteratorPrototype = {};
+
+ IteratorPrototype[iteratorSymbol] = function () {
+ return this;
+ };
+
+ var getProto = Object.getPrototypeOf;
+ var NativeIteratorPrototype = getProto && getProto(getProto(values([])));
+
+ if (NativeIteratorPrototype && NativeIteratorPrototype !== Op && hasOwn.call(NativeIteratorPrototype, iteratorSymbol)) {
+ // This environment has a native %IteratorPrototype%; use it instead
+ // of the polyfill.
+ IteratorPrototype = NativeIteratorPrototype;
+ }
+
+ var Gp = GeneratorFunctionPrototype.prototype = Generator.prototype = Object.create(IteratorPrototype);
+ GeneratorFunction.prototype = Gp.constructor = GeneratorFunctionPrototype;
+ GeneratorFunctionPrototype.constructor = GeneratorFunction;
+ GeneratorFunction.displayName = define(GeneratorFunctionPrototype, toStringTagSymbol, "GeneratorFunction"); // Helper for defining the .next, .throw, and .return methods of the
+ // Iterator interface in terms of a single ._invoke method.
+
+ function defineIteratorMethods(prototype) {
+ ["next", "throw", "return"].forEach(function (method) {
+ define(prototype, method, function (arg) {
+ return this._invoke(method, arg);
+ });
+ });
+ }
+
+ exports.isGeneratorFunction = function (genFun) {
+ var ctor = typeof genFun === "function" && genFun.constructor;
+ return ctor ? ctor === GeneratorFunction || // For the native GeneratorFunction constructor, the best we can
+ // do is to check its .name property.
+ (ctor.displayName || ctor.name) === "GeneratorFunction" : false;
+ };
+
+ exports.mark = function (genFun) {
+ if (Object.setPrototypeOf) {
+ Object.setPrototypeOf(genFun, GeneratorFunctionPrototype);
+ } else {
+ genFun.__proto__ = GeneratorFunctionPrototype;
+ define(genFun, toStringTagSymbol, "GeneratorFunction");
+ }
+
+ genFun.prototype = Object.create(Gp);
+ return genFun;
+ }; // Within the body of any async function, `await x` is transformed to
+ // `yield regeneratorRuntime.awrap(x)`, so that the runtime can test
+ // `hasOwn.call(value, "__await")` to determine if the yielded value is
+ // meant to be awaited.
+
+
+ exports.awrap = function (arg) {
+ return {
+ __await: arg
+ };
+ };
+
+ function AsyncIterator(generator, PromiseImpl) {
+ function invoke(method, arg, resolve, reject) {
+ var record = tryCatch(generator[method], generator, arg);
+
+ if (record.type === "throw") {
+ reject(record.arg);
+ } else {
+ var result = record.arg;
+ var value = result.value;
+
+ if (value && typeof value === "object" && hasOwn.call(value, "__await")) {
+ return PromiseImpl.resolve(value.__await).then(function (value) {
+ invoke("next", value, resolve, reject);
+ }, function (err) {
+ invoke("throw", err, resolve, reject);
+ });
+ }
+
+ return PromiseImpl.resolve(value).then(function (unwrapped) {
+ // When a yielded Promise is resolved, its final value becomes
+ // the .value of the Promise<{value,done}> result for the
+ // current iteration.
+ result.value = unwrapped;
+ resolve(result);
+ }, function (error) {
+ // If a rejected Promise was yielded, throw the rejection back
+ // into the async generator function so it can be handled there.
+ return invoke("throw", error, resolve, reject);
+ });
+ }
+ }
+
+ var previousPromise;
+
+ function enqueue(method, arg) {
+ function callInvokeWithMethodAndArg() {
+ return new PromiseImpl(function (resolve, reject) {
+ invoke(method, arg, resolve, reject);
+ });
+ }
+
+ return previousPromise = // If enqueue has been called before, then we want to wait until
+ // all previous Promises have been resolved before calling invoke,
+ // so that results are always delivered in the correct order. If
+ // enqueue has not been called before, then it is important to
+ // call invoke immediately, without waiting on a callback to fire,
+ // so that the async generator function has the opportunity to do
+ // any necessary setup in a predictable way. This predictability
+ // is why the Promise constructor synchronously invokes its
+ // executor callback, and why async functions synchronously
+ // execute code before the first await. Since we implement simple
+ // async functions in terms of async generators, it is especially
+ // important to get this right, even though it requires care.
+ previousPromise ? previousPromise.then(callInvokeWithMethodAndArg, // Avoid propagating failures to Promises returned by later
+ // invocations of the iterator.
+ callInvokeWithMethodAndArg) : callInvokeWithMethodAndArg();
+ } // Define the unified helper method that is used to implement .next,
+ // .throw, and .return (see defineIteratorMethods).
+
+
+ this._invoke = enqueue;
+ }
+
+ defineIteratorMethods(AsyncIterator.prototype);
+
+ AsyncIterator.prototype[asyncIteratorSymbol] = function () {
+ return this;
+ };
+
+ exports.AsyncIterator = AsyncIterator; // Note that simple async functions are implemented on top of
+ // AsyncIterator objects; they just return a Promise for the value of
+ // the final result produced by the iterator.
+
+ exports.async = function (innerFn, outerFn, self, tryLocsList, PromiseImpl) {
+ if (PromiseImpl === void 0) PromiseImpl = Promise;
+ var iter = new AsyncIterator(wrap(innerFn, outerFn, self, tryLocsList), PromiseImpl);
+ return exports.isGeneratorFunction(outerFn) ? iter // If outerFn is a generator, return the full iterator.
+ : iter.next().then(function (result) {
+ return result.done ? result.value : iter.next();
+ });
+ };
+
+ function makeInvokeMethod(innerFn, self, context) {
+ var state = GenStateSuspendedStart;
+ return function invoke(method, arg) {
+ if (state === GenStateExecuting) {
+ throw new Error("Generator is already running");
+ }
+
+ if (state === GenStateCompleted) {
+ if (method === "throw") {
+ throw arg;
+ } // Be forgiving, per 25.3.3.3.3 of the spec:
+ // https://people.mozilla.org/~jorendorff/es6-draft.html#sec-generatorresume
+
+
+ return doneResult();
+ }
+
+ context.method = method;
+ context.arg = arg;
+
+ while (true) {
+ var delegate = context.delegate;
+
+ if (delegate) {
+ var delegateResult = maybeInvokeDelegate(delegate, context);
+
+ if (delegateResult) {
+ if (delegateResult === ContinueSentinel) continue;
+ return delegateResult;
+ }
+ }
+
+ if (context.method === "next") {
+ // Setting context._sent for legacy support of Babel's
+ // function.sent implementation.
+ context.sent = context._sent = context.arg;
+ } else if (context.method === "throw") {
+ if (state === GenStateSuspendedStart) {
+ state = GenStateCompleted;
+ throw context.arg;
+ }
+
+ context.dispatchException(context.arg);
+ } else if (context.method === "return") {
+ context.abrupt("return", context.arg);
+ }
+
+ state = GenStateExecuting;
+ var record = tryCatch(innerFn, self, context);
+
+ if (record.type === "normal") {
+ // If an exception is thrown from innerFn, we leave state ===
+ // GenStateExecuting and loop back for another invocation.
+ state = context.done ? GenStateCompleted : GenStateSuspendedYield;
+
+ if (record.arg === ContinueSentinel) {
+ continue;
+ }
+
+ return {
+ value: record.arg,
+ done: context.done
+ };
+ } else if (record.type === "throw") {
+ state = GenStateCompleted; // Dispatch the exception by looping back around to the
+ // context.dispatchException(context.arg) call above.
+
+ context.method = "throw";
+ context.arg = record.arg;
+ }
+ }
+ };
+ } // Call delegate.iterator[context.method](context.arg) and handle the
+ // result, either by returning a { value, done } result from the
+ // delegate iterator, or by modifying context.method and context.arg,
+ // setting context.delegate to null, and returning the ContinueSentinel.
+
+
+ function maybeInvokeDelegate(delegate, context) {
+ var method = delegate.iterator[context.method];
+
+ if (method === undefined$1) {
+ // A .throw or .return when the delegate iterator has no .throw
+ // method always terminates the yield* loop.
+ context.delegate = null;
+
+ if (context.method === "throw") {
+ // Note: ["return"] must be used for ES3 parsing compatibility.
+ if (delegate.iterator["return"]) {
+ // If the delegate iterator has a return method, give it a
+ // chance to clean up.
+ context.method = "return";
+ context.arg = undefined$1;
+ maybeInvokeDelegate(delegate, context);
+
+ if (context.method === "throw") {
+ // If maybeInvokeDelegate(context) changed context.method from
+ // "return" to "throw", let that override the TypeError below.
+ return ContinueSentinel;
+ }
+ }
+
+ context.method = "throw";
+ context.arg = new TypeError("The iterator does not provide a 'throw' method");
+ }
+
+ return ContinueSentinel;
+ }
+
+ var record = tryCatch(method, delegate.iterator, context.arg);
+
+ if (record.type === "throw") {
+ context.method = "throw";
+ context.arg = record.arg;
+ context.delegate = null;
+ return ContinueSentinel;
+ }
+
+ var info = record.arg;
+
+ if (!info) {
+ context.method = "throw";
+ context.arg = new TypeError("iterator result is not an object");
+ context.delegate = null;
+ return ContinueSentinel;
+ }
+
+ if (info.done) {
+ // Assign the result of the finished delegate to the temporary
+ // variable specified by delegate.resultName (see delegateYield).
+ context[delegate.resultName] = info.value; // Resume execution at the desired location (see delegateYield).
+
+ context.next = delegate.nextLoc; // If context.method was "throw" but the delegate handled the
+ // exception, let the outer generator proceed normally. If
+ // context.method was "next", forget context.arg since it has been
+ // "consumed" by the delegate iterator. If context.method was
+ // "return", allow the original .return call to continue in the
+ // outer generator.
+
+ if (context.method !== "return") {
+ context.method = "next";
+ context.arg = undefined$1;
+ }
+ } else {
+ // Re-yield the result returned by the delegate method.
+ return info;
+ } // The delegate iterator is finished, so forget it and continue with
+ // the outer generator.
+
+
+ context.delegate = null;
+ return ContinueSentinel;
+ } // Define Generator.prototype.{next,throw,return} in terms of the
+ // unified ._invoke helper method.
+
+
+ defineIteratorMethods(Gp);
+ define(Gp, toStringTagSymbol, "Generator"); // A Generator should always return itself as the iterator object when the
+ // @@iterator function is called on it. Some browsers' implementations of the
+ // iterator prototype chain incorrectly implement this, causing the Generator
+ // object to not be returned from this call. This ensures that doesn't happen.
+ // See https://github.com/facebook/regenerator/issues/274 for more details.
+
+ Gp[iteratorSymbol] = function () {
+ return this;
+ };
+
+ Gp.toString = function () {
+ return "[object Generator]";
+ };
+
+ function pushTryEntry(locs) {
+ var entry = {
+ tryLoc: locs[0]
+ };
+
+ if (1 in locs) {
+ entry.catchLoc = locs[1];
+ }
+
+ if (2 in locs) {
+ entry.finallyLoc = locs[2];
+ entry.afterLoc = locs[3];
+ }
+
+ this.tryEntries.push(entry);
+ }
+
+ function resetTryEntry(entry) {
+ var record = entry.completion || {};
+ record.type = "normal";
+ delete record.arg;
+ entry.completion = record;
+ }
+
+ function Context(tryLocsList) {
+ // The root entry object (effectively a try statement without a catch
+ // or a finally block) gives us a place to store values thrown from
+ // locations where there is no enclosing try statement.
+ this.tryEntries = [{
+ tryLoc: "root"
+ }];
+ tryLocsList.forEach(pushTryEntry, this);
+ this.reset(true);
+ }
+
+ exports.keys = function (object) {
+ var keys = [];
+
+ for (var key in object) {
+ keys.push(key);
+ }
+
+ keys.reverse(); // Rather than returning an object with a next method, we keep
+ // things simple and return the next function itself.
+
+ return function next() {
+ while (keys.length) {
+ var key = keys.pop();
+
+ if (key in object) {
+ next.value = key;
+ next.done = false;
+ return next;
+ }
+ } // To avoid creating an additional object, we just hang the .value
+ // and .done properties off the next function object itself. This
+ // also ensures that the minifier will not anonymize the function.
+
+
+ next.done = true;
+ return next;
+ };
+ };
+
+ function values(iterable) {
+ if (iterable) {
+ var iteratorMethod = iterable[iteratorSymbol];
+
+ if (iteratorMethod) {
+ return iteratorMethod.call(iterable);
+ }
+
+ if (typeof iterable.next === "function") {
+ return iterable;
+ }
+
+ if (!isNaN(iterable.length)) {
+ var i = -1,
+ next = function next() {
+ while (++i < iterable.length) {
+ if (hasOwn.call(iterable, i)) {
+ next.value = iterable[i];
+ next.done = false;
+ return next;
+ }
+ }
+
+ next.value = undefined$1;
+ next.done = true;
+ return next;
+ };
+
+ return next.next = next;
+ }
+ } // Return an iterator with no values.
+
+
+ return {
+ next: doneResult
+ };
+ }
+
+ exports.values = values;
+
+ function doneResult() {
+ return {
+ value: undefined$1,
+ done: true
+ };
+ }
+
+ Context.prototype = {
+ constructor: Context,
+ reset: function reset(skipTempReset) {
+ this.prev = 0;
+ this.next = 0; // Resetting context._sent for legacy support of Babel's
+ // function.sent implementation.
+
+ this.sent = this._sent = undefined$1;
+ this.done = false;
+ this.delegate = null;
+ this.method = "next";
+ this.arg = undefined$1;
+ this.tryEntries.forEach(resetTryEntry);
+
+ if (!skipTempReset) {
+ for (var name in this) {
+ // Not sure about the optimal order of these conditions:
+ if (name.charAt(0) === "t" && hasOwn.call(this, name) && !isNaN(+name.slice(1))) {
+ this[name] = undefined$1;
+ }
+ }
+ }
+ },
+ stop: function stop() {
+ this.done = true;
+ var rootEntry = this.tryEntries[0];
+ var rootRecord = rootEntry.completion;
+
+ if (rootRecord.type === "throw") {
+ throw rootRecord.arg;
+ }
+
+ return this.rval;
+ },
+ dispatchException: function dispatchException(exception) {
+ if (this.done) {
+ throw exception;
+ }
+
+ var context = this;
+
+ function handle(loc, caught) {
+ record.type = "throw";
+ record.arg = exception;
+ context.next = loc;
+
+ if (caught) {
+ // If the dispatched exception was caught by a catch block,
+ // then let that catch block handle the exception normally.
+ context.method = "next";
+ context.arg = undefined$1;
+ }
+
+ return !!caught;
+ }
+
+ for (var i = this.tryEntries.length - 1; i >= 0; --i) {
+ var entry = this.tryEntries[i];
+ var record = entry.completion;
+
+ if (entry.tryLoc === "root") {
+ // Exception thrown outside of any try block that could handle
+ // it, so set the completion value of the entire function to
+ // throw the exception.
+ return handle("end");
+ }
+
+ if (entry.tryLoc <= this.prev) {
+ var hasCatch = hasOwn.call(entry, "catchLoc");
+ var hasFinally = hasOwn.call(entry, "finallyLoc");
+
+ if (hasCatch && hasFinally) {
+ if (this.prev < entry.catchLoc) {
+ return handle(entry.catchLoc, true);
+ } else if (this.prev < entry.finallyLoc) {
+ return handle(entry.finallyLoc);
+ }
+ } else if (hasCatch) {
+ if (this.prev < entry.catchLoc) {
+ return handle(entry.catchLoc, true);
+ }
+ } else if (hasFinally) {
+ if (this.prev < entry.finallyLoc) {
+ return handle(entry.finallyLoc);
+ }
+ } else {
+ throw new Error("try statement without catch or finally");
+ }
+ }
+ }
+ },
+ abrupt: function abrupt(type, arg) {
+ for (var i = this.tryEntries.length - 1; i >= 0; --i) {
+ var entry = this.tryEntries[i];
+
+ if (entry.tryLoc <= this.prev && hasOwn.call(entry, "finallyLoc") && this.prev < entry.finallyLoc) {
+ var finallyEntry = entry;
+ break;
+ }
+ }
+
+ if (finallyEntry && (type === "break" || type === "continue") && finallyEntry.tryLoc <= arg && arg <= finallyEntry.finallyLoc) {
+ // Ignore the finally entry if control is not jumping to a
+ // location outside the try/catch block.
+ finallyEntry = null;
+ }
+
+ var record = finallyEntry ? finallyEntry.completion : {};
+ record.type = type;
+ record.arg = arg;
+
+ if (finallyEntry) {
+ this.method = "next";
+ this.next = finallyEntry.finallyLoc;
+ return ContinueSentinel;
+ }
+
+ return this.complete(record);
+ },
+ complete: function complete(record, afterLoc) {
+ if (record.type === "throw") {
+ throw record.arg;
+ }
+
+ if (record.type === "break" || record.type === "continue") {
+ this.next = record.arg;
+ } else if (record.type === "return") {
+ this.rval = this.arg = record.arg;
+ this.method = "return";
+ this.next = "end";
+ } else if (record.type === "normal" && afterLoc) {
+ this.next = afterLoc;
+ }
+
+ return ContinueSentinel;
+ },
+ finish: function finish(finallyLoc) {
+ for (var i = this.tryEntries.length - 1; i >= 0; --i) {
+ var entry = this.tryEntries[i];
+
+ if (entry.finallyLoc === finallyLoc) {
+ this.complete(entry.completion, entry.afterLoc);
+ resetTryEntry(entry);
+ return ContinueSentinel;
+ }
+ }
+ },
+ "catch": function _catch(tryLoc) {
+ for (var i = this.tryEntries.length - 1; i >= 0; --i) {
+ var entry = this.tryEntries[i];
+
+ if (entry.tryLoc === tryLoc) {
+ var record = entry.completion;
+
+ if (record.type === "throw") {
+ var thrown = record.arg;
+ resetTryEntry(entry);
+ }
+
+ return thrown;
+ }
+ } // The context.catch method must only be called with a location
+ // argument that corresponds to a known catch block.
+
+
+ throw new Error("illegal catch attempt");
+ },
+ delegateYield: function delegateYield(iterable, resultName, nextLoc) {
+ this.delegate = {
+ iterator: values(iterable),
+ resultName: resultName,
+ nextLoc: nextLoc
+ };
+
+ if (this.method === "next") {
+ // Deliberately forget the last sent value so that we don't
+ // accidentally pass it on to the delegate.
+ this.arg = undefined$1;
+ }
+
+ return ContinueSentinel;
+ }
+ }; // Regardless of whether this script is executing as a CommonJS module
+ // or not, return the runtime object so that we can declare the variable
+ // regeneratorRuntime in the outer scope, which allows this module to be
+ // injected easily by `bin/regenerator --include-runtime script.js`.
+
+ return exports;
+ }( // If this script is executing as a CommonJS module, use module.exports
+ // as the regeneratorRuntime namespace. Otherwise create a new empty
+ // object. Either way, the resulting object will be used to initialize
+ // the regeneratorRuntime variable at the top of this file.
+ typeof module === "object" ? module.exports : {});
+
+ try {
+ regeneratorRuntime = runtime;
+ } catch (accidentalStrictMode) {
+ // This module should not be running in strict mode, so the above
+ // assignment should always work unless something is misconfigured. Just
+ // in case runtime.js accidentally runs in strict mode, we can escape
+ // strict mode using a global Function call. This could conceivably fail
+ // if a Content Security Policy forbids using Function, but in that case
+ // the proper solution is to fix the accidental strict mode problem. If
+ // you've misconfigured your bundler to force strict mode and applied a
+ // CSP to forbid Function, and you're not willing to fix either of those
+ // problems, please detail your unique predicament in a GitHub issue.
+ Function("r", "regeneratorRuntime = r")(runtime);
+ }
+
+ var REVISION = '125';
+ var MOUSE = {
+ LEFT: 0,
+ MIDDLE: 1,
+ RIGHT: 2,
+ ROTATE: 0,
+ DOLLY: 1,
+ PAN: 2
+ };
+ var TOUCH = {
+ ROTATE: 0,
+ PAN: 1,
+ DOLLY_PAN: 2,
+ DOLLY_ROTATE: 3
+ };
+ var CullFaceNone = 0;
+ var CullFaceBack = 1;
+ var CullFaceFront = 2;
+ var CullFaceFrontBack = 3;
+ var BasicShadowMap = 0;
+ var PCFShadowMap = 1;
+ var PCFSoftShadowMap = 2;
+ var VSMShadowMap = 3;
+ var FrontSide = 0;
+ var BackSide = 1;
+ var DoubleSide = 2;
+ var FlatShading = 1;
+ var SmoothShading = 2;
+ var NoBlending = 0;
+ var NormalBlending = 1;
+ var AdditiveBlending = 2;
+ var SubtractiveBlending = 3;
+ var MultiplyBlending = 4;
+ var CustomBlending = 5;
+ var AddEquation = 100;
+ var SubtractEquation = 101;
+ var ReverseSubtractEquation = 102;
+ var MinEquation = 103;
+ var MaxEquation = 104;
+ var ZeroFactor = 200;
+ var OneFactor = 201;
+ var SrcColorFactor = 202;
+ var OneMinusSrcColorFactor = 203;
+ var SrcAlphaFactor = 204;
+ var OneMinusSrcAlphaFactor = 205;
+ var DstAlphaFactor = 206;
+ var OneMinusDstAlphaFactor = 207;
+ var DstColorFactor = 208;
+ var OneMinusDstColorFactor = 209;
+ var SrcAlphaSaturateFactor = 210;
+ var NeverDepth = 0;
+ var AlwaysDepth = 1;
+ var LessDepth = 2;
+ var LessEqualDepth = 3;
+ var EqualDepth = 4;
+ var GreaterEqualDepth = 5;
+ var GreaterDepth = 6;
+ var NotEqualDepth = 7;
+ var MultiplyOperation = 0;
+ var MixOperation = 1;
+ var AddOperation = 2;
+ var NoToneMapping = 0;
+ var LinearToneMapping = 1;
+ var ReinhardToneMapping = 2;
+ var CineonToneMapping = 3;
+ var ACESFilmicToneMapping = 4;
+ var CustomToneMapping = 5;
+ var UVMapping = 300;
+ var CubeReflectionMapping = 301;
+ var CubeRefractionMapping = 302;
+ var EquirectangularReflectionMapping = 303;
+ var EquirectangularRefractionMapping = 304;
+ var CubeUVReflectionMapping = 306;
+ var CubeUVRefractionMapping = 307;
+ var RepeatWrapping = 1000;
+ var ClampToEdgeWrapping = 1001;
+ var MirroredRepeatWrapping = 1002;
+ var NearestFilter = 1003;
+ var NearestMipmapNearestFilter = 1004;
+ var NearestMipMapNearestFilter = 1004;
+ var NearestMipmapLinearFilter = 1005;
+ var NearestMipMapLinearFilter = 1005;
+ var LinearFilter = 1006;
+ var LinearMipmapNearestFilter = 1007;
+ var LinearMipMapNearestFilter = 1007;
+ var LinearMipmapLinearFilter = 1008;
+ var LinearMipMapLinearFilter = 1008;
+ var UnsignedByteType = 1009;
+ var ByteType = 1010;
+ var ShortType = 1011;
+ var UnsignedShortType = 1012;
+ var IntType = 1013;
+ var UnsignedIntType = 1014;
+ var FloatType = 1015;
+ var HalfFloatType = 1016;
+ var UnsignedShort4444Type = 1017;
+ var UnsignedShort5551Type = 1018;
+ var UnsignedShort565Type = 1019;
+ var UnsignedInt248Type = 1020;
+ var AlphaFormat = 1021;
+ var RGBFormat = 1022;
+ var RGBAFormat = 1023;
+ var LuminanceFormat = 1024;
+ var LuminanceAlphaFormat = 1025;
+ var RGBEFormat = RGBAFormat;
+ var DepthFormat = 1026;
+ var DepthStencilFormat = 1027;
+ var RedFormat = 1028;
+ var RedIntegerFormat = 1029;
+ var RGFormat = 1030;
+ var RGIntegerFormat = 1031;
+ var RGBIntegerFormat = 1032;
+ var RGBAIntegerFormat = 1033;
+ var RGB_S3TC_DXT1_Format = 33776;
+ var RGBA_S3TC_DXT1_Format = 33777;
+ var RGBA_S3TC_DXT3_Format = 33778;
+ var RGBA_S3TC_DXT5_Format = 33779;
+ var RGB_PVRTC_4BPPV1_Format = 35840;
+ var RGB_PVRTC_2BPPV1_Format = 35841;
+ var RGBA_PVRTC_4BPPV1_Format = 35842;
+ var RGBA_PVRTC_2BPPV1_Format = 35843;
+ var RGB_ETC1_Format = 36196;
+ var RGB_ETC2_Format = 37492;
+ var RGBA_ETC2_EAC_Format = 37496;
+ var RGBA_ASTC_4x4_Format = 37808;
+ var RGBA_ASTC_5x4_Format = 37809;
+ var RGBA_ASTC_5x5_Format = 37810;
+ var RGBA_ASTC_6x5_Format = 37811;
+ var RGBA_ASTC_6x6_Format = 37812;
+ var RGBA_ASTC_8x5_Format = 37813;
+ var RGBA_ASTC_8x6_Format = 37814;
+ var RGBA_ASTC_8x8_Format = 37815;
+ var RGBA_ASTC_10x5_Format = 37816;
+ var RGBA_ASTC_10x6_Format = 37817;
+ var RGBA_ASTC_10x8_Format = 37818;
+ var RGBA_ASTC_10x10_Format = 37819;
+ var RGBA_ASTC_12x10_Format = 37820;
+ var RGBA_ASTC_12x12_Format = 37821;
+ var RGBA_BPTC_Format = 36492;
+ var SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
+ var SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
+ var SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
+ var SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
+ var SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
+ var SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
+ var SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
+ var SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
+ var SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
+ var SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
+ var SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
+ var SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
+ var SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
+ var SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
+ var LoopOnce = 2200;
+ var LoopRepeat = 2201;
+ var LoopPingPong = 2202;
+ var InterpolateDiscrete = 2300;
+ var InterpolateLinear = 2301;
+ var InterpolateSmooth = 2302;
+ var ZeroCurvatureEnding = 2400;
+ var ZeroSlopeEnding = 2401;
+ var WrapAroundEnding = 2402;
+ var NormalAnimationBlendMode = 2500;
+ var AdditiveAnimationBlendMode = 2501;
+ var TrianglesDrawMode = 0;
+ var TriangleStripDrawMode = 1;
+ var TriangleFanDrawMode = 2;
+ var LinearEncoding = 3000;
+ var sRGBEncoding = 3001;
+ var GammaEncoding = 3007;
+ var RGBEEncoding = 3002;
+ var LogLuvEncoding = 3003;
+ var RGBM7Encoding = 3004;
+ var RGBM16Encoding = 3005;
+ var RGBDEncoding = 3006;
+ var BasicDepthPacking = 3200;
+ var RGBADepthPacking = 3201;
+ var TangentSpaceNormalMap = 0;
+ var ObjectSpaceNormalMap = 1;
+ var ZeroStencilOp = 0;
+ var KeepStencilOp = 7680;
+ var ReplaceStencilOp = 7681;
+ var IncrementStencilOp = 7682;
+ var DecrementStencilOp = 7683;
+ var IncrementWrapStencilOp = 34055;
+ var DecrementWrapStencilOp = 34056;
+ var InvertStencilOp = 5386;
+ var NeverStencilFunc = 512;
+ var LessStencilFunc = 513;
+ var EqualStencilFunc = 514;
+ var LessEqualStencilFunc = 515;
+ var GreaterStencilFunc = 516;
+ var NotEqualStencilFunc = 517;
+ var GreaterEqualStencilFunc = 518;
+ var AlwaysStencilFunc = 519;
+ var StaticDrawUsage = 35044;
+ var DynamicDrawUsage = 35048;
+ var StreamDrawUsage = 35040;
+ var StaticReadUsage = 35045;
+ var DynamicReadUsage = 35049;
+ var StreamReadUsage = 35041;
+ var StaticCopyUsage = 35046;
+ var DynamicCopyUsage = 35050;
+ var StreamCopyUsage = 35042;
+ var GLSL1 = '100';
+ var GLSL3 = '300 es';
+
+ function asyncGeneratorStep(gen, resolve, reject, _next, _throw, key, arg) {
+ try {
+ var info = gen[key](arg);
+ var value = info.value;
+ } catch (error) {
+ reject(error);
+ return;
+ }
+
+ if (info.done) {
+ resolve(value);
+ } else {
+ Promise.resolve(value).then(_next, _throw);
+ }
+ }
+
+ function _asyncToGenerator(fn) {
+ return function () {
+ var self = this,
+ args = arguments;
+ return new Promise(function (resolve, reject) {
+ var gen = fn.apply(self, args);
+
+ function _next(value) {
+ asyncGeneratorStep(gen, resolve, reject, _next, _throw, "next", value);
+ }
+
+ function _throw(err) {
+ asyncGeneratorStep(gen, resolve, reject, _next, _throw, "throw", err);
+ }
+
+ _next(undefined);
+ });
+ };
+ }
+
+ function _defineProperties(target, props) {
+ for (var i = 0; i < props.length; i++) {
+ var descriptor = props[i];
+ descriptor.enumerable = descriptor.enumerable || false;
+ descriptor.configurable = true;
+ if ("value" in descriptor) descriptor.writable = true;
+ Object.defineProperty(target, descriptor.key, descriptor);
+ }
+ }
+
+ function _createClass(Constructor, protoProps, staticProps) {
+ if (protoProps) _defineProperties(Constructor.prototype, protoProps);
+ if (staticProps) _defineProperties(Constructor, staticProps);
+ return Constructor;
+ }
+
+ function _inheritsLoose(subClass, superClass) {
+ subClass.prototype = Object.create(superClass.prototype);
+ subClass.prototype.constructor = subClass;
+ subClass.__proto__ = superClass;
+ }
+
+ function _assertThisInitialized(self) {
+ if (self === void 0) {
+ throw new ReferenceError("this hasn't been initialised - super() hasn't been called");
+ }
+
+ return self;
+ }
+
+ function _unsupportedIterableToArray(o, minLen) {
+ if (!o) return;
+ if (typeof o === "string") return _arrayLikeToArray(o, minLen);
+ var n = Object.prototype.toString.call(o).slice(8, -1);
+ if (n === "Object" && o.constructor) n = o.constructor.name;
+ if (n === "Map" || n === "Set") return Array.from(o);
+ if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen);
+ }
+
+ function _arrayLikeToArray(arr, len) {
+ if (len == null || len > arr.length) len = arr.length;
+
+ for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i];
+
+ return arr2;
+ }
+
+ function _createForOfIteratorHelperLoose(o, allowArrayLike) {
+ var it;
+
+ if (typeof Symbol === "undefined" || o[Symbol.iterator] == null) {
+ if (Array.isArray(o) || (it = _unsupportedIterableToArray(o)) || allowArrayLike && o && typeof o.length === "number") {
+ if (it) o = it;
+ var i = 0;
+ return function () {
+ if (i >= o.length) return {
+ done: true
+ };
+ return {
+ done: false,
+ value: o[i++]
+ };
+ };
+ }
+
+ throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.");
+ }
+
+ it = o[Symbol.iterator]();
+ return it.next.bind(it);
+ }
+
+ /**
+ * https://github.com/mrdoob/eventdispatcher.js/
+ */
+ function EventDispatcher() {}
+
+ Object.assign(EventDispatcher.prototype, {
+ addEventListener: function addEventListener(type, listener) {
+ if (this._listeners === undefined) this._listeners = {};
+ var listeners = this._listeners;
+
+ if (listeners[type] === undefined) {
+ listeners[type] = [];
+ }
+
+ if (listeners[type].indexOf(listener) === -1) {
+ listeners[type].push(listener);
+ }
+ },
+ hasEventListener: function hasEventListener(type, listener) {
+ if (this._listeners === undefined) return false;
+ var listeners = this._listeners;
+ return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
+ },
+ removeEventListener: function removeEventListener(type, listener) {
+ if (this._listeners === undefined) return;
+ var listeners = this._listeners;
+ var listenerArray = listeners[type];
+
+ if (listenerArray !== undefined) {
+ var index = listenerArray.indexOf(listener);
+
+ if (index !== -1) {
+ listenerArray.splice(index, 1);
+ }
+ }
+ },
+ dispatchEvent: function dispatchEvent(event) {
+ if (this._listeners === undefined) return;
+ var listeners = this._listeners;
+ var listenerArray = listeners[event.type];
+
+ if (listenerArray !== undefined) {
+ event.target = this; // Make a copy, in case listeners are removed while iterating.
+
+ var array = listenerArray.slice(0);
+
+ for (var i = 0, l = array.length; i < l; i++) {
+ array[i].call(this, event);
+ }
+ }
+ }
+ });
+
+ var _lut = [];
+
+ for (var i = 0; i < 256; i++) {
+ _lut[i] = (i < 16 ? '0' : '') + i.toString(16);
+ }
+
+ var _seed = 1234567;
+ var MathUtils = {
+ DEG2RAD: Math.PI / 180,
+ RAD2DEG: 180 / Math.PI,
+ generateUUID: function generateUUID() {
+ // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
+ var d0 = Math.random() * 0xffffffff | 0;
+ var d1 = Math.random() * 0xffffffff | 0;
+ var d2 = Math.random() * 0xffffffff | 0;
+ var d3 = Math.random() * 0xffffffff | 0;
+ var uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
+
+ return uuid.toUpperCase();
+ },
+ clamp: function clamp(value, min, max) {
+ return Math.max(min, Math.min(max, value));
+ },
+ // compute euclidian modulo of m % n
+ // https://en.wikipedia.org/wiki/Modulo_operation
+ euclideanModulo: function euclideanModulo(n, m) {
+ return (n % m + m) % m;
+ },
+ // Linear mapping from range <a1, a2> to range <b1, b2>
+ mapLinear: function mapLinear(x, a1, a2, b1, b2) {
+ return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
+ },
+ // https://en.wikipedia.org/wiki/Linear_interpolation
+ lerp: function lerp(x, y, t) {
+ return (1 - t) * x + t * y;
+ },
+ // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
+ damp: function damp(x, y, lambda, dt) {
+ return MathUtils.lerp(x, y, 1 - Math.exp(-lambda * dt));
+ },
+ // https://www.desmos.com/calculator/vcsjnyz7x4
+ pingpong: function pingpong(x, length) {
+ if (length === void 0) {
+ length = 1;
+ }
+
+ return length - Math.abs(MathUtils.euclideanModulo(x, length * 2) - length);
+ },
+ // http://en.wikipedia.org/wiki/Smoothstep
+ smoothstep: function smoothstep(x, min, max) {
+ if (x <= min) return 0;
+ if (x >= max) return 1;
+ x = (x - min) / (max - min);
+ return x * x * (3 - 2 * x);
+ },
+ smootherstep: function smootherstep(x, min, max) {
+ if (x <= min) return 0;
+ if (x >= max) return 1;
+ x = (x - min) / (max - min);
+ return x * x * x * (x * (x * 6 - 15) + 10);
+ },
+ // Random integer from <low, high> interval
+ randInt: function randInt(low, high) {
+ return low + Math.floor(Math.random() * (high - low + 1));
+ },
+ // Random float from <low, high> interval
+ randFloat: function randFloat(low, high) {
+ return low + Math.random() * (high - low);
+ },
+ // Random float from <-range/2, range/2> interval
+ randFloatSpread: function randFloatSpread(range) {
+ return range * (0.5 - Math.random());
+ },
+ // Deterministic pseudo-random float in the interval [ 0, 1 ]
+ seededRandom: function seededRandom(s) {
+ if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
+
+ _seed = _seed * 16807 % 2147483647;
+ return (_seed - 1) / 2147483646;
+ },
+ degToRad: function degToRad(degrees) {
+ return degrees * MathUtils.DEG2RAD;
+ },
+ radToDeg: function radToDeg(radians) {
+ return radians * MathUtils.RAD2DEG;
+ },
+ isPowerOfTwo: function isPowerOfTwo(value) {
+ return (value & value - 1) === 0 && value !== 0;
+ },
+ ceilPowerOfTwo: function ceilPowerOfTwo(value) {
+ return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
+ },
+ floorPowerOfTwo: function floorPowerOfTwo(value) {
+ return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
+ },
+ setQuaternionFromProperEuler: function setQuaternionFromProperEuler(q, a, b, c, order) {
+ // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
+ // rotations are applied to the axes in the order specified by 'order'
+ // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
+ // angles are in radians
+ var cos = Math.cos;
+ var sin = Math.sin;
+ var c2 = cos(b / 2);
+ var s2 = sin(b / 2);
+ var c13 = cos((a + c) / 2);
+ var s13 = sin((a + c) / 2);
+ var c1_3 = cos((a - c) / 2);
+ var s1_3 = sin((a - c) / 2);
+ var c3_1 = cos((c - a) / 2);
+ var s3_1 = sin((c - a) / 2);
+
+ switch (order) {
+ case 'XYX':
+ q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
+ break;
+
+ case 'YZY':
+ q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
+ break;
+
+ case 'ZXZ':
+ q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
+ break;
+
+ case 'XZX':
+ q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
+ break;
+
+ case 'YXY':
+ q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
+ break;
+
+ case 'ZYZ':
+ q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
+ break;
+
+ default:
+ console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
+ }
+ }
+ };
+
+ var Vector2 = /*#__PURE__*/function () {
+ function Vector2(x, y) {
+ if (x === void 0) {
+ x = 0;
+ }
+
+ if (y === void 0) {
+ y = 0;
+ }
+
+ Object.defineProperty(this, 'isVector2', {
+ value: true
+ });
+ this.x = x;
+ this.y = y;
+ }
+
+ var _proto = Vector2.prototype;
+
+ _proto.set = function set(x, y) {
+ this.x = x;
+ this.y = y;
+ return this;
+ };
+
+ _proto.setScalar = function setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ return this;
+ };
+
+ _proto.setX = function setX(x) {
+ this.x = x;
+ return this;
+ };
+
+ _proto.setY = function setY(y) {
+ this.y = y;
+ return this;
+ };
+
+ _proto.setComponent = function setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
+
+ case 1:
+ this.y = value;
+ break;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+
+ return this;
+ };
+
+ _proto.getComponent = function getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
+
+ case 1:
+ return this.y;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor(this.x, this.y);
+ };
+
+ _proto.copy = function copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ return this;
+ };
+
+ _proto.add = function add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
+
+ this.x += v.x;
+ this.y += v.y;
+ return this;
+ };
+
+ _proto.addScalar = function addScalar(s) {
+ this.x += s;
+ this.y += s;
+ return this;
+ };
+
+ _proto.addVectors = function addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ return this;
+ };
+
+ _proto.addScaledVector = function addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ return this;
+ };
+
+ _proto.sub = function sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
+
+ this.x -= v.x;
+ this.y -= v.y;
+ return this;
+ };
+
+ _proto.subScalar = function subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ return this;
+ };
+
+ _proto.subVectors = function subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ return this;
+ };
+
+ _proto.multiply = function multiply(v) {
+ this.x *= v.x;
+ this.y *= v.y;
+ return this;
+ };
+
+ _proto.multiplyScalar = function multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ return this;
+ };
+
+ _proto.divide = function divide(v) {
+ this.x /= v.x;
+ this.y /= v.y;
+ return this;
+ };
+
+ _proto.divideScalar = function divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ };
+
+ _proto.applyMatrix3 = function applyMatrix3(m) {
+ var x = this.x,
+ y = this.y;
+ var e = m.elements;
+ this.x = e[0] * x + e[3] * y + e[6];
+ this.y = e[1] * x + e[4] * y + e[7];
+ return this;
+ };
+
+ _proto.min = function min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ return this;
+ };
+
+ _proto.max = function max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ return this;
+ };
+
+ _proto.clamp = function clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ return this;
+ };
+
+ _proto.clampScalar = function clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ return this;
+ };
+
+ _proto.clampLength = function clampLength(min, max) {
+ var length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ };
+
+ _proto.floor = function floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ return this;
+ };
+
+ _proto.ceil = function ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ return this;
+ };
+
+ _proto.round = function round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ return this;
+ };
+
+ _proto.roundToZero = function roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ return this;
+ };
+
+ _proto.negate = function negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ return this;
+ };
+
+ _proto.dot = function dot(v) {
+ return this.x * v.x + this.y * v.y;
+ };
+
+ _proto.cross = function cross(v) {
+ return this.x * v.y - this.y * v.x;
+ };
+
+ _proto.lengthSq = function lengthSq() {
+ return this.x * this.x + this.y * this.y;
+ };
+
+ _proto.length = function length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y);
+ };
+
+ _proto.manhattanLength = function manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y);
+ };
+
+ _proto.normalize = function normalize() {
+ return this.divideScalar(this.length() || 1);
+ };
+
+ _proto.angle = function angle() {
+ // computes the angle in radians with respect to the positive x-axis
+ var angle = Math.atan2(-this.y, -this.x) + Math.PI;
+ return angle;
+ };
+
+ _proto.distanceTo = function distanceTo(v) {
+ return Math.sqrt(this.distanceToSquared(v));
+ };
+
+ _proto.distanceToSquared = function distanceToSquared(v) {
+ var dx = this.x - v.x,
+ dy = this.y - v.y;
+ return dx * dx + dy * dy;
+ };
+
+ _proto.manhattanDistanceTo = function manhattanDistanceTo(v) {
+ return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
+ };
+
+ _proto.setLength = function setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ };
+
+ _proto.lerp = function lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ return this;
+ };
+
+ _proto.lerpVectors = function lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ return this;
+ };
+
+ _proto.equals = function equals(v) {
+ return v.x === this.x && v.y === this.y;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ return array;
+ };
+
+ _proto.fromBufferAttribute = function fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ return this;
+ };
+
+ _proto.rotateAround = function rotateAround(center, angle) {
+ var c = Math.cos(angle),
+ s = Math.sin(angle);
+ var x = this.x - center.x;
+ var y = this.y - center.y;
+ this.x = x * c - y * s + center.x;
+ this.y = x * s + y * c + center.y;
+ return this;
+ };
+
+ _proto.random = function random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ return this;
+ };
+
+ _createClass(Vector2, [{
+ key: "width",
+ get: function get() {
+ return this.x;
+ },
+ set: function set(value) {
+ this.x = value;
+ }
+ }, {
+ key: "height",
+ get: function get() {
+ return this.y;
+ },
+ set: function set(value) {
+ this.y = value;
+ }
+ }]);
+
+ return Vector2;
+ }();
+
+ var Matrix3 = /*#__PURE__*/function () {
+ function Matrix3() {
+ Object.defineProperty(this, 'isMatrix3', {
+ value: true
+ });
+ this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
+
+ if (arguments.length > 0) {
+ console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
+ }
+ }
+
+ var _proto = Matrix3.prototype;
+
+ _proto.set = function set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
+ var te = this.elements;
+ te[0] = n11;
+ te[1] = n21;
+ te[2] = n31;
+ te[3] = n12;
+ te[4] = n22;
+ te[5] = n32;
+ te[6] = n13;
+ te[7] = n23;
+ te[8] = n33;
+ return this;
+ };
+
+ _proto.identity = function identity() {
+ this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().fromArray(this.elements);
+ };
+
+ _proto.copy = function copy(m) {
+ var te = this.elements;
+ var me = m.elements;
+ te[0] = me[0];
+ te[1] = me[1];
+ te[2] = me[2];
+ te[3] = me[3];
+ te[4] = me[4];
+ te[5] = me[5];
+ te[6] = me[6];
+ te[7] = me[7];
+ te[8] = me[8];
+ return this;
+ };
+
+ _proto.extractBasis = function extractBasis(xAxis, yAxis, zAxis) {
+ xAxis.setFromMatrix3Column(this, 0);
+ yAxis.setFromMatrix3Column(this, 1);
+ zAxis.setFromMatrix3Column(this, 2);
+ return this;
+ };
+
+ _proto.setFromMatrix4 = function setFromMatrix4(m) {
+ var me = m.elements;
+ this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
+ return this;
+ };
+
+ _proto.multiply = function multiply(m) {
+ return this.multiplyMatrices(this, m);
+ };
+
+ _proto.premultiply = function premultiply(m) {
+ return this.multiplyMatrices(m, this);
+ };
+
+ _proto.multiplyMatrices = function multiplyMatrices(a, b) {
+ var ae = a.elements;
+ var be = b.elements;
+ var te = this.elements;
+ var a11 = ae[0],
+ a12 = ae[3],
+ a13 = ae[6];
+ var a21 = ae[1],
+ a22 = ae[4],
+ a23 = ae[7];
+ var a31 = ae[2],
+ a32 = ae[5],
+ a33 = ae[8];
+ var b11 = be[0],
+ b12 = be[3],
+ b13 = be[6];
+ var b21 = be[1],
+ b22 = be[4],
+ b23 = be[7];
+ var b31 = be[2],
+ b32 = be[5],
+ b33 = be[8];
+ te[0] = a11 * b11 + a12 * b21 + a13 * b31;
+ te[3] = a11 * b12 + a12 * b22 + a13 * b32;
+ te[6] = a11 * b13 + a12 * b23 + a13 * b33;
+ te[1] = a21 * b11 + a22 * b21 + a23 * b31;
+ te[4] = a21 * b12 + a22 * b22 + a23 * b32;
+ te[7] = a21 * b13 + a22 * b23 + a23 * b33;
+ te[2] = a31 * b11 + a32 * b21 + a33 * b31;
+ te[5] = a31 * b12 + a32 * b22 + a33 * b32;
+ te[8] = a31 * b13 + a32 * b23 + a33 * b33;
+ return this;
+ };
+
+ _proto.multiplyScalar = function multiplyScalar(s) {
+ var te = this.elements;
+ te[0] *= s;
+ te[3] *= s;
+ te[6] *= s;
+ te[1] *= s;
+ te[4] *= s;
+ te[7] *= s;
+ te[2] *= s;
+ te[5] *= s;
+ te[8] *= s;
+ return this;
+ };
+
+ _proto.determinant = function determinant() {
+ var te = this.elements;
+ var a = te[0],
+ b = te[1],
+ c = te[2],
+ d = te[3],
+ e = te[4],
+ f = te[5],
+ g = te[6],
+ h = te[7],
+ i = te[8];
+ return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
+ };
+
+ _proto.invert = function invert() {
+ var te = this.elements,
+ n11 = te[0],
+ n21 = te[1],
+ n31 = te[2],
+ n12 = te[3],
+ n22 = te[4],
+ n32 = te[5],
+ n13 = te[6],
+ n23 = te[7],
+ n33 = te[8],
+ t11 = n33 * n22 - n32 * n23,
+ t12 = n32 * n13 - n33 * n12,
+ t13 = n23 * n12 - n22 * n13,
+ det = n11 * t11 + n21 * t12 + n31 * t13;
+ if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
+ var detInv = 1 / det;
+ te[0] = t11 * detInv;
+ te[1] = (n31 * n23 - n33 * n21) * detInv;
+ te[2] = (n32 * n21 - n31 * n22) * detInv;
+ te[3] = t12 * detInv;
+ te[4] = (n33 * n11 - n31 * n13) * detInv;
+ te[5] = (n31 * n12 - n32 * n11) * detInv;
+ te[6] = t13 * detInv;
+ te[7] = (n21 * n13 - n23 * n11) * detInv;
+ te[8] = (n22 * n11 - n21 * n12) * detInv;
+ return this;
+ };
+
+ _proto.transpose = function transpose() {
+ var tmp;
+ var m = this.elements;
+ tmp = m[1];
+ m[1] = m[3];
+ m[3] = tmp;
+ tmp = m[2];
+ m[2] = m[6];
+ m[6] = tmp;
+ tmp = m[5];
+ m[5] = m[7];
+ m[7] = tmp;
+ return this;
+ };
+
+ _proto.getNormalMatrix = function getNormalMatrix(matrix4) {
+ return this.setFromMatrix4(matrix4).copy(this).invert().transpose();
+ };
+
+ _proto.transposeIntoArray = function transposeIntoArray(r) {
+ var m = this.elements;
+ r[0] = m[0];
+ r[1] = m[3];
+ r[2] = m[6];
+ r[3] = m[1];
+ r[4] = m[4];
+ r[5] = m[7];
+ r[6] = m[2];
+ r[7] = m[5];
+ r[8] = m[8];
+ return this;
+ };
+
+ _proto.setUvTransform = function setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
+ var c = Math.cos(rotation);
+ var s = Math.sin(rotation);
+ this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
+ return this;
+ };
+
+ _proto.scale = function scale(sx, sy) {
+ var te = this.elements;
+ te[0] *= sx;
+ te[3] *= sx;
+ te[6] *= sx;
+ te[1] *= sy;
+ te[4] *= sy;
+ te[7] *= sy;
+ return this;
+ };
+
+ _proto.rotate = function rotate(theta) {
+ var c = Math.cos(theta);
+ var s = Math.sin(theta);
+ var te = this.elements;
+ var a11 = te[0],
+ a12 = te[3],
+ a13 = te[6];
+ var a21 = te[1],
+ a22 = te[4],
+ a23 = te[7];
+ te[0] = c * a11 + s * a21;
+ te[3] = c * a12 + s * a22;
+ te[6] = c * a13 + s * a23;
+ te[1] = -s * a11 + c * a21;
+ te[4] = -s * a12 + c * a22;
+ te[7] = -s * a13 + c * a23;
+ return this;
+ };
+
+ _proto.translate = function translate(tx, ty) {
+ var te = this.elements;
+ te[0] += tx * te[2];
+ te[3] += tx * te[5];
+ te[6] += tx * te[8];
+ te[1] += ty * te[2];
+ te[4] += ty * te[5];
+ te[7] += ty * te[8];
+ return this;
+ };
+
+ _proto.equals = function equals(matrix) {
+ var te = this.elements;
+ var me = matrix.elements;
+
+ for (var i = 0; i < 9; i++) {
+ if (te[i] !== me[i]) return false;
+ }
+
+ return true;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ for (var i = 0; i < 9; i++) {
+ this.elements[i] = array[i + offset];
+ }
+
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ var te = this.elements;
+ array[offset] = te[0];
+ array[offset + 1] = te[1];
+ array[offset + 2] = te[2];
+ array[offset + 3] = te[3];
+ array[offset + 4] = te[4];
+ array[offset + 5] = te[5];
+ array[offset + 6] = te[6];
+ array[offset + 7] = te[7];
+ array[offset + 8] = te[8];
+ return array;
+ };
+
+ return Matrix3;
+ }();
+
+ var _canvas;
+
+ var ImageUtils = {
+ getDataURL: function getDataURL(image) {
+ if (/^data:/i.test(image.src)) {
+ return image.src;
+ }
+
+ if (typeof HTMLCanvasElement == 'undefined') {
+ return image.src;
+ }
+
+ var canvas;
+
+ if (image instanceof HTMLCanvasElement) {
+ canvas = image;
+ } else {
+ if (_canvas === undefined) _canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
+ _canvas.width = image.width;
+ _canvas.height = image.height;
+
+ var context = _canvas.getContext('2d');
+
+ if (image instanceof ImageData) {
+ context.putImageData(image, 0, 0);
+ } else {
+ context.drawImage(image, 0, 0, image.width, image.height);
+ }
+
+ canvas = _canvas;
+ }
+
+ if (canvas.width > 2048 || canvas.height > 2048) {
+ return canvas.toDataURL('image/jpeg', 0.6);
+ } else {
+ return canvas.toDataURL('image/png');
+ }
+ }
+ };
+
+ var textureId = 0;
+
+ function Texture(image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
+ if (image === void 0) {
+ image = Texture.DEFAULT_IMAGE;
+ }
+
+ if (mapping === void 0) {
+ mapping = Texture.DEFAULT_MAPPING;
+ }
+
+ if (wrapS === void 0) {
+ wrapS = ClampToEdgeWrapping;
+ }
+
+ if (wrapT === void 0) {
+ wrapT = ClampToEdgeWrapping;
+ }
+
+ if (magFilter === void 0) {
+ magFilter = LinearFilter;
+ }
+
+ if (minFilter === void 0) {
+ minFilter = LinearMipmapLinearFilter;
+ }
+
+ if (format === void 0) {
+ format = RGBAFormat;
+ }
+
+ if (type === void 0) {
+ type = UnsignedByteType;
+ }
+
+ if (anisotropy === void 0) {
+ anisotropy = 1;
+ }
+
+ if (encoding === void 0) {
+ encoding = LinearEncoding;
+ }
+
+ Object.defineProperty(this, 'id', {
+ value: textureId++
+ });
+ this.uuid = MathUtils.generateUUID();
+ this.name = '';
+ this.image = image;
+ this.mipmaps = [];
+ this.mapping = mapping;
+ this.wrapS = wrapS;
+ this.wrapT = wrapT;
+ this.magFilter = magFilter;
+ this.minFilter = minFilter;
+ this.anisotropy = anisotropy;
+ this.format = format;
+ this.internalFormat = null;
+ this.type = type;
+ this.offset = new Vector2(0, 0);
+ this.repeat = new Vector2(1, 1);
+ this.center = new Vector2(0, 0);
+ this.rotation = 0;
+ this.matrixAutoUpdate = true;
+ this.matrix = new Matrix3();
+ this.generateMipmaps = true;
+ this.premultiplyAlpha = false;
+ this.flipY = true;
+ this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
+ // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
+ //
+ // Also changing the encoding after already used by a Material will not automatically make the Material
+ // update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
+
+ this.encoding = encoding;
+ this.version = 0;
+ this.onUpdate = null;
+ }
+
+ Texture.DEFAULT_IMAGE = undefined;
+ Texture.DEFAULT_MAPPING = UVMapping;
+ Texture.prototype = Object.assign(Object.create(EventDispatcher.prototype), {
+ constructor: Texture,
+ isTexture: true,
+ updateMatrix: function updateMatrix() {
+ this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
+ },
+ clone: function clone() {
+ return new this.constructor().copy(this);
+ },
+ copy: function copy(source) {
+ this.name = source.name;
+ this.image = source.image;
+ this.mipmaps = source.mipmaps.slice(0);
+ this.mapping = source.mapping;
+ this.wrapS = source.wrapS;
+ this.wrapT = source.wrapT;
+ this.magFilter = source.magFilter;
+ this.minFilter = source.minFilter;
+ this.anisotropy = source.anisotropy;
+ this.format = source.format;
+ this.internalFormat = source.internalFormat;
+ this.type = source.type;
+ this.offset.copy(source.offset);
+ this.repeat.copy(source.repeat);
+ this.center.copy(source.center);
+ this.rotation = source.rotation;
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ this.matrix.copy(source.matrix);
+ this.generateMipmaps = source.generateMipmaps;
+ this.premultiplyAlpha = source.premultiplyAlpha;
+ this.flipY = source.flipY;
+ this.unpackAlignment = source.unpackAlignment;
+ this.encoding = source.encoding;
+ return this;
+ },
+ toJSON: function toJSON(meta) {
+ var isRootObject = meta === undefined || typeof meta === 'string';
+
+ if (!isRootObject && meta.textures[this.uuid] !== undefined) {
+ return meta.textures[this.uuid];
+ }
+
+ var output = {
+ metadata: {
+ version: 4.5,
+ type: 'Texture',
+ generator: 'Texture.toJSON'
+ },
+ uuid: this.uuid,
+ name: this.name,
+ mapping: this.mapping,
+ repeat: [this.repeat.x, this.repeat.y],
+ offset: [this.offset.x, this.offset.y],
+ center: [this.center.x, this.center.y],
+ rotation: this.rotation,
+ wrap: [this.wrapS, this.wrapT],
+ format: this.format,
+ type: this.type,
+ encoding: this.encoding,
+ minFilter: this.minFilter,
+ magFilter: this.magFilter,
+ anisotropy: this.anisotropy,
+ flipY: this.flipY,
+ premultiplyAlpha: this.premultiplyAlpha,
+ unpackAlignment: this.unpackAlignment
+ };
+
+ if (this.image !== undefined) {
+ // TODO: Move to THREE.Image
+ var image = this.image;
+
+ if (image.uuid === undefined) {
+ image.uuid = MathUtils.generateUUID(); // UGH
+ }
+
+ if (!isRootObject && meta.images[image.uuid] === undefined) {
+ var url;
+
+ if (Array.isArray(image)) {
+ // process array of images e.g. CubeTexture
+ url = [];
+
+ for (var i = 0, l = image.length; i < l; i++) {
+ // check cube texture with data textures
+ if (image[i].isDataTexture) {
+ url.push(serializeImage(image[i].image));
+ } else {
+ url.push(serializeImage(image[i]));
+ }
+ }
+ } else {
+ // process single image
+ url = serializeImage(image);
+ }
+
+ meta.images[image.uuid] = {
+ uuid: image.uuid,
+ url: url
+ };
+ }
+
+ output.image = image.uuid;
+ }
+
+ if (!isRootObject) {
+ meta.textures[this.uuid] = output;
+ }
+
+ return output;
+ },
+ dispose: function dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ },
+ transformUv: function transformUv(uv) {
+ if (this.mapping !== UVMapping) return uv;
+ uv.applyMatrix3(this.matrix);
+
+ if (uv.x < 0 || uv.x > 1) {
+ switch (this.wrapS) {
+ case RepeatWrapping:
+ uv.x = uv.x - Math.floor(uv.x);
+ break;
+
+ case ClampToEdgeWrapping:
+ uv.x = uv.x < 0 ? 0 : 1;
+ break;
+
+ case MirroredRepeatWrapping:
+ if (Math.abs(Math.floor(uv.x) % 2) === 1) {
+ uv.x = Math.ceil(uv.x) - uv.x;
+ } else {
+ uv.x = uv.x - Math.floor(uv.x);
+ }
+
+ break;
+ }
+ }
+
+ if (uv.y < 0 || uv.y > 1) {
+ switch (this.wrapT) {
+ case RepeatWrapping:
+ uv.y = uv.y - Math.floor(uv.y);
+ break;
+
+ case ClampToEdgeWrapping:
+ uv.y = uv.y < 0 ? 0 : 1;
+ break;
+
+ case MirroredRepeatWrapping:
+ if (Math.abs(Math.floor(uv.y) % 2) === 1) {
+ uv.y = Math.ceil(uv.y) - uv.y;
+ } else {
+ uv.y = uv.y - Math.floor(uv.y);
+ }
+
+ break;
+ }
+ }
+
+ if (this.flipY) {
+ uv.y = 1 - uv.y;
+ }
+
+ return uv;
+ }
+ });
+ Object.defineProperty(Texture.prototype, 'needsUpdate', {
+ set: function set(value) {
+ if (value === true) this.version++;
+ }
+ });
+
+ function serializeImage(image) {
+ if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
+ // default images
+ return ImageUtils.getDataURL(image);
+ } else {
+ if (image.data) {
+ // images of DataTexture
+ return {
+ data: Array.prototype.slice.call(image.data),
+ width: image.width,
+ height: image.height,
+ type: image.data.constructor.name
+ };
+ } else {
+ console.warn('THREE.Texture: Unable to serialize Texture.');
+ return {};
+ }
+ }
+ }
+
+ var Vector4 = /*#__PURE__*/function () {
+ function Vector4(x, y, z, w) {
+ if (x === void 0) {
+ x = 0;
+ }
+
+ if (y === void 0) {
+ y = 0;
+ }
+
+ if (z === void 0) {
+ z = 0;
+ }
+
+ if (w === void 0) {
+ w = 1;
+ }
+
+ Object.defineProperty(this, 'isVector4', {
+ value: true
+ });
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+ var _proto = Vector4.prototype;
+
+ _proto.set = function set(x, y, z, w) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ return this;
+ };
+
+ _proto.setScalar = function setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ this.z = scalar;
+ this.w = scalar;
+ return this;
+ };
+
+ _proto.setX = function setX(x) {
+ this.x = x;
+ return this;
+ };
+
+ _proto.setY = function setY(y) {
+ this.y = y;
+ return this;
+ };
+
+ _proto.setZ = function setZ(z) {
+ this.z = z;
+ return this;
+ };
+
+ _proto.setW = function setW(w) {
+ this.w = w;
+ return this;
+ };
+
+ _proto.setComponent = function setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
+
+ case 1:
+ this.y = value;
+ break;
+
+ case 2:
+ this.z = value;
+ break;
+
+ case 3:
+ this.w = value;
+ break;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+
+ return this;
+ };
+
+ _proto.getComponent = function getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
+
+ case 1:
+ return this.y;
+
+ case 2:
+ return this.z;
+
+ case 3:
+ return this.w;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor(this.x, this.y, this.z, this.w);
+ };
+
+ _proto.copy = function copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ this.z = v.z;
+ this.w = v.w !== undefined ? v.w : 1;
+ return this;
+ };
+
+ _proto.add = function add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
+
+ this.x += v.x;
+ this.y += v.y;
+ this.z += v.z;
+ this.w += v.w;
+ return this;
+ };
+
+ _proto.addScalar = function addScalar(s) {
+ this.x += s;
+ this.y += s;
+ this.z += s;
+ this.w += s;
+ return this;
+ };
+
+ _proto.addVectors = function addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ this.z = a.z + b.z;
+ this.w = a.w + b.w;
+ return this;
+ };
+
+ _proto.addScaledVector = function addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ this.z += v.z * s;
+ this.w += v.w * s;
+ return this;
+ };
+
+ _proto.sub = function sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
+
+ this.x -= v.x;
+ this.y -= v.y;
+ this.z -= v.z;
+ this.w -= v.w;
+ return this;
+ };
+
+ _proto.subScalar = function subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ this.z -= s;
+ this.w -= s;
+ return this;
+ };
+
+ _proto.subVectors = function subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ this.z = a.z - b.z;
+ this.w = a.w - b.w;
+ return this;
+ };
+
+ _proto.multiply = function multiply(v) {
+ this.x *= v.x;
+ this.y *= v.y;
+ this.z *= v.z;
+ this.w *= v.w;
+ return this;
+ };
+
+ _proto.multiplyScalar = function multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ this.z *= scalar;
+ this.w *= scalar;
+ return this;
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(m) {
+ var x = this.x,
+ y = this.y,
+ z = this.z,
+ w = this.w;
+ var e = m.elements;
+ this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
+ this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
+ this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
+ this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
+ return this;
+ };
+
+ _proto.divideScalar = function divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ };
+
+ _proto.setAxisAngleFromQuaternion = function setAxisAngleFromQuaternion(q) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
+ // q is assumed to be normalized
+ this.w = 2 * Math.acos(q.w);
+ var s = Math.sqrt(1 - q.w * q.w);
+
+ if (s < 0.0001) {
+ this.x = 1;
+ this.y = 0;
+ this.z = 0;
+ } else {
+ this.x = q.x / s;
+ this.y = q.y / s;
+ this.z = q.z / s;
+ }
+
+ return this;
+ };
+
+ _proto.setAxisAngleFromRotationMatrix = function setAxisAngleFromRotationMatrix(m) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ var angle, x, y, z; // variables for result
+
+ var epsilon = 0.01,
+ // margin to allow for rounding errors
+ epsilon2 = 0.1,
+ // margin to distinguish between 0 and 180 degrees
+ te = m.elements,
+ m11 = te[0],
+ m12 = te[4],
+ m13 = te[8],
+ m21 = te[1],
+ m22 = te[5],
+ m23 = te[9],
+ m31 = te[2],
+ m32 = te[6],
+ m33 = te[10];
+
+ if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
+ // singularity found
+ // first check for identity matrix which must have +1 for all terms
+ // in leading diagonal and zero in other terms
+ if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
+ // this singularity is identity matrix so angle = 0
+ this.set(1, 0, 0, 0);
+ return this; // zero angle, arbitrary axis
+ } // otherwise this singularity is angle = 180
+
+
+ angle = Math.PI;
+ var xx = (m11 + 1) / 2;
+ var yy = (m22 + 1) / 2;
+ var zz = (m33 + 1) / 2;
+ var xy = (m12 + m21) / 4;
+ var xz = (m13 + m31) / 4;
+ var yz = (m23 + m32) / 4;
+
+ if (xx > yy && xx > zz) {
+ // m11 is the largest diagonal term
+ if (xx < epsilon) {
+ x = 0;
+ y = 0.707106781;
+ z = 0.707106781;
+ } else {
+ x = Math.sqrt(xx);
+ y = xy / x;
+ z = xz / x;
+ }
+ } else if (yy > zz) {
+ // m22 is the largest diagonal term
+ if (yy < epsilon) {
+ x = 0.707106781;
+ y = 0;
+ z = 0.707106781;
+ } else {
+ y = Math.sqrt(yy);
+ x = xy / y;
+ z = yz / y;
+ }
+ } else {
+ // m33 is the largest diagonal term so base result on this
+ if (zz < epsilon) {
+ x = 0.707106781;
+ y = 0.707106781;
+ z = 0;
+ } else {
+ z = Math.sqrt(zz);
+ x = xz / z;
+ y = yz / z;
+ }
+ }
+
+ this.set(x, y, z, angle);
+ return this; // return 180 deg rotation
+ } // as we have reached here there are no singularities so we can handle normally
+
+
+ var s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
+
+ if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
+ // caught by singularity test above, but I've left it in just in case
+
+ this.x = (m32 - m23) / s;
+ this.y = (m13 - m31) / s;
+ this.z = (m21 - m12) / s;
+ this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
+ return this;
+ };
+
+ _proto.min = function min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ this.z = Math.min(this.z, v.z);
+ this.w = Math.min(this.w, v.w);
+ return this;
+ };
+
+ _proto.max = function max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ this.z = Math.max(this.z, v.z);
+ this.w = Math.max(this.w, v.w);
+ return this;
+ };
+
+ _proto.clamp = function clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
+ this.w = Math.max(min.w, Math.min(max.w, this.w));
+ return this;
+ };
+
+ _proto.clampScalar = function clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
+ this.w = Math.max(minVal, Math.min(maxVal, this.w));
+ return this;
+ };
+
+ _proto.clampLength = function clampLength(min, max) {
+ var length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ };
+
+ _proto.floor = function floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ this.z = Math.floor(this.z);
+ this.w = Math.floor(this.w);
+ return this;
+ };
+
+ _proto.ceil = function ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ this.z = Math.ceil(this.z);
+ this.w = Math.ceil(this.w);
+ return this;
+ };
+
+ _proto.round = function round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ this.z = Math.round(this.z);
+ this.w = Math.round(this.w);
+ return this;
+ };
+
+ _proto.roundToZero = function roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
+ this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
+ return this;
+ };
+
+ _proto.negate = function negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ this.w = -this.w;
+ return this;
+ };
+
+ _proto.dot = function dot(v) {
+ return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
+ };
+
+ _proto.lengthSq = function lengthSq() {
+ return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
+ };
+
+ _proto.length = function length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
+ };
+
+ _proto.manhattanLength = function manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
+ };
+
+ _proto.normalize = function normalize() {
+ return this.divideScalar(this.length() || 1);
+ };
+
+ _proto.setLength = function setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ };
+
+ _proto.lerp = function lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ this.z += (v.z - this.z) * alpha;
+ this.w += (v.w - this.w) * alpha;
+ return this;
+ };
+
+ _proto.lerpVectors = function lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ this.z = v1.z + (v2.z - v1.z) * alpha;
+ this.w = v1.w + (v2.w - v1.w) * alpha;
+ return this;
+ };
+
+ _proto.equals = function equals(v) {
+ return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ this.z = array[offset + 2];
+ this.w = array[offset + 3];
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ array[offset + 2] = this.z;
+ array[offset + 3] = this.w;
+ return array;
+ };
+
+ _proto.fromBufferAttribute = function fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ this.z = attribute.getZ(index);
+ this.w = attribute.getW(index);
+ return this;
+ };
+
+ _proto.random = function random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ this.z = Math.random();
+ this.w = Math.random();
+ return this;
+ };
+
+ _createClass(Vector4, [{
+ key: "width",
+ get: function get() {
+ return this.z;
+ },
+ set: function set(value) {
+ this.z = value;
+ }
+ }, {
+ key: "height",
+ get: function get() {
+ return this.w;
+ },
+ set: function set(value) {
+ this.w = value;
+ }
+ }]);
+
+ return Vector4;
+ }();
+
+ /*
+ In options, we can specify:
+ * Texture parameters for an auto-generated target texture
+ * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
+ */
+
+ var WebGLRenderTarget = /*#__PURE__*/function (_EventDispatcher) {
+ _inheritsLoose(WebGLRenderTarget, _EventDispatcher);
+
+ function WebGLRenderTarget(width, height, options) {
+ var _this;
+
+ _this = _EventDispatcher.call(this) || this;
+ Object.defineProperty(_assertThisInitialized(_this), 'isWebGLRenderTarget', {
+ value: true
+ });
+ _this.width = width;
+ _this.height = height;
+ _this.scissor = new Vector4(0, 0, width, height);
+ _this.scissorTest = false;
+ _this.viewport = new Vector4(0, 0, width, height);
+ options = options || {};
+ _this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
+ _this.texture.image = {};
+ _this.texture.image.width = width;
+ _this.texture.image.height = height;
+ _this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
+ _this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
+ _this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
+ _this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
+ _this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
+ return _this;
+ }
+
+ var _proto = WebGLRenderTarget.prototype;
+
+ _proto.setSize = function setSize(width, height) {
+ if (this.width !== width || this.height !== height) {
+ this.width = width;
+ this.height = height;
+ this.texture.image.width = width;
+ this.texture.image.height = height;
+ this.dispose();
+ }
+
+ this.viewport.set(0, 0, width, height);
+ this.scissor.set(0, 0, width, height);
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(source) {
+ this.width = source.width;
+ this.height = source.height;
+ this.viewport.copy(source.viewport);
+ this.texture = source.texture.clone();
+ this.depthBuffer = source.depthBuffer;
+ this.stencilBuffer = source.stencilBuffer;
+ this.depthTexture = source.depthTexture;
+ return this;
+ };
+
+ _proto.dispose = function dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ };
+
+ return WebGLRenderTarget;
+ }(EventDispatcher);
+
+ var WebGLMultisampleRenderTarget = /*#__PURE__*/function (_WebGLRenderTarget) {
+ _inheritsLoose(WebGLMultisampleRenderTarget, _WebGLRenderTarget);
+
+ function WebGLMultisampleRenderTarget(width, height, options) {
+ var _this;
+
+ _this = _WebGLRenderTarget.call(this, width, height, options) || this;
+ Object.defineProperty(_assertThisInitialized(_this), 'isWebGLMultisampleRenderTarget', {
+ value: true
+ });
+ _this.samples = 4;
+ return _this;
+ }
+
+ var _proto = WebGLMultisampleRenderTarget.prototype;
+
+ _proto.copy = function copy(source) {
+ _WebGLRenderTarget.prototype.copy.call(this, source);
+
+ this.samples = source.samples;
+ return this;
+ };
+
+ return WebGLMultisampleRenderTarget;
+ }(WebGLRenderTarget);
+
+ var Quaternion = /*#__PURE__*/function () {
+ function Quaternion(x, y, z, w) {
+ if (x === void 0) {
+ x = 0;
+ }
+
+ if (y === void 0) {
+ y = 0;
+ }
+
+ if (z === void 0) {
+ z = 0;
+ }
+
+ if (w === void 0) {
+ w = 1;
+ }
+
+ Object.defineProperty(this, 'isQuaternion', {
+ value: true
+ });
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._w = w;
+ }
+
+ Quaternion.slerp = function slerp(qa, qb, qm, t) {
+ return qm.copy(qa).slerp(qb, t);
+ };
+
+ Quaternion.slerpFlat = function slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
+ // fuzz-free, array-based Quaternion SLERP operation
+ var x0 = src0[srcOffset0 + 0],
+ y0 = src0[srcOffset0 + 1],
+ z0 = src0[srcOffset0 + 2],
+ w0 = src0[srcOffset0 + 3];
+ var x1 = src1[srcOffset1 + 0],
+ y1 = src1[srcOffset1 + 1],
+ z1 = src1[srcOffset1 + 2],
+ w1 = src1[srcOffset1 + 3];
+
+ if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
+ var s = 1 - t;
+ var cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
+ dir = cos >= 0 ? 1 : -1,
+ sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:
+
+ if (sqrSin > Number.EPSILON) {
+ var sin = Math.sqrt(sqrSin),
+ len = Math.atan2(sin, cos * dir);
+ s = Math.sin(s * len) / sin;
+ t = Math.sin(t * len) / sin;
+ }
+
+ var tDir = t * dir;
+ x0 = x0 * s + x1 * tDir;
+ y0 = y0 * s + y1 * tDir;
+ z0 = z0 * s + z1 * tDir;
+ w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
+
+ if (s === 1 - t) {
+ var f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
+ x0 *= f;
+ y0 *= f;
+ z0 *= f;
+ w0 *= f;
+ }
+ }
+
+ dst[dstOffset] = x0;
+ dst[dstOffset + 1] = y0;
+ dst[dstOffset + 2] = z0;
+ dst[dstOffset + 3] = w0;
+ };
+
+ Quaternion.multiplyQuaternionsFlat = function multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
+ var x0 = src0[srcOffset0];
+ var y0 = src0[srcOffset0 + 1];
+ var z0 = src0[srcOffset0 + 2];
+ var w0 = src0[srcOffset0 + 3];
+ var x1 = src1[srcOffset1];
+ var y1 = src1[srcOffset1 + 1];
+ var z1 = src1[srcOffset1 + 2];
+ var w1 = src1[srcOffset1 + 3];
+ dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
+ dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
+ dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
+ dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
+ return dst;
+ };
+
+ var _proto = Quaternion.prototype;
+
+ _proto.set = function set(x, y, z, w) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._w = w;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor(this._x, this._y, this._z, this._w);
+ };
+
+ _proto.copy = function copy(quaternion) {
+ this._x = quaternion.x;
+ this._y = quaternion.y;
+ this._z = quaternion.z;
+ this._w = quaternion.w;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.setFromEuler = function setFromEuler(euler, update) {
+ if (!(euler && euler.isEuler)) {
+ throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
+ }
+
+ var x = euler._x,
+ y = euler._y,
+ z = euler._z,
+ order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/
+ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
+ // content/SpinCalc.m
+
+ var cos = Math.cos;
+ var sin = Math.sin;
+ var c1 = cos(x / 2);
+ var c2 = cos(y / 2);
+ var c3 = cos(z / 2);
+ var s1 = sin(x / 2);
+ var s2 = sin(y / 2);
+ var s3 = sin(z / 2);
+
+ switch (order) {
+ case 'XYZ':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'YXZ':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ case 'ZXY':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'ZYX':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ case 'YZX':
+ this._x = s1 * c2 * c3 + c1 * s2 * s3;
+ this._y = c1 * s2 * c3 + s1 * c2 * s3;
+ this._z = c1 * c2 * s3 - s1 * s2 * c3;
+ this._w = c1 * c2 * c3 - s1 * s2 * s3;
+ break;
+
+ case 'XZY':
+ this._x = s1 * c2 * c3 - c1 * s2 * s3;
+ this._y = c1 * s2 * c3 - s1 * c2 * s3;
+ this._z = c1 * c2 * s3 + s1 * s2 * c3;
+ this._w = c1 * c2 * c3 + s1 * s2 * s3;
+ break;
+
+ default:
+ console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
+ }
+
+ if (update !== false) this._onChangeCallback();
+ return this;
+ };
+
+ _proto.setFromAxisAngle = function setFromAxisAngle(axis, angle) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
+ // assumes axis is normalized
+ var halfAngle = angle / 2,
+ s = Math.sin(halfAngle);
+ this._x = axis.x * s;
+ this._y = axis.y * s;
+ this._z = axis.z * s;
+ this._w = Math.cos(halfAngle);
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.setFromRotationMatrix = function setFromRotationMatrix(m) {
+ // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ var te = m.elements,
+ m11 = te[0],
+ m12 = te[4],
+ m13 = te[8],
+ m21 = te[1],
+ m22 = te[5],
+ m23 = te[9],
+ m31 = te[2],
+ m32 = te[6],
+ m33 = te[10],
+ trace = m11 + m22 + m33;
+
+ if (trace > 0) {
+ var s = 0.5 / Math.sqrt(trace + 1.0);
+ this._w = 0.25 / s;
+ this._x = (m32 - m23) * s;
+ this._y = (m13 - m31) * s;
+ this._z = (m21 - m12) * s;
+ } else if (m11 > m22 && m11 > m33) {
+ var _s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
+
+ this._w = (m32 - m23) / _s;
+ this._x = 0.25 * _s;
+ this._y = (m12 + m21) / _s;
+ this._z = (m13 + m31) / _s;
+ } else if (m22 > m33) {
+ var _s2 = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
+
+ this._w = (m13 - m31) / _s2;
+ this._x = (m12 + m21) / _s2;
+ this._y = 0.25 * _s2;
+ this._z = (m23 + m32) / _s2;
+ } else {
+ var _s3 = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
+
+ this._w = (m21 - m12) / _s3;
+ this._x = (m13 + m31) / _s3;
+ this._y = (m23 + m32) / _s3;
+ this._z = 0.25 * _s3;
+ }
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.setFromUnitVectors = function setFromUnitVectors(vFrom, vTo) {
+ // assumes direction vectors vFrom and vTo are normalized
+ var EPS = 0.000001;
+ var r = vFrom.dot(vTo) + 1;
+
+ if (r < EPS) {
+ r = 0;
+
+ if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
+ this._x = -vFrom.y;
+ this._y = vFrom.x;
+ this._z = 0;
+ this._w = r;
+ } else {
+ this._x = 0;
+ this._y = -vFrom.z;
+ this._z = vFrom.y;
+ this._w = r;
+ }
+ } else {
+ // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
+ this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
+ this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
+ this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
+ this._w = r;
+ }
+
+ return this.normalize();
+ };
+
+ _proto.angleTo = function angleTo(q) {
+ return 2 * Math.acos(Math.abs(MathUtils.clamp(this.dot(q), -1, 1)));
+ };
+
+ _proto.rotateTowards = function rotateTowards(q, step) {
+ var angle = this.angleTo(q);
+ if (angle === 0) return this;
+ var t = Math.min(1, step / angle);
+ this.slerp(q, t);
+ return this;
+ };
+
+ _proto.identity = function identity() {
+ return this.set(0, 0, 0, 1);
+ };
+
+ _proto.invert = function invert() {
+ // quaternion is assumed to have unit length
+ return this.conjugate();
+ };
+
+ _proto.conjugate = function conjugate() {
+ this._x *= -1;
+ this._y *= -1;
+ this._z *= -1;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.dot = function dot(v) {
+ return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
+ };
+
+ _proto.lengthSq = function lengthSq() {
+ return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
+ };
+
+ _proto.length = function length() {
+ return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
+ };
+
+ _proto.normalize = function normalize() {
+ var l = this.length();
+
+ if (l === 0) {
+ this._x = 0;
+ this._y = 0;
+ this._z = 0;
+ this._w = 1;
+ } else {
+ l = 1 / l;
+ this._x = this._x * l;
+ this._y = this._y * l;
+ this._z = this._z * l;
+ this._w = this._w * l;
+ }
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.multiply = function multiply(q, p) {
+ if (p !== undefined) {
+ console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
+ return this.multiplyQuaternions(q, p);
+ }
+
+ return this.multiplyQuaternions(this, q);
+ };
+
+ _proto.premultiply = function premultiply(q) {
+ return this.multiplyQuaternions(q, this);
+ };
+
+ _proto.multiplyQuaternions = function multiplyQuaternions(a, b) {
+ // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
+ var qax = a._x,
+ qay = a._y,
+ qaz = a._z,
+ qaw = a._w;
+ var qbx = b._x,
+ qby = b._y,
+ qbz = b._z,
+ qbw = b._w;
+ this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
+ this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
+ this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
+ this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.slerp = function slerp(qb, t) {
+ if (t === 0) return this;
+ if (t === 1) return this.copy(qb);
+ var x = this._x,
+ y = this._y,
+ z = this._z,
+ w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
+
+ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
+
+ if (cosHalfTheta < 0) {
+ this._w = -qb._w;
+ this._x = -qb._x;
+ this._y = -qb._y;
+ this._z = -qb._z;
+ cosHalfTheta = -cosHalfTheta;
+ } else {
+ this.copy(qb);
+ }
+
+ if (cosHalfTheta >= 1.0) {
+ this._w = w;
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ return this;
+ }
+
+ var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
+
+ if (sqrSinHalfTheta <= Number.EPSILON) {
+ var s = 1 - t;
+ this._w = s * w + t * this._w;
+ this._x = s * x + t * this._x;
+ this._y = s * y + t * this._y;
+ this._z = s * z + t * this._z;
+ this.normalize();
+
+ this._onChangeCallback();
+
+ return this;
+ }
+
+ var sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
+ var halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
+ var ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
+ ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
+ this._w = w * ratioA + this._w * ratioB;
+ this._x = x * ratioA + this._x * ratioB;
+ this._y = y * ratioA + this._y * ratioB;
+ this._z = z * ratioA + this._z * ratioB;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.equals = function equals(quaternion) {
+ return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this._x = array[offset];
+ this._y = array[offset + 1];
+ this._z = array[offset + 2];
+ this._w = array[offset + 3];
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ array[offset] = this._x;
+ array[offset + 1] = this._y;
+ array[offset + 2] = this._z;
+ array[offset + 3] = this._w;
+ return array;
+ };
+
+ _proto.fromBufferAttribute = function fromBufferAttribute(attribute, index) {
+ this._x = attribute.getX(index);
+ this._y = attribute.getY(index);
+ this._z = attribute.getZ(index);
+ this._w = attribute.getW(index);
+ return this;
+ };
+
+ _proto._onChange = function _onChange(callback) {
+ this._onChangeCallback = callback;
+ return this;
+ };
+
+ _proto._onChangeCallback = function _onChangeCallback() {};
+
+ _createClass(Quaternion, [{
+ key: "x",
+ get: function get() {
+ return this._x;
+ },
+ set: function set(value) {
+ this._x = value;
+
+ this._onChangeCallback();
+ }
+ }, {
+ key: "y",
+ get: function get() {
+ return this._y;
+ },
+ set: function set(value) {
+ this._y = value;
+
+ this._onChangeCallback();
+ }
+ }, {
+ key: "z",
+ get: function get() {
+ return this._z;
+ },
+ set: function set(value) {
+ this._z = value;
+
+ this._onChangeCallback();
+ }
+ }, {
+ key: "w",
+ get: function get() {
+ return this._w;
+ },
+ set: function set(value) {
+ this._w = value;
+
+ this._onChangeCallback();
+ }
+ }]);
+
+ return Quaternion;
+ }();
+
+ var Vector3 = /*#__PURE__*/function () {
+ function Vector3(x, y, z) {
+ if (x === void 0) {
+ x = 0;
+ }
+
+ if (y === void 0) {
+ y = 0;
+ }
+
+ if (z === void 0) {
+ z = 0;
+ }
+
+ Object.defineProperty(this, 'isVector3', {
+ value: true
+ });
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ var _proto = Vector3.prototype;
+
+ _proto.set = function set(x, y, z) {
+ if (z === undefined) z = this.z; // sprite.scale.set(x,y)
+
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ return this;
+ };
+
+ _proto.setScalar = function setScalar(scalar) {
+ this.x = scalar;
+ this.y = scalar;
+ this.z = scalar;
+ return this;
+ };
+
+ _proto.setX = function setX(x) {
+ this.x = x;
+ return this;
+ };
+
+ _proto.setY = function setY(y) {
+ this.y = y;
+ return this;
+ };
+
+ _proto.setZ = function setZ(z) {
+ this.z = z;
+ return this;
+ };
+
+ _proto.setComponent = function setComponent(index, value) {
+ switch (index) {
+ case 0:
+ this.x = value;
+ break;
+
+ case 1:
+ this.y = value;
+ break;
+
+ case 2:
+ this.z = value;
+ break;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+
+ return this;
+ };
+
+ _proto.getComponent = function getComponent(index) {
+ switch (index) {
+ case 0:
+ return this.x;
+
+ case 1:
+ return this.y;
+
+ case 2:
+ return this.z;
+
+ default:
+ throw new Error('index is out of range: ' + index);
+ }
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor(this.x, this.y, this.z);
+ };
+
+ _proto.copy = function copy(v) {
+ this.x = v.x;
+ this.y = v.y;
+ this.z = v.z;
+ return this;
+ };
+
+ _proto.add = function add(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
+ return this.addVectors(v, w);
+ }
+
+ this.x += v.x;
+ this.y += v.y;
+ this.z += v.z;
+ return this;
+ };
+
+ _proto.addScalar = function addScalar(s) {
+ this.x += s;
+ this.y += s;
+ this.z += s;
+ return this;
+ };
+
+ _proto.addVectors = function addVectors(a, b) {
+ this.x = a.x + b.x;
+ this.y = a.y + b.y;
+ this.z = a.z + b.z;
+ return this;
+ };
+
+ _proto.addScaledVector = function addScaledVector(v, s) {
+ this.x += v.x * s;
+ this.y += v.y * s;
+ this.z += v.z * s;
+ return this;
+ };
+
+ _proto.sub = function sub(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
+ return this.subVectors(v, w);
+ }
+
+ this.x -= v.x;
+ this.y -= v.y;
+ this.z -= v.z;
+ return this;
+ };
+
+ _proto.subScalar = function subScalar(s) {
+ this.x -= s;
+ this.y -= s;
+ this.z -= s;
+ return this;
+ };
+
+ _proto.subVectors = function subVectors(a, b) {
+ this.x = a.x - b.x;
+ this.y = a.y - b.y;
+ this.z = a.z - b.z;
+ return this;
+ };
+
+ _proto.multiply = function multiply(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
+ return this.multiplyVectors(v, w);
+ }
+
+ this.x *= v.x;
+ this.y *= v.y;
+ this.z *= v.z;
+ return this;
+ };
+
+ _proto.multiplyScalar = function multiplyScalar(scalar) {
+ this.x *= scalar;
+ this.y *= scalar;
+ this.z *= scalar;
+ return this;
+ };
+
+ _proto.multiplyVectors = function multiplyVectors(a, b) {
+ this.x = a.x * b.x;
+ this.y = a.y * b.y;
+ this.z = a.z * b.z;
+ return this;
+ };
+
+ _proto.applyEuler = function applyEuler(euler) {
+ if (!(euler && euler.isEuler)) {
+ console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
+ }
+
+ return this.applyQuaternion(_quaternion.setFromEuler(euler));
+ };
+
+ _proto.applyAxisAngle = function applyAxisAngle(axis, angle) {
+ return this.applyQuaternion(_quaternion.setFromAxisAngle(axis, angle));
+ };
+
+ _proto.applyMatrix3 = function applyMatrix3(m) {
+ var x = this.x,
+ y = this.y,
+ z = this.z;
+ var e = m.elements;
+ this.x = e[0] * x + e[3] * y + e[6] * z;
+ this.y = e[1] * x + e[4] * y + e[7] * z;
+ this.z = e[2] * x + e[5] * y + e[8] * z;
+ return this;
+ };
+
+ _proto.applyNormalMatrix = function applyNormalMatrix(m) {
+ return this.applyMatrix3(m).normalize();
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(m) {
+ var x = this.x,
+ y = this.y,
+ z = this.z;
+ var e = m.elements;
+ var w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
+ this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
+ this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
+ this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
+ return this;
+ };
+
+ _proto.applyQuaternion = function applyQuaternion(q) {
+ var x = this.x,
+ y = this.y,
+ z = this.z;
+ var qx = q.x,
+ qy = q.y,
+ qz = q.z,
+ qw = q.w; // calculate quat * vector
+
+ var ix = qw * x + qy * z - qz * y;
+ var iy = qw * y + qz * x - qx * z;
+ var iz = qw * z + qx * y - qy * x;
+ var iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
+
+ this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
+ this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
+ this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
+ return this;
+ };
+
+ _proto.project = function project(camera) {
+ return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
+ };
+
+ _proto.unproject = function unproject(camera) {
+ return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
+ };
+
+ _proto.transformDirection = function transformDirection(m) {
+ // input: THREE.Matrix4 affine matrix
+ // vector interpreted as a direction
+ var x = this.x,
+ y = this.y,
+ z = this.z;
+ var e = m.elements;
+ this.x = e[0] * x + e[4] * y + e[8] * z;
+ this.y = e[1] * x + e[5] * y + e[9] * z;
+ this.z = e[2] * x + e[6] * y + e[10] * z;
+ return this.normalize();
+ };
+
+ _proto.divide = function divide(v) {
+ this.x /= v.x;
+ this.y /= v.y;
+ this.z /= v.z;
+ return this;
+ };
+
+ _proto.divideScalar = function divideScalar(scalar) {
+ return this.multiplyScalar(1 / scalar);
+ };
+
+ _proto.min = function min(v) {
+ this.x = Math.min(this.x, v.x);
+ this.y = Math.min(this.y, v.y);
+ this.z = Math.min(this.z, v.z);
+ return this;
+ };
+
+ _proto.max = function max(v) {
+ this.x = Math.max(this.x, v.x);
+ this.y = Math.max(this.y, v.y);
+ this.z = Math.max(this.z, v.z);
+ return this;
+ };
+
+ _proto.clamp = function clamp(min, max) {
+ // assumes min < max, componentwise
+ this.x = Math.max(min.x, Math.min(max.x, this.x));
+ this.y = Math.max(min.y, Math.min(max.y, this.y));
+ this.z = Math.max(min.z, Math.min(max.z, this.z));
+ return this;
+ };
+
+ _proto.clampScalar = function clampScalar(minVal, maxVal) {
+ this.x = Math.max(minVal, Math.min(maxVal, this.x));
+ this.y = Math.max(minVal, Math.min(maxVal, this.y));
+ this.z = Math.max(minVal, Math.min(maxVal, this.z));
+ return this;
+ };
+
+ _proto.clampLength = function clampLength(min, max) {
+ var length = this.length();
+ return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
+ };
+
+ _proto.floor = function floor() {
+ this.x = Math.floor(this.x);
+ this.y = Math.floor(this.y);
+ this.z = Math.floor(this.z);
+ return this;
+ };
+
+ _proto.ceil = function ceil() {
+ this.x = Math.ceil(this.x);
+ this.y = Math.ceil(this.y);
+ this.z = Math.ceil(this.z);
+ return this;
+ };
+
+ _proto.round = function round() {
+ this.x = Math.round(this.x);
+ this.y = Math.round(this.y);
+ this.z = Math.round(this.z);
+ return this;
+ };
+
+ _proto.roundToZero = function roundToZero() {
+ this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
+ this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
+ this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
+ return this;
+ };
+
+ _proto.negate = function negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ return this;
+ };
+
+ _proto.dot = function dot(v) {
+ return this.x * v.x + this.y * v.y + this.z * v.z;
+ } // TODO lengthSquared?
+ ;
+
+ _proto.lengthSq = function lengthSq() {
+ return this.x * this.x + this.y * this.y + this.z * this.z;
+ };
+
+ _proto.length = function length() {
+ return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
+ };
+
+ _proto.manhattanLength = function manhattanLength() {
+ return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
+ };
+
+ _proto.normalize = function normalize() {
+ return this.divideScalar(this.length() || 1);
+ };
+
+ _proto.setLength = function setLength(length) {
+ return this.normalize().multiplyScalar(length);
+ };
+
+ _proto.lerp = function lerp(v, alpha) {
+ this.x += (v.x - this.x) * alpha;
+ this.y += (v.y - this.y) * alpha;
+ this.z += (v.z - this.z) * alpha;
+ return this;
+ };
+
+ _proto.lerpVectors = function lerpVectors(v1, v2, alpha) {
+ this.x = v1.x + (v2.x - v1.x) * alpha;
+ this.y = v1.y + (v2.y - v1.y) * alpha;
+ this.z = v1.z + (v2.z - v1.z) * alpha;
+ return this;
+ };
+
+ _proto.cross = function cross(v, w) {
+ if (w !== undefined) {
+ console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
+ return this.crossVectors(v, w);
+ }
+
+ return this.crossVectors(this, v);
+ };
+
+ _proto.crossVectors = function crossVectors(a, b) {
+ var ax = a.x,
+ ay = a.y,
+ az = a.z;
+ var bx = b.x,
+ by = b.y,
+ bz = b.z;
+ this.x = ay * bz - az * by;
+ this.y = az * bx - ax * bz;
+ this.z = ax * by - ay * bx;
+ return this;
+ };
+
+ _proto.projectOnVector = function projectOnVector(v) {
+ var denominator = v.lengthSq();
+ if (denominator === 0) return this.set(0, 0, 0);
+ var scalar = v.dot(this) / denominator;
+ return this.copy(v).multiplyScalar(scalar);
+ };
+
+ _proto.projectOnPlane = function projectOnPlane(planeNormal) {
+ _vector.copy(this).projectOnVector(planeNormal);
+
+ return this.sub(_vector);
+ };
+
+ _proto.reflect = function reflect(normal) {
+ // reflect incident vector off plane orthogonal to normal
+ // normal is assumed to have unit length
+ return this.sub(_vector.copy(normal).multiplyScalar(2 * this.dot(normal)));
+ };
+
+ _proto.angleTo = function angleTo(v) {
+ var denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
+ if (denominator === 0) return Math.PI / 2;
+ var theta = this.dot(v) / denominator; // clamp, to handle numerical problems
+
+ return Math.acos(MathUtils.clamp(theta, -1, 1));
+ };
+
+ _proto.distanceTo = function distanceTo(v) {
+ return Math.sqrt(this.distanceToSquared(v));
+ };
+
+ _proto.distanceToSquared = function distanceToSquared(v) {
+ var dx = this.x - v.x,
+ dy = this.y - v.y,
+ dz = this.z - v.z;
+ return dx * dx + dy * dy + dz * dz;
+ };
+
+ _proto.manhattanDistanceTo = function manhattanDistanceTo(v) {
+ return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
+ };
+
+ _proto.setFromSpherical = function setFromSpherical(s) {
+ return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
+ };
+
+ _proto.setFromSphericalCoords = function setFromSphericalCoords(radius, phi, theta) {
+ var sinPhiRadius = Math.sin(phi) * radius;
+ this.x = sinPhiRadius * Math.sin(theta);
+ this.y = Math.cos(phi) * radius;
+ this.z = sinPhiRadius * Math.cos(theta);
+ return this;
+ };
+
+ _proto.setFromCylindrical = function setFromCylindrical(c) {
+ return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
+ };
+
+ _proto.setFromCylindricalCoords = function setFromCylindricalCoords(radius, theta, y) {
+ this.x = radius * Math.sin(theta);
+ this.y = y;
+ this.z = radius * Math.cos(theta);
+ return this;
+ };
+
+ _proto.setFromMatrixPosition = function setFromMatrixPosition(m) {
+ var e = m.elements;
+ this.x = e[12];
+ this.y = e[13];
+ this.z = e[14];
+ return this;
+ };
+
+ _proto.setFromMatrixScale = function setFromMatrixScale(m) {
+ var sx = this.setFromMatrixColumn(m, 0).length();
+ var sy = this.setFromMatrixColumn(m, 1).length();
+ var sz = this.setFromMatrixColumn(m, 2).length();
+ this.x = sx;
+ this.y = sy;
+ this.z = sz;
+ return this;
+ };
+
+ _proto.setFromMatrixColumn = function setFromMatrixColumn(m, index) {
+ return this.fromArray(m.elements, index * 4);
+ };
+
+ _proto.setFromMatrix3Column = function setFromMatrix3Column(m, index) {
+ return this.fromArray(m.elements, index * 3);
+ };
+
+ _proto.equals = function equals(v) {
+ return v.x === this.x && v.y === this.y && v.z === this.z;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this.x = array[offset];
+ this.y = array[offset + 1];
+ this.z = array[offset + 2];
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ array[offset] = this.x;
+ array[offset + 1] = this.y;
+ array[offset + 2] = this.z;
+ return array;
+ };
+
+ _proto.fromBufferAttribute = function fromBufferAttribute(attribute, index, offset) {
+ if (offset !== undefined) {
+ console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
+ }
+
+ this.x = attribute.getX(index);
+ this.y = attribute.getY(index);
+ this.z = attribute.getZ(index);
+ return this;
+ };
+
+ _proto.random = function random() {
+ this.x = Math.random();
+ this.y = Math.random();
+ this.z = Math.random();
+ return this;
+ };
+
+ return Vector3;
+ }();
+
+ var _vector = /*@__PURE__*/new Vector3();
+
+ var _quaternion = /*@__PURE__*/new Quaternion();
+
+ var Box3 = /*#__PURE__*/function () {
+ function Box3(min, max) {
+ Object.defineProperty(this, 'isBox3', {
+ value: true
+ });
+ this.min = min !== undefined ? min : new Vector3(+Infinity, +Infinity, +Infinity);
+ this.max = max !== undefined ? max : new Vector3(-Infinity, -Infinity, -Infinity);
+ }
+
+ var _proto = Box3.prototype;
+
+ _proto.set = function set(min, max) {
+ this.min.copy(min);
+ this.max.copy(max);
+ return this;
+ };
+
+ _proto.setFromArray = function setFromArray(array) {
+ var minX = +Infinity;
+ var minY = +Infinity;
+ var minZ = +Infinity;
+ var maxX = -Infinity;
+ var maxY = -Infinity;
+ var maxZ = -Infinity;
+
+ for (var i = 0, l = array.length; i < l; i += 3) {
+ var x = array[i];
+ var y = array[i + 1];
+ var z = array[i + 2];
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (z < minZ) minZ = z;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ if (z > maxZ) maxZ = z;
+ }
+
+ this.min.set(minX, minY, minZ);
+ this.max.set(maxX, maxY, maxZ);
+ return this;
+ };
+
+ _proto.setFromBufferAttribute = function setFromBufferAttribute(attribute) {
+ var minX = +Infinity;
+ var minY = +Infinity;
+ var minZ = +Infinity;
+ var maxX = -Infinity;
+ var maxY = -Infinity;
+ var maxZ = -Infinity;
+
+ for (var i = 0, l = attribute.count; i < l; i++) {
+ var x = attribute.getX(i);
+ var y = attribute.getY(i);
+ var z = attribute.getZ(i);
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (z < minZ) minZ = z;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ if (z > maxZ) maxZ = z;
+ }
+
+ this.min.set(minX, minY, minZ);
+ this.max.set(maxX, maxY, maxZ);
+ return this;
+ };
+
+ _proto.setFromPoints = function setFromPoints(points) {
+ this.makeEmpty();
+
+ for (var i = 0, il = points.length; i < il; i++) {
+ this.expandByPoint(points[i]);
+ }
+
+ return this;
+ };
+
+ _proto.setFromCenterAndSize = function setFromCenterAndSize(center, size) {
+ var halfSize = _vector$1.copy(size).multiplyScalar(0.5);
+
+ this.min.copy(center).sub(halfSize);
+ this.max.copy(center).add(halfSize);
+ return this;
+ };
+
+ _proto.setFromObject = function setFromObject(object) {
+ this.makeEmpty();
+ return this.expandByObject(object);
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(box) {
+ this.min.copy(box.min);
+ this.max.copy(box.max);
+ return this;
+ };
+
+ _proto.makeEmpty = function makeEmpty() {
+ this.min.x = this.min.y = this.min.z = +Infinity;
+ this.max.x = this.max.y = this.max.z = -Infinity;
+ return this;
+ };
+
+ _proto.isEmpty = function isEmpty() {
+ // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
+ return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
+ };
+
+ _proto.getCenter = function getCenter(target) {
+ if (target === undefined) {
+ console.warn('THREE.Box3: .getCenter() target is now required');
+ target = new Vector3();
+ }
+
+ return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
+ };
+
+ _proto.getSize = function getSize(target) {
+ if (target === undefined) {
+ console.warn('THREE.Box3: .getSize() target is now required');
+ target = new Vector3();
+ }
+
+ return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
+ };
+
+ _proto.expandByPoint = function expandByPoint(point) {
+ this.min.min(point);
+ this.max.max(point);
+ return this;
+ };
+
+ _proto.expandByVector = function expandByVector(vector) {
+ this.min.sub(vector);
+ this.max.add(vector);
+ return this;
+ };
+
+ _proto.expandByScalar = function expandByScalar(scalar) {
+ this.min.addScalar(-scalar);
+ this.max.addScalar(scalar);
+ return this;
+ };
+
+ _proto.expandByObject = function expandByObject(object) {
+ // Computes the world-axis-aligned bounding box of an object (including its children),
+ // accounting for both the object's, and children's, world transforms
+ object.updateWorldMatrix(false, false);
+ var geometry = object.geometry;
+
+ if (geometry !== undefined) {
+ if (geometry.boundingBox === null) {
+ geometry.computeBoundingBox();
+ }
+
+ _box.copy(geometry.boundingBox);
+
+ _box.applyMatrix4(object.matrixWorld);
+
+ this.union(_box);
+ }
+
+ var children = object.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ this.expandByObject(children[i]);
+ }
+
+ return this;
+ };
+
+ _proto.containsPoint = function containsPoint(point) {
+ return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
+ };
+
+ _proto.containsBox = function containsBox(box) {
+ return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
+ };
+
+ _proto.getParameter = function getParameter(point, target) {
+ // This can potentially have a divide by zero if the box
+ // has a size dimension of 0.
+ if (target === undefined) {
+ console.warn('THREE.Box3: .getParameter() target is now required');
+ target = new Vector3();
+ }
+
+ return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ // using 6 splitting planes to rule out intersections.
+ return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
+ };
+
+ _proto.intersectsSphere = function intersectsSphere(sphere) {
+ // Find the point on the AABB closest to the sphere center.
+ this.clampPoint(sphere.center, _vector$1); // If that point is inside the sphere, the AABB and sphere intersect.
+
+ return _vector$1.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
+ };
+
+ _proto.intersectsPlane = function intersectsPlane(plane) {
+ // We compute the minimum and maximum dot product values. If those values
+ // are on the same side (back or front) of the plane, then there is no intersection.
+ var min, max;
+
+ if (plane.normal.x > 0) {
+ min = plane.normal.x * this.min.x;
+ max = plane.normal.x * this.max.x;
+ } else {
+ min = plane.normal.x * this.max.x;
+ max = plane.normal.x * this.min.x;
+ }
+
+ if (plane.normal.y > 0) {
+ min += plane.normal.y * this.min.y;
+ max += plane.normal.y * this.max.y;
+ } else {
+ min += plane.normal.y * this.max.y;
+ max += plane.normal.y * this.min.y;
+ }
+
+ if (plane.normal.z > 0) {
+ min += plane.normal.z * this.min.z;
+ max += plane.normal.z * this.max.z;
+ } else {
+ min += plane.normal.z * this.max.z;
+ max += plane.normal.z * this.min.z;
+ }
+
+ return min <= -plane.constant && max >= -plane.constant;
+ };
+
+ _proto.intersectsTriangle = function intersectsTriangle(triangle) {
+ if (this.isEmpty()) {
+ return false;
+ } // compute box center and extents
+
+
+ this.getCenter(_center);
+
+ _extents.subVectors(this.max, _center); // translate triangle to aabb origin
+
+
+ _v0.subVectors(triangle.a, _center);
+
+ _v1.subVectors(triangle.b, _center);
+
+ _v2.subVectors(triangle.c, _center); // compute edge vectors for triangle
+
+
+ _f0.subVectors(_v1, _v0);
+
+ _f1.subVectors(_v2, _v1);
+
+ _f2.subVectors(_v0, _v2); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
+ // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
+ // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
+
+
+ var axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
+
+ if (!satForAxes(axes, _v0, _v1, _v2, _extents)) {
+ return false;
+ } // test 3 face normals from the aabb
+
+
+ axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
+
+ if (!satForAxes(axes, _v0, _v1, _v2, _extents)) {
+ return false;
+ } // finally testing the face normal of the triangle
+ // use already existing triangle edge vectors here
+
+
+ _triangleNormal.crossVectors(_f0, _f1);
+
+ axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
+ return satForAxes(axes, _v0, _v1, _v2, _extents);
+ };
+
+ _proto.clampPoint = function clampPoint(point, target) {
+ if (target === undefined) {
+ console.warn('THREE.Box3: .clampPoint() target is now required');
+ target = new Vector3();
+ }
+
+ return target.copy(point).clamp(this.min, this.max);
+ };
+
+ _proto.distanceToPoint = function distanceToPoint(point) {
+ var clampedPoint = _vector$1.copy(point).clamp(this.min, this.max);
+
+ return clampedPoint.sub(point).length();
+ };
+
+ _proto.getBoundingSphere = function getBoundingSphere(target) {
+ if (target === undefined) {
+ console.error('THREE.Box3: .getBoundingSphere() target is now required'); //target = new Sphere(); // removed to avoid cyclic dependency
+ }
+
+ this.getCenter(target.center);
+ target.radius = this.getSize(_vector$1).length() * 0.5;
+ return target;
+ };
+
+ _proto.intersect = function intersect(box) {
+ this.min.max(box.min);
+ this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
+
+ if (this.isEmpty()) this.makeEmpty();
+ return this;
+ };
+
+ _proto.union = function union(box) {
+ this.min.min(box.min);
+ this.max.max(box.max);
+ return this;
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(matrix) {
+ // transform of empty box is an empty box.
+ if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
+
+ _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
+
+
+ _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
+
+
+ _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
+
+
+ _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
+
+
+ _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
+
+
+ _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
+
+
+ _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
+
+
+ _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
+
+
+ this.setFromPoints(_points);
+ return this;
+ };
+
+ _proto.translate = function translate(offset) {
+ this.min.add(offset);
+ this.max.add(offset);
+ return this;
+ };
+
+ _proto.equals = function equals(box) {
+ return box.min.equals(this.min) && box.max.equals(this.max);
+ };
+
+ return Box3;
+ }();
+
+ function satForAxes(axes, v0, v1, v2, extents) {
+ for (var i = 0, j = axes.length - 3; i <= j; i += 3) {
+ _testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
+
+
+ var r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
+
+ var p0 = v0.dot(_testAxis);
+ var p1 = v1.dot(_testAxis);
+ var p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
+
+ if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
+ // points of the projected triangle are outside the projected half-length of the aabb
+ // the axis is seperating and we can exit
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ var _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
+
+ var _vector$1 = /*@__PURE__*/new Vector3();
+
+ var _box = /*@__PURE__*/new Box3(); // triangle centered vertices
+
+
+ var _v0 = /*@__PURE__*/new Vector3();
+
+ var _v1 = /*@__PURE__*/new Vector3();
+
+ var _v2 = /*@__PURE__*/new Vector3(); // triangle edge vectors
+
+
+ var _f0 = /*@__PURE__*/new Vector3();
+
+ var _f1 = /*@__PURE__*/new Vector3();
+
+ var _f2 = /*@__PURE__*/new Vector3();
+
+ var _center = /*@__PURE__*/new Vector3();
+
+ var _extents = /*@__PURE__*/new Vector3();
+
+ var _triangleNormal = /*@__PURE__*/new Vector3();
+
+ var _testAxis = /*@__PURE__*/new Vector3();
+
+ var _box$1 = /*@__PURE__*/new Box3();
+
+ var Sphere = /*#__PURE__*/function () {
+ function Sphere(center, radius) {
+ this.center = center !== undefined ? center : new Vector3();
+ this.radius = radius !== undefined ? radius : -1;
+ }
+
+ var _proto = Sphere.prototype;
+
+ _proto.set = function set(center, radius) {
+ this.center.copy(center);
+ this.radius = radius;
+ return this;
+ };
+
+ _proto.setFromPoints = function setFromPoints(points, optionalCenter) {
+ var center = this.center;
+
+ if (optionalCenter !== undefined) {
+ center.copy(optionalCenter);
+ } else {
+ _box$1.setFromPoints(points).getCenter(center);
+ }
+
+ var maxRadiusSq = 0;
+
+ for (var i = 0, il = points.length; i < il; i++) {
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
+ }
+
+ this.radius = Math.sqrt(maxRadiusSq);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(sphere) {
+ this.center.copy(sphere.center);
+ this.radius = sphere.radius;
+ return this;
+ };
+
+ _proto.isEmpty = function isEmpty() {
+ return this.radius < 0;
+ };
+
+ _proto.makeEmpty = function makeEmpty() {
+ this.center.set(0, 0, 0);
+ this.radius = -1;
+ return this;
+ };
+
+ _proto.containsPoint = function containsPoint(point) {
+ return point.distanceToSquared(this.center) <= this.radius * this.radius;
+ };
+
+ _proto.distanceToPoint = function distanceToPoint(point) {
+ return point.distanceTo(this.center) - this.radius;
+ };
+
+ _proto.intersectsSphere = function intersectsSphere(sphere) {
+ var radiusSum = this.radius + sphere.radius;
+ return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ return box.intersectsSphere(this);
+ };
+
+ _proto.intersectsPlane = function intersectsPlane(plane) {
+ return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
+ };
+
+ _proto.clampPoint = function clampPoint(point, target) {
+ var deltaLengthSq = this.center.distanceToSquared(point);
+
+ if (target === undefined) {
+ console.warn('THREE.Sphere: .clampPoint() target is now required');
+ target = new Vector3();
+ }
+
+ target.copy(point);
+
+ if (deltaLengthSq > this.radius * this.radius) {
+ target.sub(this.center).normalize();
+ target.multiplyScalar(this.radius).add(this.center);
+ }
+
+ return target;
+ };
+
+ _proto.getBoundingBox = function getBoundingBox(target) {
+ if (target === undefined) {
+ console.warn('THREE.Sphere: .getBoundingBox() target is now required');
+ target = new Box3();
+ }
+
+ if (this.isEmpty()) {
+ // Empty sphere produces empty bounding box
+ target.makeEmpty();
+ return target;
+ }
+
+ target.set(this.center, this.center);
+ target.expandByScalar(this.radius);
+ return target;
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(matrix) {
+ this.center.applyMatrix4(matrix);
+ this.radius = this.radius * matrix.getMaxScaleOnAxis();
+ return this;
+ };
+
+ _proto.translate = function translate(offset) {
+ this.center.add(offset);
+ return this;
+ };
+
+ _proto.equals = function equals(sphere) {
+ return sphere.center.equals(this.center) && sphere.radius === this.radius;
+ };
+
+ return Sphere;
+ }();
+
+ var _vector$2 = /*@__PURE__*/new Vector3();
+
+ var _segCenter = /*@__PURE__*/new Vector3();
+
+ var _segDir = /*@__PURE__*/new Vector3();
+
+ var _diff = /*@__PURE__*/new Vector3();
+
+ var _edge1 = /*@__PURE__*/new Vector3();
+
+ var _edge2 = /*@__PURE__*/new Vector3();
+
+ var _normal = /*@__PURE__*/new Vector3();
+
+ var Ray = /*#__PURE__*/function () {
+ function Ray(origin, direction) {
+ this.origin = origin !== undefined ? origin : new Vector3();
+ this.direction = direction !== undefined ? direction : new Vector3(0, 0, -1);
+ }
+
+ var _proto = Ray.prototype;
+
+ _proto.set = function set(origin, direction) {
+ this.origin.copy(origin);
+ this.direction.copy(direction);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(ray) {
+ this.origin.copy(ray.origin);
+ this.direction.copy(ray.direction);
+ return this;
+ };
+
+ _proto.at = function at(t, target) {
+ if (target === undefined) {
+ console.warn('THREE.Ray: .at() target is now required');
+ target = new Vector3();
+ }
+
+ return target.copy(this.direction).multiplyScalar(t).add(this.origin);
+ };
+
+ _proto.lookAt = function lookAt(v) {
+ this.direction.copy(v).sub(this.origin).normalize();
+ return this;
+ };
+
+ _proto.recast = function recast(t) {
+ this.origin.copy(this.at(t, _vector$2));
+ return this;
+ };
+
+ _proto.closestPointToPoint = function closestPointToPoint(point, target) {
+ if (target === undefined) {
+ console.warn('THREE.Ray: .closestPointToPoint() target is now required');
+ target = new Vector3();
+ }
+
+ target.subVectors(point, this.origin);
+ var directionDistance = target.dot(this.direction);
+
+ if (directionDistance < 0) {
+ return target.copy(this.origin);
+ }
+
+ return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
+ };
+
+ _proto.distanceToPoint = function distanceToPoint(point) {
+ return Math.sqrt(this.distanceSqToPoint(point));
+ };
+
+ _proto.distanceSqToPoint = function distanceSqToPoint(point) {
+ var directionDistance = _vector$2.subVectors(point, this.origin).dot(this.direction); // point behind the ray
+
+
+ if (directionDistance < 0) {
+ return this.origin.distanceToSquared(point);
+ }
+
+ _vector$2.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
+
+ return _vector$2.distanceToSquared(point);
+ };
+
+ _proto.distanceSqToSegment = function distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
+ // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
+ // It returns the min distance between the ray and the segment
+ // defined by v0 and v1
+ // It can also set two optional targets :
+ // - The closest point on the ray
+ // - The closest point on the segment
+ _segCenter.copy(v0).add(v1).multiplyScalar(0.5);
+
+ _segDir.copy(v1).sub(v0).normalize();
+
+ _diff.copy(this.origin).sub(_segCenter);
+
+ var segExtent = v0.distanceTo(v1) * 0.5;
+ var a01 = -this.direction.dot(_segDir);
+
+ var b0 = _diff.dot(this.direction);
+
+ var b1 = -_diff.dot(_segDir);
+
+ var c = _diff.lengthSq();
+
+ var det = Math.abs(1 - a01 * a01);
+ var s0, s1, sqrDist, extDet;
+
+ if (det > 0) {
+ // The ray and segment are not parallel.
+ s0 = a01 * b1 - b0;
+ s1 = a01 * b0 - b1;
+ extDet = segExtent * det;
+
+ if (s0 >= 0) {
+ if (s1 >= -extDet) {
+ if (s1 <= extDet) {
+ // region 0
+ // Minimum at interior points of ray and segment.
+ var invDet = 1 / det;
+ s0 *= invDet;
+ s1 *= invDet;
+ sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
+ } else {
+ // region 1
+ s1 = segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ } else {
+ // region 5
+ s1 = -segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ } else {
+ if (s1 <= -extDet) {
+ // region 4
+ s0 = Math.max(0, -(-a01 * segExtent + b0));
+ s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ } else if (s1 <= extDet) {
+ // region 3
+ s0 = 0;
+ s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = s1 * (s1 + 2 * b1) + c;
+ } else {
+ // region 2
+ s0 = Math.max(0, -(a01 * segExtent + b0));
+ s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+ }
+ } else {
+ // Ray and segment are parallel.
+ s1 = a01 > 0 ? -segExtent : segExtent;
+ s0 = Math.max(0, -(a01 * s1 + b0));
+ sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
+ }
+
+ if (optionalPointOnRay) {
+ optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
+ }
+
+ if (optionalPointOnSegment) {
+ optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
+ }
+
+ return sqrDist;
+ };
+
+ _proto.intersectSphere = function intersectSphere(sphere, target) {
+ _vector$2.subVectors(sphere.center, this.origin);
+
+ var tca = _vector$2.dot(this.direction);
+
+ var d2 = _vector$2.dot(_vector$2) - tca * tca;
+ var radius2 = sphere.radius * sphere.radius;
+ if (d2 > radius2) return null;
+ var thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
+
+ var t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
+
+ var t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
+
+ if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
+ // if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
+ // in order to always return an intersect point that is in front of the ray.
+
+ if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
+
+ return this.at(t0, target);
+ };
+
+ _proto.intersectsSphere = function intersectsSphere(sphere) {
+ return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
+ };
+
+ _proto.distanceToPlane = function distanceToPlane(plane) {
+ var denominator = plane.normal.dot(this.direction);
+
+ if (denominator === 0) {
+ // line is coplanar, return origin
+ if (plane.distanceToPoint(this.origin) === 0) {
+ return 0;
+ } // Null is preferable to undefined since undefined means.... it is undefined
+
+
+ return null;
+ }
+
+ var t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
+
+ return t >= 0 ? t : null;
+ };
+
+ _proto.intersectPlane = function intersectPlane(plane, target) {
+ var t = this.distanceToPlane(plane);
+
+ if (t === null) {
+ return null;
+ }
+
+ return this.at(t, target);
+ };
+
+ _proto.intersectsPlane = function intersectsPlane(plane) {
+ // check if the ray lies on the plane first
+ var distToPoint = plane.distanceToPoint(this.origin);
+
+ if (distToPoint === 0) {
+ return true;
+ }
+
+ var denominator = plane.normal.dot(this.direction);
+
+ if (denominator * distToPoint < 0) {
+ return true;
+ } // ray origin is behind the plane (and is pointing behind it)
+
+
+ return false;
+ };
+
+ _proto.intersectBox = function intersectBox(box, target) {
+ var tmin, tmax, tymin, tymax, tzmin, tzmax;
+ var invdirx = 1 / this.direction.x,
+ invdiry = 1 / this.direction.y,
+ invdirz = 1 / this.direction.z;
+ var origin = this.origin;
+
+ if (invdirx >= 0) {
+ tmin = (box.min.x - origin.x) * invdirx;
+ tmax = (box.max.x - origin.x) * invdirx;
+ } else {
+ tmin = (box.max.x - origin.x) * invdirx;
+ tmax = (box.min.x - origin.x) * invdirx;
+ }
+
+ if (invdiry >= 0) {
+ tymin = (box.min.y - origin.y) * invdiry;
+ tymax = (box.max.y - origin.y) * invdiry;
+ } else {
+ tymin = (box.max.y - origin.y) * invdiry;
+ tymax = (box.min.y - origin.y) * invdiry;
+ }
+
+ if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
+ // (result of 0 * Infinity). x !== x returns true if x is NaN
+
+ if (tymin > tmin || tmin !== tmin) tmin = tymin;
+ if (tymax < tmax || tmax !== tmax) tmax = tymax;
+
+ if (invdirz >= 0) {
+ tzmin = (box.min.z - origin.z) * invdirz;
+ tzmax = (box.max.z - origin.z) * invdirz;
+ } else {
+ tzmin = (box.max.z - origin.z) * invdirz;
+ tzmax = (box.min.z - origin.z) * invdirz;
+ }
+
+ if (tmin > tzmax || tzmin > tmax) return null;
+ if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
+ if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
+
+ if (tmax < 0) return null;
+ return this.at(tmin >= 0 ? tmin : tmax, target);
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ return this.intersectBox(box, _vector$2) !== null;
+ };
+
+ _proto.intersectTriangle = function intersectTriangle(a, b, c, backfaceCulling, target) {
+ // Compute the offset origin, edges, and normal.
+ // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
+ _edge1.subVectors(b, a);
+
+ _edge2.subVectors(c, a);
+
+ _normal.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
+ // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
+ // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
+ // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
+ // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
+
+
+ var DdN = this.direction.dot(_normal);
+ var sign;
+
+ if (DdN > 0) {
+ if (backfaceCulling) return null;
+ sign = 1;
+ } else if (DdN < 0) {
+ sign = -1;
+ DdN = -DdN;
+ } else {
+ return null;
+ }
+
+ _diff.subVectors(this.origin, a);
+
+ var DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
+
+ if (DdQxE2 < 0) {
+ return null;
+ }
+
+ var DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
+
+ if (DdE1xQ < 0) {
+ return null;
+ } // b1+b2 > 1, no intersection
+
+
+ if (DdQxE2 + DdE1xQ > DdN) {
+ return null;
+ } // Line intersects triangle, check if ray does.
+
+
+ var QdN = -sign * _diff.dot(_normal); // t < 0, no intersection
+
+
+ if (QdN < 0) {
+ return null;
+ } // Ray intersects triangle.
+
+
+ return this.at(QdN / DdN, target);
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(matrix4) {
+ this.origin.applyMatrix4(matrix4);
+ this.direction.transformDirection(matrix4);
+ return this;
+ };
+
+ _proto.equals = function equals(ray) {
+ return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
+ };
+
+ return Ray;
+ }();
+
+ var Matrix4 = /*#__PURE__*/function () {
+ function Matrix4() {
+ Object.defineProperty(this, 'isMatrix4', {
+ value: true
+ });
+ this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
+
+ if (arguments.length > 0) {
+ console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
+ }
+ }
+
+ var _proto = Matrix4.prototype;
+
+ _proto.set = function set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
+ var te = this.elements;
+ te[0] = n11;
+ te[4] = n12;
+ te[8] = n13;
+ te[12] = n14;
+ te[1] = n21;
+ te[5] = n22;
+ te[9] = n23;
+ te[13] = n24;
+ te[2] = n31;
+ te[6] = n32;
+ te[10] = n33;
+ te[14] = n34;
+ te[3] = n41;
+ te[7] = n42;
+ te[11] = n43;
+ te[15] = n44;
+ return this;
+ };
+
+ _proto.identity = function identity() {
+ this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new Matrix4().fromArray(this.elements);
+ };
+
+ _proto.copy = function copy(m) {
+ var te = this.elements;
+ var me = m.elements;
+ te[0] = me[0];
+ te[1] = me[1];
+ te[2] = me[2];
+ te[3] = me[3];
+ te[4] = me[4];
+ te[5] = me[5];
+ te[6] = me[6];
+ te[7] = me[7];
+ te[8] = me[8];
+ te[9] = me[9];
+ te[10] = me[10];
+ te[11] = me[11];
+ te[12] = me[12];
+ te[13] = me[13];
+ te[14] = me[14];
+ te[15] = me[15];
+ return this;
+ };
+
+ _proto.copyPosition = function copyPosition(m) {
+ var te = this.elements,
+ me = m.elements;
+ te[12] = me[12];
+ te[13] = me[13];
+ te[14] = me[14];
+ return this;
+ };
+
+ _proto.setFromMatrix3 = function setFromMatrix3(m) {
+ var me = m.elements;
+ this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.extractBasis = function extractBasis(xAxis, yAxis, zAxis) {
+ xAxis.setFromMatrixColumn(this, 0);
+ yAxis.setFromMatrixColumn(this, 1);
+ zAxis.setFromMatrixColumn(this, 2);
+ return this;
+ };
+
+ _proto.makeBasis = function makeBasis(xAxis, yAxis, zAxis) {
+ this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.extractRotation = function extractRotation(m) {
+ // this method does not support reflection matrices
+ var te = this.elements;
+ var me = m.elements;
+
+ var scaleX = 1 / _v1$1.setFromMatrixColumn(m, 0).length();
+
+ var scaleY = 1 / _v1$1.setFromMatrixColumn(m, 1).length();
+
+ var scaleZ = 1 / _v1$1.setFromMatrixColumn(m, 2).length();
+
+ te[0] = me[0] * scaleX;
+ te[1] = me[1] * scaleX;
+ te[2] = me[2] * scaleX;
+ te[3] = 0;
+ te[4] = me[4] * scaleY;
+ te[5] = me[5] * scaleY;
+ te[6] = me[6] * scaleY;
+ te[7] = 0;
+ te[8] = me[8] * scaleZ;
+ te[9] = me[9] * scaleZ;
+ te[10] = me[10] * scaleZ;
+ te[11] = 0;
+ te[12] = 0;
+ te[13] = 0;
+ te[14] = 0;
+ te[15] = 1;
+ return this;
+ };
+
+ _proto.makeRotationFromEuler = function makeRotationFromEuler(euler) {
+ if (!(euler && euler.isEuler)) {
+ console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
+ }
+
+ var te = this.elements;
+ var x = euler.x,
+ y = euler.y,
+ z = euler.z;
+ var a = Math.cos(x),
+ b = Math.sin(x);
+ var c = Math.cos(y),
+ d = Math.sin(y);
+ var e = Math.cos(z),
+ f = Math.sin(z);
+
+ if (euler.order === 'XYZ') {
+ var ae = a * e,
+ af = a * f,
+ be = b * e,
+ bf = b * f;
+ te[0] = c * e;
+ te[4] = -c * f;
+ te[8] = d;
+ te[1] = af + be * d;
+ te[5] = ae - bf * d;
+ te[9] = -b * c;
+ te[2] = bf - ae * d;
+ te[6] = be + af * d;
+ te[10] = a * c;
+ } else if (euler.order === 'YXZ') {
+ var ce = c * e,
+ cf = c * f,
+ de = d * e,
+ df = d * f;
+ te[0] = ce + df * b;
+ te[4] = de * b - cf;
+ te[8] = a * d;
+ te[1] = a * f;
+ te[5] = a * e;
+ te[9] = -b;
+ te[2] = cf * b - de;
+ te[6] = df + ce * b;
+ te[10] = a * c;
+ } else if (euler.order === 'ZXY') {
+ var _ce = c * e,
+ _cf = c * f,
+ _de = d * e,
+ _df = d * f;
+
+ te[0] = _ce - _df * b;
+ te[4] = -a * f;
+ te[8] = _de + _cf * b;
+ te[1] = _cf + _de * b;
+ te[5] = a * e;
+ te[9] = _df - _ce * b;
+ te[2] = -a * d;
+ te[6] = b;
+ te[10] = a * c;
+ } else if (euler.order === 'ZYX') {
+ var _ae = a * e,
+ _af = a * f,
+ _be = b * e,
+ _bf = b * f;
+
+ te[0] = c * e;
+ te[4] = _be * d - _af;
+ te[8] = _ae * d + _bf;
+ te[1] = c * f;
+ te[5] = _bf * d + _ae;
+ te[9] = _af * d - _be;
+ te[2] = -d;
+ te[6] = b * c;
+ te[10] = a * c;
+ } else if (euler.order === 'YZX') {
+ var ac = a * c,
+ ad = a * d,
+ bc = b * c,
+ bd = b * d;
+ te[0] = c * e;
+ te[4] = bd - ac * f;
+ te[8] = bc * f + ad;
+ te[1] = f;
+ te[5] = a * e;
+ te[9] = -b * e;
+ te[2] = -d * e;
+ te[6] = ad * f + bc;
+ te[10] = ac - bd * f;
+ } else if (euler.order === 'XZY') {
+ var _ac = a * c,
+ _ad = a * d,
+ _bc = b * c,
+ _bd = b * d;
+
+ te[0] = c * e;
+ te[4] = -f;
+ te[8] = d * e;
+ te[1] = _ac * f + _bd;
+ te[5] = a * e;
+ te[9] = _ad * f - _bc;
+ te[2] = _bc * f - _ad;
+ te[6] = b * e;
+ te[10] = _bd * f + _ac;
+ } // bottom row
+
+
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = 0; // last column
+
+ te[12] = 0;
+ te[13] = 0;
+ te[14] = 0;
+ te[15] = 1;
+ return this;
+ };
+
+ _proto.makeRotationFromQuaternion = function makeRotationFromQuaternion(q) {
+ return this.compose(_zero, q, _one);
+ };
+
+ _proto.lookAt = function lookAt(eye, target, up) {
+ var te = this.elements;
+
+ _z.subVectors(eye, target);
+
+ if (_z.lengthSq() === 0) {
+ // eye and target are in the same position
+ _z.z = 1;
+ }
+
+ _z.normalize();
+
+ _x.crossVectors(up, _z);
+
+ if (_x.lengthSq() === 0) {
+ // up and z are parallel
+ if (Math.abs(up.z) === 1) {
+ _z.x += 0.0001;
+ } else {
+ _z.z += 0.0001;
+ }
+
+ _z.normalize();
+
+ _x.crossVectors(up, _z);
+ }
+
+ _x.normalize();
+
+ _y.crossVectors(_z, _x);
+
+ te[0] = _x.x;
+ te[4] = _y.x;
+ te[8] = _z.x;
+ te[1] = _x.y;
+ te[5] = _y.y;
+ te[9] = _z.y;
+ te[2] = _x.z;
+ te[6] = _y.z;
+ te[10] = _z.z;
+ return this;
+ };
+
+ _proto.multiply = function multiply(m, n) {
+ if (n !== undefined) {
+ console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
+ return this.multiplyMatrices(m, n);
+ }
+
+ return this.multiplyMatrices(this, m);
+ };
+
+ _proto.premultiply = function premultiply(m) {
+ return this.multiplyMatrices(m, this);
+ };
+
+ _proto.multiplyMatrices = function multiplyMatrices(a, b) {
+ var ae = a.elements;
+ var be = b.elements;
+ var te = this.elements;
+ var a11 = ae[0],
+ a12 = ae[4],
+ a13 = ae[8],
+ a14 = ae[12];
+ var a21 = ae[1],
+ a22 = ae[5],
+ a23 = ae[9],
+ a24 = ae[13];
+ var a31 = ae[2],
+ a32 = ae[6],
+ a33 = ae[10],
+ a34 = ae[14];
+ var a41 = ae[3],
+ a42 = ae[7],
+ a43 = ae[11],
+ a44 = ae[15];
+ var b11 = be[0],
+ b12 = be[4],
+ b13 = be[8],
+ b14 = be[12];
+ var b21 = be[1],
+ b22 = be[5],
+ b23 = be[9],
+ b24 = be[13];
+ var b31 = be[2],
+ b32 = be[6],
+ b33 = be[10],
+ b34 = be[14];
+ var b41 = be[3],
+ b42 = be[7],
+ b43 = be[11],
+ b44 = be[15];
+ te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
+ te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
+ te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
+ te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
+ te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
+ te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
+ te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
+ te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
+ te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
+ te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
+ te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
+ te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
+ te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
+ te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
+ te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
+ te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
+ return this;
+ };
+
+ _proto.multiplyScalar = function multiplyScalar(s) {
+ var te = this.elements;
+ te[0] *= s;
+ te[4] *= s;
+ te[8] *= s;
+ te[12] *= s;
+ te[1] *= s;
+ te[5] *= s;
+ te[9] *= s;
+ te[13] *= s;
+ te[2] *= s;
+ te[6] *= s;
+ te[10] *= s;
+ te[14] *= s;
+ te[3] *= s;
+ te[7] *= s;
+ te[11] *= s;
+ te[15] *= s;
+ return this;
+ };
+
+ _proto.determinant = function determinant() {
+ var te = this.elements;
+ var n11 = te[0],
+ n12 = te[4],
+ n13 = te[8],
+ n14 = te[12];
+ var n21 = te[1],
+ n22 = te[5],
+ n23 = te[9],
+ n24 = te[13];
+ var n31 = te[2],
+ n32 = te[6],
+ n33 = te[10],
+ n34 = te[14];
+ var n41 = te[3],
+ n42 = te[7],
+ n43 = te[11],
+ n44 = te[15]; //TODO: make this more efficient
+ //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
+
+ return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
+ };
+
+ _proto.transpose = function transpose() {
+ var te = this.elements;
+ var tmp;
+ tmp = te[1];
+ te[1] = te[4];
+ te[4] = tmp;
+ tmp = te[2];
+ te[2] = te[8];
+ te[8] = tmp;
+ tmp = te[6];
+ te[6] = te[9];
+ te[9] = tmp;
+ tmp = te[3];
+ te[3] = te[12];
+ te[12] = tmp;
+ tmp = te[7];
+ te[7] = te[13];
+ te[13] = tmp;
+ tmp = te[11];
+ te[11] = te[14];
+ te[14] = tmp;
+ return this;
+ };
+
+ _proto.setPosition = function setPosition(x, y, z) {
+ var te = this.elements;
+
+ if (x.isVector3) {
+ te[12] = x.x;
+ te[13] = x.y;
+ te[14] = x.z;
+ } else {
+ te[12] = x;
+ te[13] = y;
+ te[14] = z;
+ }
+
+ return this;
+ };
+
+ _proto.invert = function invert() {
+ // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
+ var te = this.elements,
+ n11 = te[0],
+ n21 = te[1],
+ n31 = te[2],
+ n41 = te[3],
+ n12 = te[4],
+ n22 = te[5],
+ n32 = te[6],
+ n42 = te[7],
+ n13 = te[8],
+ n23 = te[9],
+ n33 = te[10],
+ n43 = te[11],
+ n14 = te[12],
+ n24 = te[13],
+ n34 = te[14],
+ n44 = te[15],
+ t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
+ t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
+ t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
+ t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
+ var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
+ if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+ var detInv = 1 / det;
+ te[0] = t11 * detInv;
+ te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
+ te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
+ te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
+ te[4] = t12 * detInv;
+ te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
+ te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
+ te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
+ te[8] = t13 * detInv;
+ te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
+ te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
+ te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
+ te[12] = t14 * detInv;
+ te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
+ te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
+ te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
+ return this;
+ };
+
+ _proto.scale = function scale(v) {
+ var te = this.elements;
+ var x = v.x,
+ y = v.y,
+ z = v.z;
+ te[0] *= x;
+ te[4] *= y;
+ te[8] *= z;
+ te[1] *= x;
+ te[5] *= y;
+ te[9] *= z;
+ te[2] *= x;
+ te[6] *= y;
+ te[10] *= z;
+ te[3] *= x;
+ te[7] *= y;
+ te[11] *= z;
+ return this;
+ };
+
+ _proto.getMaxScaleOnAxis = function getMaxScaleOnAxis() {
+ var te = this.elements;
+ var scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
+ var scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
+ var scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
+ return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
+ };
+
+ _proto.makeTranslation = function makeTranslation(x, y, z) {
+ this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.makeRotationX = function makeRotationX(theta) {
+ var c = Math.cos(theta),
+ s = Math.sin(theta);
+ this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.makeRotationY = function makeRotationY(theta) {
+ var c = Math.cos(theta),
+ s = Math.sin(theta);
+ this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.makeRotationZ = function makeRotationZ(theta) {
+ var c = Math.cos(theta),
+ s = Math.sin(theta);
+ this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.makeRotationAxis = function makeRotationAxis(axis, angle) {
+ // Based on http://www.gamedev.net/reference/articles/article1199.asp
+ var c = Math.cos(angle);
+ var s = Math.sin(angle);
+ var t = 1 - c;
+ var x = axis.x,
+ y = axis.y,
+ z = axis.z;
+ var tx = t * x,
+ ty = t * y;
+ this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.makeScale = function makeScale(x, y, z) {
+ this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.makeShear = function makeShear(x, y, z) {
+ this.set(1, y, z, 0, x, 1, z, 0, x, y, 1, 0, 0, 0, 0, 1);
+ return this;
+ };
+
+ _proto.compose = function compose(position, quaternion, scale) {
+ var te = this.elements;
+ var x = quaternion._x,
+ y = quaternion._y,
+ z = quaternion._z,
+ w = quaternion._w;
+ var x2 = x + x,
+ y2 = y + y,
+ z2 = z + z;
+ var xx = x * x2,
+ xy = x * y2,
+ xz = x * z2;
+ var yy = y * y2,
+ yz = y * z2,
+ zz = z * z2;
+ var wx = w * x2,
+ wy = w * y2,
+ wz = w * z2;
+ var sx = scale.x,
+ sy = scale.y,
+ sz = scale.z;
+ te[0] = (1 - (yy + zz)) * sx;
+ te[1] = (xy + wz) * sx;
+ te[2] = (xz - wy) * sx;
+ te[3] = 0;
+ te[4] = (xy - wz) * sy;
+ te[5] = (1 - (xx + zz)) * sy;
+ te[6] = (yz + wx) * sy;
+ te[7] = 0;
+ te[8] = (xz + wy) * sz;
+ te[9] = (yz - wx) * sz;
+ te[10] = (1 - (xx + yy)) * sz;
+ te[11] = 0;
+ te[12] = position.x;
+ te[13] = position.y;
+ te[14] = position.z;
+ te[15] = 1;
+ return this;
+ };
+
+ _proto.decompose = function decompose(position, quaternion, scale) {
+ var te = this.elements;
+
+ var sx = _v1$1.set(te[0], te[1], te[2]).length();
+
+ var sy = _v1$1.set(te[4], te[5], te[6]).length();
+
+ var sz = _v1$1.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
+
+
+ var det = this.determinant();
+ if (det < 0) sx = -sx;
+ position.x = te[12];
+ position.y = te[13];
+ position.z = te[14]; // scale the rotation part
+
+ _m1.copy(this);
+
+ var invSX = 1 / sx;
+ var invSY = 1 / sy;
+ var invSZ = 1 / sz;
+ _m1.elements[0] *= invSX;
+ _m1.elements[1] *= invSX;
+ _m1.elements[2] *= invSX;
+ _m1.elements[4] *= invSY;
+ _m1.elements[5] *= invSY;
+ _m1.elements[6] *= invSY;
+ _m1.elements[8] *= invSZ;
+ _m1.elements[9] *= invSZ;
+ _m1.elements[10] *= invSZ;
+ quaternion.setFromRotationMatrix(_m1);
+ scale.x = sx;
+ scale.y = sy;
+ scale.z = sz;
+ return this;
+ };
+
+ _proto.makePerspective = function makePerspective(left, right, top, bottom, near, far) {
+ if (far === undefined) {
+ console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
+ }
+
+ var te = this.elements;
+ var x = 2 * near / (right - left);
+ var y = 2 * near / (top - bottom);
+ var a = (right + left) / (right - left);
+ var b = (top + bottom) / (top - bottom);
+ var c = -(far + near) / (far - near);
+ var d = -2 * far * near / (far - near);
+ te[0] = x;
+ te[4] = 0;
+ te[8] = a;
+ te[12] = 0;
+ te[1] = 0;
+ te[5] = y;
+ te[9] = b;
+ te[13] = 0;
+ te[2] = 0;
+ te[6] = 0;
+ te[10] = c;
+ te[14] = d;
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = -1;
+ te[15] = 0;
+ return this;
+ };
+
+ _proto.makeOrthographic = function makeOrthographic(left, right, top, bottom, near, far) {
+ var te = this.elements;
+ var w = 1.0 / (right - left);
+ var h = 1.0 / (top - bottom);
+ var p = 1.0 / (far - near);
+ var x = (right + left) * w;
+ var y = (top + bottom) * h;
+ var z = (far + near) * p;
+ te[0] = 2 * w;
+ te[4] = 0;
+ te[8] = 0;
+ te[12] = -x;
+ te[1] = 0;
+ te[5] = 2 * h;
+ te[9] = 0;
+ te[13] = -y;
+ te[2] = 0;
+ te[6] = 0;
+ te[10] = -2 * p;
+ te[14] = -z;
+ te[3] = 0;
+ te[7] = 0;
+ te[11] = 0;
+ te[15] = 1;
+ return this;
+ };
+
+ _proto.equals = function equals(matrix) {
+ var te = this.elements;
+ var me = matrix.elements;
+
+ for (var i = 0; i < 16; i++) {
+ if (te[i] !== me[i]) return false;
+ }
+
+ return true;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ for (var i = 0; i < 16; i++) {
+ this.elements[i] = array[i + offset];
+ }
+
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ var te = this.elements;
+ array[offset] = te[0];
+ array[offset + 1] = te[1];
+ array[offset + 2] = te[2];
+ array[offset + 3] = te[3];
+ array[offset + 4] = te[4];
+ array[offset + 5] = te[5];
+ array[offset + 6] = te[6];
+ array[offset + 7] = te[7];
+ array[offset + 8] = te[8];
+ array[offset + 9] = te[9];
+ array[offset + 10] = te[10];
+ array[offset + 11] = te[11];
+ array[offset + 12] = te[12];
+ array[offset + 13] = te[13];
+ array[offset + 14] = te[14];
+ array[offset + 15] = te[15];
+ return array;
+ };
+
+ return Matrix4;
+ }();
+
+ var _v1$1 = /*@__PURE__*/new Vector3();
+
+ var _m1 = /*@__PURE__*/new Matrix4();
+
+ var _zero = /*@__PURE__*/new Vector3(0, 0, 0);
+
+ var _one = /*@__PURE__*/new Vector3(1, 1, 1);
+
+ var _x = /*@__PURE__*/new Vector3();
+
+ var _y = /*@__PURE__*/new Vector3();
+
+ var _z = /*@__PURE__*/new Vector3();
+
+ var Euler = /*#__PURE__*/function () {
+ function Euler(x, y, z, order) {
+ if (x === void 0) {
+ x = 0;
+ }
+
+ if (y === void 0) {
+ y = 0;
+ }
+
+ if (z === void 0) {
+ z = 0;
+ }
+
+ if (order === void 0) {
+ order = Euler.DefaultOrder;
+ }
+
+ Object.defineProperty(this, 'isEuler', {
+ value: true
+ });
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._order = order;
+ }
+
+ var _proto = Euler.prototype;
+
+ _proto.set = function set(x, y, z, order) {
+ this._x = x;
+ this._y = y;
+ this._z = z;
+ this._order = order || this._order;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor(this._x, this._y, this._z, this._order);
+ };
+
+ _proto.copy = function copy(euler) {
+ this._x = euler._x;
+ this._y = euler._y;
+ this._z = euler._z;
+ this._order = euler._order;
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.setFromRotationMatrix = function setFromRotationMatrix(m, order, update) {
+ var clamp = MathUtils.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+
+ var te = m.elements;
+ var m11 = te[0],
+ m12 = te[4],
+ m13 = te[8];
+ var m21 = te[1],
+ m22 = te[5],
+ m23 = te[9];
+ var m31 = te[2],
+ m32 = te[6],
+ m33 = te[10];
+ order = order || this._order;
+
+ switch (order) {
+ case 'XYZ':
+ this._y = Math.asin(clamp(m13, -1, 1));
+
+ if (Math.abs(m13) < 0.9999999) {
+ this._x = Math.atan2(-m23, m33);
+ this._z = Math.atan2(-m12, m11);
+ } else {
+ this._x = Math.atan2(m32, m22);
+ this._z = 0;
+ }
+
+ break;
+
+ case 'YXZ':
+ this._x = Math.asin(-clamp(m23, -1, 1));
+
+ if (Math.abs(m23) < 0.9999999) {
+ this._y = Math.atan2(m13, m33);
+ this._z = Math.atan2(m21, m22);
+ } else {
+ this._y = Math.atan2(-m31, m11);
+ this._z = 0;
+ }
+
+ break;
+
+ case 'ZXY':
+ this._x = Math.asin(clamp(m32, -1, 1));
+
+ if (Math.abs(m32) < 0.9999999) {
+ this._y = Math.atan2(-m31, m33);
+ this._z = Math.atan2(-m12, m22);
+ } else {
+ this._y = 0;
+ this._z = Math.atan2(m21, m11);
+ }
+
+ break;
+
+ case 'ZYX':
+ this._y = Math.asin(-clamp(m31, -1, 1));
+
+ if (Math.abs(m31) < 0.9999999) {
+ this._x = Math.atan2(m32, m33);
+ this._z = Math.atan2(m21, m11);
+ } else {
+ this._x = 0;
+ this._z = Math.atan2(-m12, m22);
+ }
+
+ break;
+
+ case 'YZX':
+ this._z = Math.asin(clamp(m21, -1, 1));
+
+ if (Math.abs(m21) < 0.9999999) {
+ this._x = Math.atan2(-m23, m22);
+ this._y = Math.atan2(-m31, m11);
+ } else {
+ this._x = 0;
+ this._y = Math.atan2(m13, m33);
+ }
+
+ break;
+
+ case 'XZY':
+ this._z = Math.asin(-clamp(m12, -1, 1));
+
+ if (Math.abs(m12) < 0.9999999) {
+ this._x = Math.atan2(m32, m22);
+ this._y = Math.atan2(m13, m11);
+ } else {
+ this._x = Math.atan2(-m23, m33);
+ this._y = 0;
+ }
+
+ break;
+
+ default:
+ console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
+ }
+
+ this._order = order;
+ if (update !== false) this._onChangeCallback();
+ return this;
+ };
+
+ _proto.setFromQuaternion = function setFromQuaternion(q, order, update) {
+ _matrix.makeRotationFromQuaternion(q);
+
+ return this.setFromRotationMatrix(_matrix, order, update);
+ };
+
+ _proto.setFromVector3 = function setFromVector3(v, order) {
+ return this.set(v.x, v.y, v.z, order || this._order);
+ };
+
+ _proto.reorder = function reorder(newOrder) {
+ // WARNING: this discards revolution information -bhouston
+ _quaternion$1.setFromEuler(this);
+
+ return this.setFromQuaternion(_quaternion$1, newOrder);
+ };
+
+ _proto.equals = function equals(euler) {
+ return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
+ };
+
+ _proto.fromArray = function fromArray(array) {
+ this._x = array[0];
+ this._y = array[1];
+ this._z = array[2];
+ if (array[3] !== undefined) this._order = array[3];
+
+ this._onChangeCallback();
+
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ array[offset] = this._x;
+ array[offset + 1] = this._y;
+ array[offset + 2] = this._z;
+ array[offset + 3] = this._order;
+ return array;
+ };
+
+ _proto.toVector3 = function toVector3(optionalResult) {
+ if (optionalResult) {
+ return optionalResult.set(this._x, this._y, this._z);
+ } else {
+ return new Vector3(this._x, this._y, this._z);
+ }
+ };
+
+ _proto._onChange = function _onChange(callback) {
+ this._onChangeCallback = callback;
+ return this;
+ };
+
+ _proto._onChangeCallback = function _onChangeCallback() {};
+
+ _createClass(Euler, [{
+ key: "x",
+ get: function get() {
+ return this._x;
+ },
+ set: function set(value) {
+ this._x = value;
+
+ this._onChangeCallback();
+ }
+ }, {
+ key: "y",
+ get: function get() {
+ return this._y;
+ },
+ set: function set(value) {
+ this._y = value;
+
+ this._onChangeCallback();
+ }
+ }, {
+ key: "z",
+ get: function get() {
+ return this._z;
+ },
+ set: function set(value) {
+ this._z = value;
+
+ this._onChangeCallback();
+ }
+ }, {
+ key: "order",
+ get: function get() {
+ return this._order;
+ },
+ set: function set(value) {
+ this._order = value;
+
+ this._onChangeCallback();
+ }
+ }]);
+
+ return Euler;
+ }();
+
+ Euler.DefaultOrder = 'XYZ';
+ Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
+
+ var _matrix = /*@__PURE__*/new Matrix4();
+
+ var _quaternion$1 = /*@__PURE__*/new Quaternion();
+
+ var Layers = /*#__PURE__*/function () {
+ function Layers() {
+ this.mask = 1 | 0;
+ }
+
+ var _proto = Layers.prototype;
+
+ _proto.set = function set(channel) {
+ this.mask = 1 << channel | 0;
+ };
+
+ _proto.enable = function enable(channel) {
+ this.mask |= 1 << channel | 0;
+ };
+
+ _proto.enableAll = function enableAll() {
+ this.mask = 0xffffffff | 0;
+ };
+
+ _proto.toggle = function toggle(channel) {
+ this.mask ^= 1 << channel | 0;
+ };
+
+ _proto.disable = function disable(channel) {
+ this.mask &= ~(1 << channel | 0);
+ };
+
+ _proto.disableAll = function disableAll() {
+ this.mask = 0;
+ };
+
+ _proto.test = function test(layers) {
+ return (this.mask & layers.mask) !== 0;
+ };
+
+ return Layers;
+ }();
+
+ var _object3DId = 0;
+
+ var _v1$2 = new Vector3();
+
+ var _q1 = new Quaternion();
+
+ var _m1$1 = new Matrix4();
+
+ var _target = new Vector3();
+
+ var _position = new Vector3();
+
+ var _scale = new Vector3();
+
+ var _quaternion$2 = new Quaternion();
+
+ var _xAxis = new Vector3(1, 0, 0);
+
+ var _yAxis = new Vector3(0, 1, 0);
+
+ var _zAxis = new Vector3(0, 0, 1);
+
+ var _addedEvent = {
+ type: 'added'
+ };
+ var _removedEvent = {
+ type: 'removed'
+ };
+
+ function Object3D() {
+ Object.defineProperty(this, 'id', {
+ value: _object3DId++
+ });
+ this.uuid = MathUtils.generateUUID();
+ this.name = '';
+ this.type = 'Object3D';
+ this.parent = null;
+ this.children = [];
+ this.up = Object3D.DefaultUp.clone();
+ var position = new Vector3();
+ var rotation = new Euler();
+ var quaternion = new Quaternion();
+ var scale = new Vector3(1, 1, 1);
+
+ function onRotationChange() {
+ quaternion.setFromEuler(rotation, false);
+ }
+
+ function onQuaternionChange() {
+ rotation.setFromQuaternion(quaternion, undefined, false);
+ }
+
+ rotation._onChange(onRotationChange);
+
+ quaternion._onChange(onQuaternionChange);
+
+ Object.defineProperties(this, {
+ position: {
+ configurable: true,
+ enumerable: true,
+ value: position
+ },
+ rotation: {
+ configurable: true,
+ enumerable: true,
+ value: rotation
+ },
+ quaternion: {
+ configurable: true,
+ enumerable: true,
+ value: quaternion
+ },
+ scale: {
+ configurable: true,
+ enumerable: true,
+ value: scale
+ },
+ modelViewMatrix: {
+ value: new Matrix4()
+ },
+ normalMatrix: {
+ value: new Matrix3()
+ }
+ });
+ this.matrix = new Matrix4();
+ this.matrixWorld = new Matrix4();
+ this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
+ this.matrixWorldNeedsUpdate = false;
+ this.layers = new Layers();
+ this.visible = true;
+ this.castShadow = false;
+ this.receiveShadow = false;
+ this.frustumCulled = true;
+ this.renderOrder = 0;
+ this.animations = [];
+ this.userData = {};
+ }
+
+ Object3D.DefaultUp = new Vector3(0, 1, 0);
+ Object3D.DefaultMatrixAutoUpdate = true;
+ Object3D.prototype = Object.assign(Object.create(EventDispatcher.prototype), {
+ constructor: Object3D,
+ isObject3D: true,
+ onBeforeRender: function onBeforeRender() {},
+ onAfterRender: function onAfterRender() {},
+ applyMatrix4: function applyMatrix4(matrix) {
+ if (this.matrixAutoUpdate) this.updateMatrix();
+ this.matrix.premultiply(matrix);
+ this.matrix.decompose(this.position, this.quaternion, this.scale);
+ },
+ applyQuaternion: function applyQuaternion(q) {
+ this.quaternion.premultiply(q);
+ return this;
+ },
+ setRotationFromAxisAngle: function setRotationFromAxisAngle(axis, angle) {
+ // assumes axis is normalized
+ this.quaternion.setFromAxisAngle(axis, angle);
+ },
+ setRotationFromEuler: function setRotationFromEuler(euler) {
+ this.quaternion.setFromEuler(euler, true);
+ },
+ setRotationFromMatrix: function setRotationFromMatrix(m) {
+ // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+ this.quaternion.setFromRotationMatrix(m);
+ },
+ setRotationFromQuaternion: function setRotationFromQuaternion(q) {
+ // assumes q is normalized
+ this.quaternion.copy(q);
+ },
+ rotateOnAxis: function rotateOnAxis(axis, angle) {
+ // rotate object on axis in object space
+ // axis is assumed to be normalized
+ _q1.setFromAxisAngle(axis, angle);
+
+ this.quaternion.multiply(_q1);
+ return this;
+ },
+ rotateOnWorldAxis: function rotateOnWorldAxis(axis, angle) {
+ // rotate object on axis in world space
+ // axis is assumed to be normalized
+ // method assumes no rotated parent
+ _q1.setFromAxisAngle(axis, angle);
+
+ this.quaternion.premultiply(_q1);
+ return this;
+ },
+ rotateX: function rotateX(angle) {
+ return this.rotateOnAxis(_xAxis, angle);
+ },
+ rotateY: function rotateY(angle) {
+ return this.rotateOnAxis(_yAxis, angle);
+ },
+ rotateZ: function rotateZ(angle) {
+ return this.rotateOnAxis(_zAxis, angle);
+ },
+ translateOnAxis: function translateOnAxis(axis, distance) {
+ // translate object by distance along axis in object space
+ // axis is assumed to be normalized
+ _v1$2.copy(axis).applyQuaternion(this.quaternion);
+
+ this.position.add(_v1$2.multiplyScalar(distance));
+ return this;
+ },
+ translateX: function translateX(distance) {
+ return this.translateOnAxis(_xAxis, distance);
+ },
+ translateY: function translateY(distance) {
+ return this.translateOnAxis(_yAxis, distance);
+ },
+ translateZ: function translateZ(distance) {
+ return this.translateOnAxis(_zAxis, distance);
+ },
+ localToWorld: function localToWorld(vector) {
+ return vector.applyMatrix4(this.matrixWorld);
+ },
+ worldToLocal: function worldToLocal(vector) {
+ return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
+ },
+ lookAt: function lookAt(x, y, z) {
+ // This method does not support objects having non-uniformly-scaled parent(s)
+ if (x.isVector3) {
+ _target.copy(x);
+ } else {
+ _target.set(x, y, z);
+ }
+
+ var parent = this.parent;
+ this.updateWorldMatrix(true, false);
+
+ _position.setFromMatrixPosition(this.matrixWorld);
+
+ if (this.isCamera || this.isLight) {
+ _m1$1.lookAt(_position, _target, this.up);
+ } else {
+ _m1$1.lookAt(_target, _position, this.up);
+ }
+
+ this.quaternion.setFromRotationMatrix(_m1$1);
+
+ if (parent) {
+ _m1$1.extractRotation(parent.matrixWorld);
+
+ _q1.setFromRotationMatrix(_m1$1);
+
+ this.quaternion.premultiply(_q1.invert());
+ }
+ },
+ add: function add(object) {
+ if (arguments.length > 1) {
+ for (var i = 0; i < arguments.length; i++) {
+ this.add(arguments[i]);
+ }
+
+ return this;
+ }
+
+ if (object === this) {
+ console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
+ return this;
+ }
+
+ if (object && object.isObject3D) {
+ if (object.parent !== null) {
+ object.parent.remove(object);
+ }
+
+ object.parent = this;
+ this.children.push(object);
+ object.dispatchEvent(_addedEvent);
+ } else {
+ console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
+ }
+
+ return this;
+ },
+ remove: function remove(object) {
+ if (arguments.length > 1) {
+ for (var i = 0; i < arguments.length; i++) {
+ this.remove(arguments[i]);
+ }
+
+ return this;
+ }
+
+ var index = this.children.indexOf(object);
+
+ if (index !== -1) {
+ object.parent = null;
+ this.children.splice(index, 1);
+ object.dispatchEvent(_removedEvent);
+ }
+
+ return this;
+ },
+ clear: function clear() {
+ for (var i = 0; i < this.children.length; i++) {
+ var object = this.children[i];
+ object.parent = null;
+ object.dispatchEvent(_removedEvent);
+ }
+
+ this.children.length = 0;
+ return this;
+ },
+ attach: function attach(object) {
+ // adds object as a child of this, while maintaining the object's world transform
+ this.updateWorldMatrix(true, false);
+
+ _m1$1.copy(this.matrixWorld).invert();
+
+ if (object.parent !== null) {
+ object.parent.updateWorldMatrix(true, false);
+
+ _m1$1.multiply(object.parent.matrixWorld);
+ }
+
+ object.applyMatrix4(_m1$1);
+ object.updateWorldMatrix(false, false);
+ this.add(object);
+ return this;
+ },
+ getObjectById: function getObjectById(id) {
+ return this.getObjectByProperty('id', id);
+ },
+ getObjectByName: function getObjectByName(name) {
+ return this.getObjectByProperty('name', name);
+ },
+ getObjectByProperty: function getObjectByProperty(name, value) {
+ if (this[name] === value) return this;
+
+ for (var i = 0, l = this.children.length; i < l; i++) {
+ var child = this.children[i];
+ var object = child.getObjectByProperty(name, value);
+
+ if (object !== undefined) {
+ return object;
+ }
+ }
+
+ return undefined;
+ },
+ getWorldPosition: function getWorldPosition(target) {
+ if (target === undefined) {
+ console.warn('THREE.Object3D: .getWorldPosition() target is now required');
+ target = new Vector3();
+ }
+
+ this.updateWorldMatrix(true, false);
+ return target.setFromMatrixPosition(this.matrixWorld);
+ },
+ getWorldQuaternion: function getWorldQuaternion(target) {
+ if (target === undefined) {
+ console.warn('THREE.Object3D: .getWorldQuaternion() target is now required');
+ target = new Quaternion();
+ }
+
+ this.updateWorldMatrix(true, false);
+ this.matrixWorld.decompose(_position, target, _scale);
+ return target;
+ },
+ getWorldScale: function getWorldScale(target) {
+ if (target === undefined) {
+ console.warn('THREE.Object3D: .getWorldScale() target is now required');
+ target = new Vector3();
+ }
+
+ this.updateWorldMatrix(true, false);
+ this.matrixWorld.decompose(_position, _quaternion$2, target);
+ return target;
+ },
+ getWorldDirection: function getWorldDirection(target) {
+ if (target === undefined) {
+ console.warn('THREE.Object3D: .getWorldDirection() target is now required');
+ target = new Vector3();
+ }
+
+ this.updateWorldMatrix(true, false);
+ var e = this.matrixWorld.elements;
+ return target.set(e[8], e[9], e[10]).normalize();
+ },
+ raycast: function raycast() {},
+ traverse: function traverse(callback) {
+ callback(this);
+ var children = this.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ children[i].traverse(callback);
+ }
+ },
+ traverseVisible: function traverseVisible(callback) {
+ if (this.visible === false) return;
+ callback(this);
+ var children = this.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ children[i].traverseVisible(callback);
+ }
+ },
+ traverseAncestors: function traverseAncestors(callback) {
+ var parent = this.parent;
+
+ if (parent !== null) {
+ callback(parent);
+ parent.traverseAncestors(callback);
+ }
+ },
+ updateMatrix: function updateMatrix() {
+ this.matrix.compose(this.position, this.quaternion, this.scale);
+ this.matrixWorldNeedsUpdate = true;
+ },
+ updateMatrixWorld: function updateMatrixWorld(force) {
+ if (this.matrixAutoUpdate) this.updateMatrix();
+
+ if (this.matrixWorldNeedsUpdate || force) {
+ if (this.parent === null) {
+ this.matrixWorld.copy(this.matrix);
+ } else {
+ this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ }
+
+ this.matrixWorldNeedsUpdate = false;
+ force = true;
+ } // update children
+
+
+ var children = this.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ children[i].updateMatrixWorld(force);
+ }
+ },
+ updateWorldMatrix: function updateWorldMatrix(updateParents, updateChildren) {
+ var parent = this.parent;
+
+ if (updateParents === true && parent !== null) {
+ parent.updateWorldMatrix(true, false);
+ }
+
+ if (this.matrixAutoUpdate) this.updateMatrix();
+
+ if (this.parent === null) {
+ this.matrixWorld.copy(this.matrix);
+ } else {
+ this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
+ } // update children
+
+
+ if (updateChildren === true) {
+ var children = this.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ children[i].updateWorldMatrix(false, true);
+ }
+ }
+ },
+ toJSON: function toJSON(meta) {
+ // meta is a string when called from JSON.stringify
+ var isRootObject = meta === undefined || typeof meta === 'string';
+ var output = {}; // meta is a hash used to collect geometries, materials.
+ // not providing it implies that this is the root object
+ // being serialized.
+
+ if (isRootObject) {
+ // initialize meta obj
+ meta = {
+ geometries: {},
+ materials: {},
+ textures: {},
+ images: {},
+ shapes: {},
+ skeletons: {},
+ animations: {}
+ };
+ output.metadata = {
+ version: 4.5,
+ type: 'Object',
+ generator: 'Object3D.toJSON'
+ };
+ } // standard Object3D serialization
+
+
+ var object = {};
+ object.uuid = this.uuid;
+ object.type = this.type;
+ if (this.name !== '') object.name = this.name;
+ if (this.castShadow === true) object.castShadow = true;
+ if (this.receiveShadow === true) object.receiveShadow = true;
+ if (this.visible === false) object.visible = false;
+ if (this.frustumCulled === false) object.frustumCulled = false;
+ if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
+ if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
+ object.layers = this.layers.mask;
+ object.matrix = this.matrix.toArray();
+ if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
+
+ if (this.isInstancedMesh) {
+ object.type = 'InstancedMesh';
+ object.count = this.count;
+ object.instanceMatrix = this.instanceMatrix.toJSON();
+ } //
+
+
+ function serialize(library, element) {
+ if (library[element.uuid] === undefined) {
+ library[element.uuid] = element.toJSON(meta);
+ }
+
+ return element.uuid;
+ }
+
+ if (this.isMesh || this.isLine || this.isPoints) {
+ object.geometry = serialize(meta.geometries, this.geometry);
+ var parameters = this.geometry.parameters;
+
+ if (parameters !== undefined && parameters.shapes !== undefined) {
+ var shapes = parameters.shapes;
+
+ if (Array.isArray(shapes)) {
+ for (var i = 0, l = shapes.length; i < l; i++) {
+ var shape = shapes[i];
+ serialize(meta.shapes, shape);
+ }
+ } else {
+ serialize(meta.shapes, shapes);
+ }
+ }
+ }
+
+ if (this.isSkinnedMesh) {
+ object.bindMode = this.bindMode;
+ object.bindMatrix = this.bindMatrix.toArray();
+
+ if (this.skeleton !== undefined) {
+ serialize(meta.skeletons, this.skeleton);
+ object.skeleton = this.skeleton.uuid;
+ }
+ }
+
+ if (this.material !== undefined) {
+ if (Array.isArray(this.material)) {
+ var uuids = [];
+
+ for (var _i = 0, _l = this.material.length; _i < _l; _i++) {
+ uuids.push(serialize(meta.materials, this.material[_i]));
+ }
+
+ object.material = uuids;
+ } else {
+ object.material = serialize(meta.materials, this.material);
+ }
+ } //
+
+
+ if (this.children.length > 0) {
+ object.children = [];
+
+ for (var _i2 = 0; _i2 < this.children.length; _i2++) {
+ object.children.push(this.children[_i2].toJSON(meta).object);
+ }
+ } //
+
+
+ if (this.animations.length > 0) {
+ object.animations = [];
+
+ for (var _i3 = 0; _i3 < this.animations.length; _i3++) {
+ var animation = this.animations[_i3];
+ object.animations.push(serialize(meta.animations, animation));
+ }
+ }
+
+ if (isRootObject) {
+ var geometries = extractFromCache(meta.geometries);
+ var materials = extractFromCache(meta.materials);
+ var textures = extractFromCache(meta.textures);
+ var images = extractFromCache(meta.images);
+
+ var _shapes = extractFromCache(meta.shapes);
+
+ var skeletons = extractFromCache(meta.skeletons);
+ var animations = extractFromCache(meta.animations);
+ if (geometries.length > 0) output.geometries = geometries;
+ if (materials.length > 0) output.materials = materials;
+ if (textures.length > 0) output.textures = textures;
+ if (images.length > 0) output.images = images;
+ if (_shapes.length > 0) output.shapes = _shapes;
+ if (skeletons.length > 0) output.skeletons = skeletons;
+ if (animations.length > 0) output.animations = animations;
+ }
+
+ output.object = object;
+ return output; // extract data from the cache hash
+ // remove metadata on each item
+ // and return as array
+
+ function extractFromCache(cache) {
+ var values = [];
+
+ for (var key in cache) {
+ var data = cache[key];
+ delete data.metadata;
+ values.push(data);
+ }
+
+ return values;
+ }
+ },
+ clone: function clone(recursive) {
+ return new this.constructor().copy(this, recursive);
+ },
+ copy: function copy(source, recursive) {
+ if (recursive === void 0) {
+ recursive = true;
+ }
+
+ this.name = source.name;
+ this.up.copy(source.up);
+ this.position.copy(source.position);
+ this.rotation.order = source.rotation.order;
+ this.quaternion.copy(source.quaternion);
+ this.scale.copy(source.scale);
+ this.matrix.copy(source.matrix);
+ this.matrixWorld.copy(source.matrixWorld);
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
+ this.layers.mask = source.layers.mask;
+ this.visible = source.visible;
+ this.castShadow = source.castShadow;
+ this.receiveShadow = source.receiveShadow;
+ this.frustumCulled = source.frustumCulled;
+ this.renderOrder = source.renderOrder;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+
+ if (recursive === true) {
+ for (var i = 0; i < source.children.length; i++) {
+ var child = source.children[i];
+ this.add(child.clone());
+ }
+ }
+
+ return this;
+ }
+ });
+
+ var _vector1 = /*@__PURE__*/new Vector3();
+
+ var _vector2 = /*@__PURE__*/new Vector3();
+
+ var _normalMatrix = /*@__PURE__*/new Matrix3();
+
+ var Plane = /*#__PURE__*/function () {
+ function Plane(normal, constant) {
+ Object.defineProperty(this, 'isPlane', {
+ value: true
+ }); // normal is assumed to be normalized
+
+ this.normal = normal !== undefined ? normal : new Vector3(1, 0, 0);
+ this.constant = constant !== undefined ? constant : 0;
+ }
+
+ var _proto = Plane.prototype;
+
+ _proto.set = function set(normal, constant) {
+ this.normal.copy(normal);
+ this.constant = constant;
+ return this;
+ };
+
+ _proto.setComponents = function setComponents(x, y, z, w) {
+ this.normal.set(x, y, z);
+ this.constant = w;
+ return this;
+ };
+
+ _proto.setFromNormalAndCoplanarPoint = function setFromNormalAndCoplanarPoint(normal, point) {
+ this.normal.copy(normal);
+ this.constant = -point.dot(this.normal);
+ return this;
+ };
+
+ _proto.setFromCoplanarPoints = function setFromCoplanarPoints(a, b, c) {
+ var normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
+
+
+ this.setFromNormalAndCoplanarPoint(normal, a);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(plane) {
+ this.normal.copy(plane.normal);
+ this.constant = plane.constant;
+ return this;
+ };
+
+ _proto.normalize = function normalize() {
+ // Note: will lead to a divide by zero if the plane is invalid.
+ var inverseNormalLength = 1.0 / this.normal.length();
+ this.normal.multiplyScalar(inverseNormalLength);
+ this.constant *= inverseNormalLength;
+ return this;
+ };
+
+ _proto.negate = function negate() {
+ this.constant *= -1;
+ this.normal.negate();
+ return this;
+ };
+
+ _proto.distanceToPoint = function distanceToPoint(point) {
+ return this.normal.dot(point) + this.constant;
+ };
+
+ _proto.distanceToSphere = function distanceToSphere(sphere) {
+ return this.distanceToPoint(sphere.center) - sphere.radius;
+ };
+
+ _proto.projectPoint = function projectPoint(point, target) {
+ if (target === undefined) {
+ console.warn('THREE.Plane: .projectPoint() target is now required');
+ target = new Vector3();
+ }
+
+ return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
+ };
+
+ _proto.intersectLine = function intersectLine(line, target) {
+ if (target === undefined) {
+ console.warn('THREE.Plane: .intersectLine() target is now required');
+ target = new Vector3();
+ }
+
+ var direction = line.delta(_vector1);
+ var denominator = this.normal.dot(direction);
+
+ if (denominator === 0) {
+ // line is coplanar, return origin
+ if (this.distanceToPoint(line.start) === 0) {
+ return target.copy(line.start);
+ } // Unsure if this is the correct method to handle this case.
+
+
+ return undefined;
+ }
+
+ var t = -(line.start.dot(this.normal) + this.constant) / denominator;
+
+ if (t < 0 || t > 1) {
+ return undefined;
+ }
+
+ return target.copy(direction).multiplyScalar(t).add(line.start);
+ };
+
+ _proto.intersectsLine = function intersectsLine(line) {
+ // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
+ var startSign = this.distanceToPoint(line.start);
+ var endSign = this.distanceToPoint(line.end);
+ return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ return box.intersectsPlane(this);
+ };
+
+ _proto.intersectsSphere = function intersectsSphere(sphere) {
+ return sphere.intersectsPlane(this);
+ };
+
+ _proto.coplanarPoint = function coplanarPoint(target) {
+ if (target === undefined) {
+ console.warn('THREE.Plane: .coplanarPoint() target is now required');
+ target = new Vector3();
+ }
+
+ return target.copy(this.normal).multiplyScalar(-this.constant);
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(matrix, optionalNormalMatrix) {
+ var normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
+
+ var referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
+ var normal = this.normal.applyMatrix3(normalMatrix).normalize();
+ this.constant = -referencePoint.dot(normal);
+ return this;
+ };
+
+ _proto.translate = function translate(offset) {
+ this.constant -= offset.dot(this.normal);
+ return this;
+ };
+
+ _proto.equals = function equals(plane) {
+ return plane.normal.equals(this.normal) && plane.constant === this.constant;
+ };
+
+ return Plane;
+ }();
+
+ var _v0$1 = /*@__PURE__*/new Vector3();
+
+ var _v1$3 = /*@__PURE__*/new Vector3();
+
+ var _v2$1 = /*@__PURE__*/new Vector3();
+
+ var _v3 = /*@__PURE__*/new Vector3();
+
+ var _vab = /*@__PURE__*/new Vector3();
+
+ var _vac = /*@__PURE__*/new Vector3();
+
+ var _vbc = /*@__PURE__*/new Vector3();
+
+ var _vap = /*@__PURE__*/new Vector3();
+
+ var _vbp = /*@__PURE__*/new Vector3();
+
+ var _vcp = /*@__PURE__*/new Vector3();
+
+ var Triangle = /*#__PURE__*/function () {
+ function Triangle(a, b, c) {
+ this.a = a !== undefined ? a : new Vector3();
+ this.b = b !== undefined ? b : new Vector3();
+ this.c = c !== undefined ? c : new Vector3();
+ }
+
+ Triangle.getNormal = function getNormal(a, b, c, target) {
+ if (target === undefined) {
+ console.warn('THREE.Triangle: .getNormal() target is now required');
+ target = new Vector3();
+ }
+
+ target.subVectors(c, b);
+
+ _v0$1.subVectors(a, b);
+
+ target.cross(_v0$1);
+ var targetLengthSq = target.lengthSq();
+
+ if (targetLengthSq > 0) {
+ return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
+ }
+
+ return target.set(0, 0, 0);
+ } // static/instance method to calculate barycentric coordinates
+ // based on: http://www.blackpawn.com/texts/pointinpoly/default.html
+ ;
+
+ Triangle.getBarycoord = function getBarycoord(point, a, b, c, target) {
+ _v0$1.subVectors(c, a);
+
+ _v1$3.subVectors(b, a);
+
+ _v2$1.subVectors(point, a);
+
+ var dot00 = _v0$1.dot(_v0$1);
+
+ var dot01 = _v0$1.dot(_v1$3);
+
+ var dot02 = _v0$1.dot(_v2$1);
+
+ var dot11 = _v1$3.dot(_v1$3);
+
+ var dot12 = _v1$3.dot(_v2$1);
+
+ var denom = dot00 * dot11 - dot01 * dot01;
+
+ if (target === undefined) {
+ console.warn('THREE.Triangle: .getBarycoord() target is now required');
+ target = new Vector3();
+ } // collinear or singular triangle
+
+
+ if (denom === 0) {
+ // arbitrary location outside of triangle?
+ // not sure if this is the best idea, maybe should be returning undefined
+ return target.set(-2, -1, -1);
+ }
+
+ var invDenom = 1 / denom;
+ var u = (dot11 * dot02 - dot01 * dot12) * invDenom;
+ var v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
+
+ return target.set(1 - u - v, v, u);
+ };
+
+ Triangle.containsPoint = function containsPoint(point, a, b, c) {
+ this.getBarycoord(point, a, b, c, _v3);
+ return _v3.x >= 0 && _v3.y >= 0 && _v3.x + _v3.y <= 1;
+ };
+
+ Triangle.getUV = function getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
+ this.getBarycoord(point, p1, p2, p3, _v3);
+ target.set(0, 0);
+ target.addScaledVector(uv1, _v3.x);
+ target.addScaledVector(uv2, _v3.y);
+ target.addScaledVector(uv3, _v3.z);
+ return target;
+ };
+
+ Triangle.isFrontFacing = function isFrontFacing(a, b, c, direction) {
+ _v0$1.subVectors(c, b);
+
+ _v1$3.subVectors(a, b); // strictly front facing
+
+
+ return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
+ };
+
+ var _proto = Triangle.prototype;
+
+ _proto.set = function set(a, b, c) {
+ this.a.copy(a);
+ this.b.copy(b);
+ this.c.copy(c);
+ return this;
+ };
+
+ _proto.setFromPointsAndIndices = function setFromPointsAndIndices(points, i0, i1, i2) {
+ this.a.copy(points[i0]);
+ this.b.copy(points[i1]);
+ this.c.copy(points[i2]);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(triangle) {
+ this.a.copy(triangle.a);
+ this.b.copy(triangle.b);
+ this.c.copy(triangle.c);
+ return this;
+ };
+
+ _proto.getArea = function getArea() {
+ _v0$1.subVectors(this.c, this.b);
+
+ _v1$3.subVectors(this.a, this.b);
+
+ return _v0$1.cross(_v1$3).length() * 0.5;
+ };
+
+ _proto.getMidpoint = function getMidpoint(target) {
+ if (target === undefined) {
+ console.warn('THREE.Triangle: .getMidpoint() target is now required');
+ target = new Vector3();
+ }
+
+ return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
+ };
+
+ _proto.getNormal = function getNormal(target) {
+ return Triangle.getNormal(this.a, this.b, this.c, target);
+ };
+
+ _proto.getPlane = function getPlane(target) {
+ if (target === undefined) {
+ console.warn('THREE.Triangle: .getPlane() target is now required');
+ target = new Plane();
+ }
+
+ return target.setFromCoplanarPoints(this.a, this.b, this.c);
+ };
+
+ _proto.getBarycoord = function getBarycoord(point, target) {
+ return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
+ };
+
+ _proto.getUV = function getUV(point, uv1, uv2, uv3, target) {
+ return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
+ };
+
+ _proto.containsPoint = function containsPoint(point) {
+ return Triangle.containsPoint(point, this.a, this.b, this.c);
+ };
+
+ _proto.isFrontFacing = function isFrontFacing(direction) {
+ return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ return box.intersectsTriangle(this);
+ };
+
+ _proto.closestPointToPoint = function closestPointToPoint(p, target) {
+ if (target === undefined) {
+ console.warn('THREE.Triangle: .closestPointToPoint() target is now required');
+ target = new Vector3();
+ }
+
+ var a = this.a,
+ b = this.b,
+ c = this.c;
+ var v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
+ // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
+ // under the accompanying license; see chapter 5.1.5 for detailed explanation.
+ // basically, we're distinguishing which of the voronoi regions of the triangle
+ // the point lies in with the minimum amount of redundant computation.
+
+ _vab.subVectors(b, a);
+
+ _vac.subVectors(c, a);
+
+ _vap.subVectors(p, a);
+
+ var d1 = _vab.dot(_vap);
+
+ var d2 = _vac.dot(_vap);
+
+ if (d1 <= 0 && d2 <= 0) {
+ // vertex region of A; barycentric coords (1, 0, 0)
+ return target.copy(a);
+ }
+
+ _vbp.subVectors(p, b);
+
+ var d3 = _vab.dot(_vbp);
+
+ var d4 = _vac.dot(_vbp);
+
+ if (d3 >= 0 && d4 <= d3) {
+ // vertex region of B; barycentric coords (0, 1, 0)
+ return target.copy(b);
+ }
+
+ var vc = d1 * d4 - d3 * d2;
+
+ if (vc <= 0 && d1 >= 0 && d3 <= 0) {
+ v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
+
+ return target.copy(a).addScaledVector(_vab, v);
+ }
+
+ _vcp.subVectors(p, c);
+
+ var d5 = _vab.dot(_vcp);
+
+ var d6 = _vac.dot(_vcp);
+
+ if (d6 >= 0 && d5 <= d6) {
+ // vertex region of C; barycentric coords (0, 0, 1)
+ return target.copy(c);
+ }
+
+ var vb = d5 * d2 - d1 * d6;
+
+ if (vb <= 0 && d2 >= 0 && d6 <= 0) {
+ w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
+
+ return target.copy(a).addScaledVector(_vac, w);
+ }
+
+ var va = d3 * d6 - d5 * d4;
+
+ if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
+ _vbc.subVectors(c, b);
+
+ w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
+
+ return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
+ } // face region
+
+
+ var denom = 1 / (va + vb + vc); // u = va * denom
+
+ v = vb * denom;
+ w = vc * denom;
+ return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
+ };
+
+ _proto.equals = function equals(triangle) {
+ return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
+ };
+
+ return Triangle;
+ }();
+
+ var _colorKeywords = {
+ 'aliceblue': 0xF0F8FF,
+ 'antiquewhite': 0xFAEBD7,
+ 'aqua': 0x00FFFF,
+ 'aquamarine': 0x7FFFD4,
+ 'azure': 0xF0FFFF,
+ 'beige': 0xF5F5DC,
+ 'bisque': 0xFFE4C4,
+ 'black': 0x000000,
+ 'blanchedalmond': 0xFFEBCD,
+ 'blue': 0x0000FF,
+ 'blueviolet': 0x8A2BE2,
+ 'brown': 0xA52A2A,
+ 'burlywood': 0xDEB887,
+ 'cadetblue': 0x5F9EA0,
+ 'chartreuse': 0x7FFF00,
+ 'chocolate': 0xD2691E,
+ 'coral': 0xFF7F50,
+ 'cornflowerblue': 0x6495ED,
+ 'cornsilk': 0xFFF8DC,
+ 'crimson': 0xDC143C,
+ 'cyan': 0x00FFFF,
+ 'darkblue': 0x00008B,
+ 'darkcyan': 0x008B8B,
+ 'darkgoldenrod': 0xB8860B,
+ 'darkgray': 0xA9A9A9,
+ 'darkgreen': 0x006400,
+ 'darkgrey': 0xA9A9A9,
+ 'darkkhaki': 0xBDB76B,
+ 'darkmagenta': 0x8B008B,
+ 'darkolivegreen': 0x556B2F,
+ 'darkorange': 0xFF8C00,
+ 'darkorchid': 0x9932CC,
+ 'darkred': 0x8B0000,
+ 'darksalmon': 0xE9967A,
+ 'darkseagreen': 0x8FBC8F,
+ 'darkslateblue': 0x483D8B,
+ 'darkslategray': 0x2F4F4F,
+ 'darkslategrey': 0x2F4F4F,
+ 'darkturquoise': 0x00CED1,
+ 'darkviolet': 0x9400D3,
+ 'deeppink': 0xFF1493,
+ 'deepskyblue': 0x00BFFF,
+ 'dimgray': 0x696969,
+ 'dimgrey': 0x696969,
+ 'dodgerblue': 0x1E90FF,
+ 'firebrick': 0xB22222,
+ 'floralwhite': 0xFFFAF0,
+ 'forestgreen': 0x228B22,
+ 'fuchsia': 0xFF00FF,
+ 'gainsboro': 0xDCDCDC,
+ 'ghostwhite': 0xF8F8FF,
+ 'gold': 0xFFD700,
+ 'goldenrod': 0xDAA520,
+ 'gray': 0x808080,
+ 'green': 0x008000,
+ 'greenyellow': 0xADFF2F,
+ 'grey': 0x808080,
+ 'honeydew': 0xF0FFF0,
+ 'hotpink': 0xFF69B4,
+ 'indianred': 0xCD5C5C,
+ 'indigo': 0x4B0082,
+ 'ivory': 0xFFFFF0,
+ 'khaki': 0xF0E68C,
+ 'lavender': 0xE6E6FA,
+ 'lavenderblush': 0xFFF0F5,
+ 'lawngreen': 0x7CFC00,
+ 'lemonchiffon': 0xFFFACD,
+ 'lightblue': 0xADD8E6,
+ 'lightcoral': 0xF08080,
+ 'lightcyan': 0xE0FFFF,
+ 'lightgoldenrodyellow': 0xFAFAD2,
+ 'lightgray': 0xD3D3D3,
+ 'lightgreen': 0x90EE90,
+ 'lightgrey': 0xD3D3D3,
+ 'lightpink': 0xFFB6C1,
+ 'lightsalmon': 0xFFA07A,
+ 'lightseagreen': 0x20B2AA,
+ 'lightskyblue': 0x87CEFA,
+ 'lightslategray': 0x778899,
+ 'lightslategrey': 0x778899,
+ 'lightsteelblue': 0xB0C4DE,
+ 'lightyellow': 0xFFFFE0,
+ 'lime': 0x00FF00,
+ 'limegreen': 0x32CD32,
+ 'linen': 0xFAF0E6,
+ 'magenta': 0xFF00FF,
+ 'maroon': 0x800000,
+ 'mediumaquamarine': 0x66CDAA,
+ 'mediumblue': 0x0000CD,
+ 'mediumorchid': 0xBA55D3,
+ 'mediumpurple': 0x9370DB,
+ 'mediumseagreen': 0x3CB371,
+ 'mediumslateblue': 0x7B68EE,
+ 'mediumspringgreen': 0x00FA9A,
+ 'mediumturquoise': 0x48D1CC,
+ 'mediumvioletred': 0xC71585,
+ 'midnightblue': 0x191970,
+ 'mintcream': 0xF5FFFA,
+ 'mistyrose': 0xFFE4E1,
+ 'moccasin': 0xFFE4B5,
+ 'navajowhite': 0xFFDEAD,
+ 'navy': 0x000080,
+ 'oldlace': 0xFDF5E6,
+ 'olive': 0x808000,
+ 'olivedrab': 0x6B8E23,
+ 'orange': 0xFFA500,
+ 'orangered': 0xFF4500,
+ 'orchid': 0xDA70D6,
+ 'palegoldenrod': 0xEEE8AA,
+ 'palegreen': 0x98FB98,
+ 'paleturquoise': 0xAFEEEE,
+ 'palevioletred': 0xDB7093,
+ 'papayawhip': 0xFFEFD5,
+ 'peachpuff': 0xFFDAB9,
+ 'peru': 0xCD853F,
+ 'pink': 0xFFC0CB,
+ 'plum': 0xDDA0DD,
+ 'powderblue': 0xB0E0E6,
+ 'purple': 0x800080,
+ 'rebeccapurple': 0x663399,
+ 'red': 0xFF0000,
+ 'rosybrown': 0xBC8F8F,
+ 'royalblue': 0x4169E1,
+ 'saddlebrown': 0x8B4513,
+ 'salmon': 0xFA8072,
+ 'sandybrown': 0xF4A460,
+ 'seagreen': 0x2E8B57,
+ 'seashell': 0xFFF5EE,
+ 'sienna': 0xA0522D,
+ 'silver': 0xC0C0C0,
+ 'skyblue': 0x87CEEB,
+ 'slateblue': 0x6A5ACD,
+ 'slategray': 0x708090,
+ 'slategrey': 0x708090,
+ 'snow': 0xFFFAFA,
+ 'springgreen': 0x00FF7F,
+ 'steelblue': 0x4682B4,
+ 'tan': 0xD2B48C,
+ 'teal': 0x008080,
+ 'thistle': 0xD8BFD8,
+ 'tomato': 0xFF6347,
+ 'turquoise': 0x40E0D0,
+ 'violet': 0xEE82EE,
+ 'wheat': 0xF5DEB3,
+ 'white': 0xFFFFFF,
+ 'whitesmoke': 0xF5F5F5,
+ 'yellow': 0xFFFF00,
+ 'yellowgreen': 0x9ACD32
+ };
+ var _hslA = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+ var _hslB = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+
+ function hue2rgb(p, q, t) {
+ if (t < 0) t += 1;
+ if (t > 1) t -= 1;
+ if (t < 1 / 6) return p + (q - p) * 6 * t;
+ if (t < 1 / 2) return q;
+ if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
+ return p;
+ }
+
+ function SRGBToLinear(c) {
+ return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
+ }
+
+ function LinearToSRGB(c) {
+ return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
+ }
+
+ var Color = /*#__PURE__*/function () {
+ function Color(r, g, b) {
+ Object.defineProperty(this, 'isColor', {
+ value: true
+ });
+
+ if (g === undefined && b === undefined) {
+ // r is THREE.Color, hex or string
+ return this.set(r);
+ }
+
+ return this.setRGB(r, g, b);
+ }
+
+ var _proto = Color.prototype;
+
+ _proto.set = function set(value) {
+ if (value && value.isColor) {
+ this.copy(value);
+ } else if (typeof value === 'number') {
+ this.setHex(value);
+ } else if (typeof value === 'string') {
+ this.setStyle(value);
+ }
+
+ return this;
+ };
+
+ _proto.setScalar = function setScalar(scalar) {
+ this.r = scalar;
+ this.g = scalar;
+ this.b = scalar;
+ return this;
+ };
+
+ _proto.setHex = function setHex(hex) {
+ hex = Math.floor(hex);
+ this.r = (hex >> 16 & 255) / 255;
+ this.g = (hex >> 8 & 255) / 255;
+ this.b = (hex & 255) / 255;
+ return this;
+ };
+
+ _proto.setRGB = function setRGB(r, g, b) {
+ this.r = r;
+ this.g = g;
+ this.b = b;
+ return this;
+ };
+
+ _proto.setHSL = function setHSL(h, s, l) {
+ // h,s,l ranges are in 0.0 - 1.0
+ h = MathUtils.euclideanModulo(h, 1);
+ s = MathUtils.clamp(s, 0, 1);
+ l = MathUtils.clamp(l, 0, 1);
+
+ if (s === 0) {
+ this.r = this.g = this.b = l;
+ } else {
+ var p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
+ var q = 2 * l - p;
+ this.r = hue2rgb(q, p, h + 1 / 3);
+ this.g = hue2rgb(q, p, h);
+ this.b = hue2rgb(q, p, h - 1 / 3);
+ }
+
+ return this;
+ };
+
+ _proto.setStyle = function setStyle(style) {
+ function handleAlpha(string) {
+ if (string === undefined) return;
+
+ if (parseFloat(string) < 1) {
+ console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
+ }
+ }
+
+ var m;
+
+ if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
+ // rgb / hsl
+ var color;
+ var name = m[1];
+ var components = m[2];
+
+ switch (name) {
+ case 'rgb':
+ case 'rgba':
+ if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // rgb(255,0,0) rgba(255,0,0,0.5)
+ this.r = Math.min(255, parseInt(color[1], 10)) / 255;
+ this.g = Math.min(255, parseInt(color[2], 10)) / 255;
+ this.b = Math.min(255, parseInt(color[3], 10)) / 255;
+ handleAlpha(color[4]);
+ return this;
+ }
+
+ if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
+ this.r = Math.min(100, parseInt(color[1], 10)) / 100;
+ this.g = Math.min(100, parseInt(color[2], 10)) / 100;
+ this.b = Math.min(100, parseInt(color[3], 10)) / 100;
+ handleAlpha(color[4]);
+ return this;
+ }
+
+ break;
+
+ case 'hsl':
+ case 'hsla':
+ if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
+ // hsl(120,50%,50%) hsla(120,50%,50%,0.5)
+ var h = parseFloat(color[1]) / 360;
+ var s = parseInt(color[2], 10) / 100;
+ var l = parseInt(color[3], 10) / 100;
+ handleAlpha(color[4]);
+ return this.setHSL(h, s, l);
+ }
+
+ break;
+ }
+ } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
+ // hex color
+ var hex = m[1];
+ var size = hex.length;
+
+ if (size === 3) {
+ // #ff0
+ this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
+ this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
+ this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
+ return this;
+ } else if (size === 6) {
+ // #ff0000
+ this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
+ this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
+ this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
+ return this;
+ }
+ }
+
+ if (style && style.length > 0) {
+ return this.setColorName(style);
+ }
+
+ return this;
+ };
+
+ _proto.setColorName = function setColorName(style) {
+ // color keywords
+ var hex = _colorKeywords[style];
+
+ if (hex !== undefined) {
+ // red
+ this.setHex(hex);
+ } else {
+ // unknown color
+ console.warn('THREE.Color: Unknown color ' + style);
+ }
+
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor(this.r, this.g, this.b);
+ };
+
+ _proto.copy = function copy(color) {
+ this.r = color.r;
+ this.g = color.g;
+ this.b = color.b;
+ return this;
+ };
+
+ _proto.copyGammaToLinear = function copyGammaToLinear(color, gammaFactor) {
+ if (gammaFactor === void 0) {
+ gammaFactor = 2.0;
+ }
+
+ this.r = Math.pow(color.r, gammaFactor);
+ this.g = Math.pow(color.g, gammaFactor);
+ this.b = Math.pow(color.b, gammaFactor);
+ return this;
+ };
+
+ _proto.copyLinearToGamma = function copyLinearToGamma(color, gammaFactor) {
+ if (gammaFactor === void 0) {
+ gammaFactor = 2.0;
+ }
+
+ var safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;
+ this.r = Math.pow(color.r, safeInverse);
+ this.g = Math.pow(color.g, safeInverse);
+ this.b = Math.pow(color.b, safeInverse);
+ return this;
+ };
+
+ _proto.convertGammaToLinear = function convertGammaToLinear(gammaFactor) {
+ this.copyGammaToLinear(this, gammaFactor);
+ return this;
+ };
+
+ _proto.convertLinearToGamma = function convertLinearToGamma(gammaFactor) {
+ this.copyLinearToGamma(this, gammaFactor);
+ return this;
+ };
+
+ _proto.copySRGBToLinear = function copySRGBToLinear(color) {
+ this.r = SRGBToLinear(color.r);
+ this.g = SRGBToLinear(color.g);
+ this.b = SRGBToLinear(color.b);
+ return this;
+ };
+
+ _proto.copyLinearToSRGB = function copyLinearToSRGB(color) {
+ this.r = LinearToSRGB(color.r);
+ this.g = LinearToSRGB(color.g);
+ this.b = LinearToSRGB(color.b);
+ return this;
+ };
+
+ _proto.convertSRGBToLinear = function convertSRGBToLinear() {
+ this.copySRGBToLinear(this);
+ return this;
+ };
+
+ _proto.convertLinearToSRGB = function convertLinearToSRGB() {
+ this.copyLinearToSRGB(this);
+ return this;
+ };
+
+ _proto.getHex = function getHex() {
+ return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
+ };
+
+ _proto.getHexString = function getHexString() {
+ return ('000000' + this.getHex().toString(16)).slice(-6);
+ };
+
+ _proto.getHSL = function getHSL(target) {
+ // h,s,l ranges are in 0.0 - 1.0
+ if (target === undefined) {
+ console.warn('THREE.Color: .getHSL() target is now required');
+ target = {
+ h: 0,
+ s: 0,
+ l: 0
+ };
+ }
+
+ var r = this.r,
+ g = this.g,
+ b = this.b;
+ var max = Math.max(r, g, b);
+ var min = Math.min(r, g, b);
+ var hue, saturation;
+ var lightness = (min + max) / 2.0;
+
+ if (min === max) {
+ hue = 0;
+ saturation = 0;
+ } else {
+ var delta = max - min;
+ saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
+
+ switch (max) {
+ case r:
+ hue = (g - b) / delta + (g < b ? 6 : 0);
+ break;
+
+ case g:
+ hue = (b - r) / delta + 2;
+ break;
+
+ case b:
+ hue = (r - g) / delta + 4;
+ break;
+ }
+
+ hue /= 6;
+ }
+
+ target.h = hue;
+ target.s = saturation;
+ target.l = lightness;
+ return target;
+ };
+
+ _proto.getStyle = function getStyle() {
+ return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
+ };
+
+ _proto.offsetHSL = function offsetHSL(h, s, l) {
+ this.getHSL(_hslA);
+ _hslA.h += h;
+ _hslA.s += s;
+ _hslA.l += l;
+ this.setHSL(_hslA.h, _hslA.s, _hslA.l);
+ return this;
+ };
+
+ _proto.add = function add(color) {
+ this.r += color.r;
+ this.g += color.g;
+ this.b += color.b;
+ return this;
+ };
+
+ _proto.addColors = function addColors(color1, color2) {
+ this.r = color1.r + color2.r;
+ this.g = color1.g + color2.g;
+ this.b = color1.b + color2.b;
+ return this;
+ };
+
+ _proto.addScalar = function addScalar(s) {
+ this.r += s;
+ this.g += s;
+ this.b += s;
+ return this;
+ };
+
+ _proto.sub = function sub(color) {
+ this.r = Math.max(0, this.r - color.r);
+ this.g = Math.max(0, this.g - color.g);
+ this.b = Math.max(0, this.b - color.b);
+ return this;
+ };
+
+ _proto.multiply = function multiply(color) {
+ this.r *= color.r;
+ this.g *= color.g;
+ this.b *= color.b;
+ return this;
+ };
+
+ _proto.multiplyScalar = function multiplyScalar(s) {
+ this.r *= s;
+ this.g *= s;
+ this.b *= s;
+ return this;
+ };
+
+ _proto.lerp = function lerp(color, alpha) {
+ this.r += (color.r - this.r) * alpha;
+ this.g += (color.g - this.g) * alpha;
+ this.b += (color.b - this.b) * alpha;
+ return this;
+ };
+
+ _proto.lerpColors = function lerpColors(color1, color2, alpha) {
+ this.r = color1.r + (color2.r - color1.r) * alpha;
+ this.g = color1.g + (color2.g - color1.g) * alpha;
+ this.b = color1.b + (color2.b - color1.b) * alpha;
+ return this;
+ };
+
+ _proto.lerpHSL = function lerpHSL(color, alpha) {
+ this.getHSL(_hslA);
+ color.getHSL(_hslB);
+ var h = MathUtils.lerp(_hslA.h, _hslB.h, alpha);
+ var s = MathUtils.lerp(_hslA.s, _hslB.s, alpha);
+ var l = MathUtils.lerp(_hslA.l, _hslB.l, alpha);
+ this.setHSL(h, s, l);
+ return this;
+ };
+
+ _proto.equals = function equals(c) {
+ return c.r === this.r && c.g === this.g && c.b === this.b;
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this.r = array[offset];
+ this.g = array[offset + 1];
+ this.b = array[offset + 2];
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ array[offset] = this.r;
+ array[offset + 1] = this.g;
+ array[offset + 2] = this.b;
+ return array;
+ };
+
+ _proto.fromBufferAttribute = function fromBufferAttribute(attribute, index) {
+ this.r = attribute.getX(index);
+ this.g = attribute.getY(index);
+ this.b = attribute.getZ(index);
+
+ if (attribute.normalized === true) {
+ // assuming Uint8Array
+ this.r /= 255;
+ this.g /= 255;
+ this.b /= 255;
+ }
+
+ return this;
+ };
+
+ _proto.toJSON = function toJSON() {
+ return this.getHex();
+ };
+
+ return Color;
+ }();
+
+ Color.NAMES = _colorKeywords;
+ Color.prototype.r = 1;
+ Color.prototype.g = 1;
+ Color.prototype.b = 1;
+
+ var Face3 = /*#__PURE__*/function () {
+ function Face3(a, b, c, normal, color, materialIndex) {
+ if (materialIndex === void 0) {
+ materialIndex = 0;
+ }
+
+ this.a = a;
+ this.b = b;
+ this.c = c;
+ this.normal = normal && normal.isVector3 ? normal : new Vector3();
+ this.vertexNormals = Array.isArray(normal) ? normal : [];
+ this.color = color && color.isColor ? color : new Color();
+ this.vertexColors = Array.isArray(color) ? color : [];
+ this.materialIndex = materialIndex;
+ }
+
+ var _proto = Face3.prototype;
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(source) {
+ this.a = source.a;
+ this.b = source.b;
+ this.c = source.c;
+ this.normal.copy(source.normal);
+ this.color.copy(source.color);
+ this.materialIndex = source.materialIndex;
+
+ for (var i = 0, il = source.vertexNormals.length; i < il; i++) {
+ this.vertexNormals[i] = source.vertexNormals[i].clone();
+ }
+
+ for (var _i = 0, _il = source.vertexColors.length; _i < _il; _i++) {
+ this.vertexColors[_i] = source.vertexColors[_i].clone();
+ }
+
+ return this;
+ };
+
+ return Face3;
+ }();
+
+ var materialId = 0;
+
+ function Material() {
+ Object.defineProperty(this, 'id', {
+ value: materialId++
+ });
+ this.uuid = MathUtils.generateUUID();
+ this.name = '';
+ this.type = 'Material';
+ this.fog = true;
+ this.blending = NormalBlending;
+ this.side = FrontSide;
+ this.flatShading = false;
+ this.vertexColors = false;
+ this.opacity = 1;
+ this.transparent = false;
+ this.blendSrc = SrcAlphaFactor;
+ this.blendDst = OneMinusSrcAlphaFactor;
+ this.blendEquation = AddEquation;
+ this.blendSrcAlpha = null;
+ this.blendDstAlpha = null;
+ this.blendEquationAlpha = null;
+ this.depthFunc = LessEqualDepth;
+ this.depthTest = true;
+ this.depthWrite = true;
+ this.stencilWriteMask = 0xff;
+ this.stencilFunc = AlwaysStencilFunc;
+ this.stencilRef = 0;
+ this.stencilFuncMask = 0xff;
+ this.stencilFail = KeepStencilOp;
+ this.stencilZFail = KeepStencilOp;
+ this.stencilZPass = KeepStencilOp;
+ this.stencilWrite = false;
+ this.clippingPlanes = null;
+ this.clipIntersection = false;
+ this.clipShadows = false;
+ this.shadowSide = null;
+ this.colorWrite = true;
+ this.precision = null; // override the renderer's default precision for this material
+
+ this.polygonOffset = false;
+ this.polygonOffsetFactor = 0;
+ this.polygonOffsetUnits = 0;
+ this.dithering = false;
+ this.alphaTest = 0;
+ this.premultipliedAlpha = false;
+ this.visible = true;
+ this.toneMapped = true;
+ this.userData = {};
+ this.version = 0;
+ }
+
+ Material.prototype = Object.assign(Object.create(EventDispatcher.prototype), {
+ constructor: Material,
+ isMaterial: true,
+ onBeforeCompile: function onBeforeCompile()
+ /* shaderobject, renderer */
+ {},
+ customProgramCacheKey: function customProgramCacheKey() {
+ return this.onBeforeCompile.toString();
+ },
+ setValues: function setValues(values) {
+ if (values === undefined) return;
+
+ for (var key in values) {
+ var newValue = values[key];
+
+ if (newValue === undefined) {
+ console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
+ continue;
+ } // for backward compatability if shading is set in the constructor
+
+
+ if (key === 'shading') {
+ console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ this.flatShading = newValue === FlatShading ? true : false;
+ continue;
+ }
+
+ var currentValue = this[key];
+
+ if (currentValue === undefined) {
+ console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
+ continue;
+ }
+
+ if (currentValue && currentValue.isColor) {
+ currentValue.set(newValue);
+ } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
+ currentValue.copy(newValue);
+ } else {
+ this[key] = newValue;
+ }
+ }
+ },
+ toJSON: function toJSON(meta) {
+ var isRoot = meta === undefined || typeof meta === 'string';
+
+ if (isRoot) {
+ meta = {
+ textures: {},
+ images: {}
+ };
+ }
+
+ var data = {
+ metadata: {
+ version: 4.5,
+ type: 'Material',
+ generator: 'Material.toJSON'
+ }
+ }; // standard Material serialization
+
+ data.uuid = this.uuid;
+ data.type = this.type;
+ if (this.name !== '') data.name = this.name;
+ if (this.color && this.color.isColor) data.color = this.color.getHex();
+ if (this.roughness !== undefined) data.roughness = this.roughness;
+ if (this.metalness !== undefined) data.metalness = this.metalness;
+ if (this.sheen && this.sheen.isColor) data.sheen = this.sheen.getHex();
+ if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
+ if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
+ if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
+ if (this.shininess !== undefined) data.shininess = this.shininess;
+ if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
+ if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
+
+ if (this.clearcoatMap && this.clearcoatMap.isTexture) {
+ data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
+ }
+
+ if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
+ data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
+ }
+
+ if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
+ data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
+ data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
+ }
+
+ if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
+ if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
+ if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
+ if (this.lightMap && this.lightMap.isTexture) data.lightMap = this.lightMap.toJSON(meta).uuid;
+
+ if (this.aoMap && this.aoMap.isTexture) {
+ data.aoMap = this.aoMap.toJSON(meta).uuid;
+ data.aoMapIntensity = this.aoMapIntensity;
+ }
+
+ if (this.bumpMap && this.bumpMap.isTexture) {
+ data.bumpMap = this.bumpMap.toJSON(meta).uuid;
+ data.bumpScale = this.bumpScale;
+ }
+
+ if (this.normalMap && this.normalMap.isTexture) {
+ data.normalMap = this.normalMap.toJSON(meta).uuid;
+ data.normalMapType = this.normalMapType;
+ data.normalScale = this.normalScale.toArray();
+ }
+
+ if (this.displacementMap && this.displacementMap.isTexture) {
+ data.displacementMap = this.displacementMap.toJSON(meta).uuid;
+ data.displacementScale = this.displacementScale;
+ data.displacementBias = this.displacementBias;
+ }
+
+ if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
+ if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
+ if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
+ if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
+
+ if (this.envMap && this.envMap.isTexture) {
+ data.envMap = this.envMap.toJSON(meta).uuid;
+ data.reflectivity = this.reflectivity; // Scale behind envMap
+
+ data.refractionRatio = this.refractionRatio;
+ if (this.combine !== undefined) data.combine = this.combine;
+ if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
+ }
+
+ if (this.gradientMap && this.gradientMap.isTexture) {
+ data.gradientMap = this.gradientMap.toJSON(meta).uuid;
+ }
+
+ if (this.size !== undefined) data.size = this.size;
+ if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
+ if (this.blending !== NormalBlending) data.blending = this.blending;
+ if (this.flatShading === true) data.flatShading = this.flatShading;
+ if (this.side !== FrontSide) data.side = this.side;
+ if (this.vertexColors) data.vertexColors = true;
+ if (this.opacity < 1) data.opacity = this.opacity;
+ if (this.transparent === true) data.transparent = this.transparent;
+ data.depthFunc = this.depthFunc;
+ data.depthTest = this.depthTest;
+ data.depthWrite = this.depthWrite;
+ data.stencilWrite = this.stencilWrite;
+ data.stencilWriteMask = this.stencilWriteMask;
+ data.stencilFunc = this.stencilFunc;
+ data.stencilRef = this.stencilRef;
+ data.stencilFuncMask = this.stencilFuncMask;
+ data.stencilFail = this.stencilFail;
+ data.stencilZFail = this.stencilZFail;
+ data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
+
+ if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
+ if (this.polygonOffset === true) data.polygonOffset = true;
+ if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
+ if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
+ if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
+ if (this.dashSize !== undefined) data.dashSize = this.dashSize;
+ if (this.gapSize !== undefined) data.gapSize = this.gapSize;
+ if (this.scale !== undefined) data.scale = this.scale;
+ if (this.dithering === true) data.dithering = true;
+ if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
+ if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
+ if (this.wireframe === true) data.wireframe = this.wireframe;
+ if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
+ if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
+ if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
+ if (this.morphTargets === true) data.morphTargets = true;
+ if (this.morphNormals === true) data.morphNormals = true;
+ if (this.skinning === true) data.skinning = true;
+ if (this.visible === false) data.visible = false;
+ if (this.toneMapped === false) data.toneMapped = false;
+ if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
+
+ function extractFromCache(cache) {
+ var values = [];
+
+ for (var key in cache) {
+ var _data = cache[key];
+ delete _data.metadata;
+ values.push(_data);
+ }
+
+ return values;
+ }
+
+ if (isRoot) {
+ var textures = extractFromCache(meta.textures);
+ var images = extractFromCache(meta.images);
+ if (textures.length > 0) data.textures = textures;
+ if (images.length > 0) data.images = images;
+ }
+
+ return data;
+ },
+ clone: function clone() {
+ return new this.constructor().copy(this);
+ },
+ copy: function copy(source) {
+ this.name = source.name;
+ this.fog = source.fog;
+ this.blending = source.blending;
+ this.side = source.side;
+ this.flatShading = source.flatShading;
+ this.vertexColors = source.vertexColors;
+ this.opacity = source.opacity;
+ this.transparent = source.transparent;
+ this.blendSrc = source.blendSrc;
+ this.blendDst = source.blendDst;
+ this.blendEquation = source.blendEquation;
+ this.blendSrcAlpha = source.blendSrcAlpha;
+ this.blendDstAlpha = source.blendDstAlpha;
+ this.blendEquationAlpha = source.blendEquationAlpha;
+ this.depthFunc = source.depthFunc;
+ this.depthTest = source.depthTest;
+ this.depthWrite = source.depthWrite;
+ this.stencilWriteMask = source.stencilWriteMask;
+ this.stencilFunc = source.stencilFunc;
+ this.stencilRef = source.stencilRef;
+ this.stencilFuncMask = source.stencilFuncMask;
+ this.stencilFail = source.stencilFail;
+ this.stencilZFail = source.stencilZFail;
+ this.stencilZPass = source.stencilZPass;
+ this.stencilWrite = source.stencilWrite;
+ var srcPlanes = source.clippingPlanes;
+ var dstPlanes = null;
+
+ if (srcPlanes !== null) {
+ var n = srcPlanes.length;
+ dstPlanes = new Array(n);
+
+ for (var i = 0; i !== n; ++i) {
+ dstPlanes[i] = srcPlanes[i].clone();
+ }
+ }
+
+ this.clippingPlanes = dstPlanes;
+ this.clipIntersection = source.clipIntersection;
+ this.clipShadows = source.clipShadows;
+ this.shadowSide = source.shadowSide;
+ this.colorWrite = source.colorWrite;
+ this.precision = source.precision;
+ this.polygonOffset = source.polygonOffset;
+ this.polygonOffsetFactor = source.polygonOffsetFactor;
+ this.polygonOffsetUnits = source.polygonOffsetUnits;
+ this.dithering = source.dithering;
+ this.alphaTest = source.alphaTest;
+ this.premultipliedAlpha = source.premultipliedAlpha;
+ this.visible = source.visible;
+ this.toneMapped = source.toneMapped;
+ this.userData = JSON.parse(JSON.stringify(source.userData));
+ return this;
+ },
+ dispose: function dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+ });
+ Object.defineProperty(Material.prototype, 'needsUpdate', {
+ set: function set(value) {
+ if (value === true) this.version++;
+ }
+ });
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * specularMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.Multiply,
+ * reflectivity: <float>,
+ * refractionRatio: <float>,
+ *
+ * depthTest: <bool>,
+ * depthWrite: <bool>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>
+ * }
+ */
+
+ function MeshBasicMaterial(parameters) {
+ Material.call(this);
+ this.type = 'MeshBasicMaterial';
+ this.color = new Color(0xffffff); // emissive
+
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.skinning = false;
+ this.morphTargets = false;
+ this.setValues(parameters);
+ }
+
+ MeshBasicMaterial.prototype = Object.create(Material.prototype);
+ MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;
+ MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
+
+ MeshBasicMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ return this;
+ };
+
+ var _vector$3 = new Vector3();
+
+ var _vector2$1 = new Vector2();
+
+ function BufferAttribute(array, itemSize, normalized) {
+ if (Array.isArray(array)) {
+ throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
+ }
+
+ this.name = '';
+ this.array = array;
+ this.itemSize = itemSize;
+ this.count = array !== undefined ? array.length / itemSize : 0;
+ this.normalized = normalized === true;
+ this.usage = StaticDrawUsage;
+ this.updateRange = {
+ offset: 0,
+ count: -1
+ };
+ this.version = 0;
+ }
+
+ Object.defineProperty(BufferAttribute.prototype, 'needsUpdate', {
+ set: function set(value) {
+ if (value === true) this.version++;
+ }
+ });
+ Object.assign(BufferAttribute.prototype, {
+ isBufferAttribute: true,
+ onUploadCallback: function onUploadCallback() {},
+ setUsage: function setUsage(value) {
+ this.usage = value;
+ return this;
+ },
+ copy: function copy(source) {
+ this.name = source.name;
+ this.array = new source.array.constructor(source.array);
+ this.itemSize = source.itemSize;
+ this.count = source.count;
+ this.normalized = source.normalized;
+ this.usage = source.usage;
+ return this;
+ },
+ copyAt: function copyAt(index1, attribute, index2) {
+ index1 *= this.itemSize;
+ index2 *= attribute.itemSize;
+
+ for (var i = 0, l = this.itemSize; i < l; i++) {
+ this.array[index1 + i] = attribute.array[index2 + i];
+ }
+
+ return this;
+ },
+ copyArray: function copyArray(array) {
+ this.array.set(array);
+ return this;
+ },
+ copyColorsArray: function copyColorsArray(colors) {
+ var array = this.array;
+ var offset = 0;
+
+ for (var i = 0, l = colors.length; i < l; i++) {
+ var color = colors[i];
+
+ if (color === undefined) {
+ console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
+ color = new Color();
+ }
+
+ array[offset++] = color.r;
+ array[offset++] = color.g;
+ array[offset++] = color.b;
+ }
+
+ return this;
+ },
+ copyVector2sArray: function copyVector2sArray(vectors) {
+ var array = this.array;
+ var offset = 0;
+
+ for (var i = 0, l = vectors.length; i < l; i++) {
+ var vector = vectors[i];
+
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
+ vector = new Vector2();
+ }
+
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ }
+
+ return this;
+ },
+ copyVector3sArray: function copyVector3sArray(vectors) {
+ var array = this.array;
+ var offset = 0;
+
+ for (var i = 0, l = vectors.length; i < l; i++) {
+ var vector = vectors[i];
+
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
+ vector = new Vector3();
+ }
+
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ array[offset++] = vector.z;
+ }
+
+ return this;
+ },
+ copyVector4sArray: function copyVector4sArray(vectors) {
+ var array = this.array;
+ var offset = 0;
+
+ for (var i = 0, l = vectors.length; i < l; i++) {
+ var vector = vectors[i];
+
+ if (vector === undefined) {
+ console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
+ vector = new Vector4();
+ }
+
+ array[offset++] = vector.x;
+ array[offset++] = vector.y;
+ array[offset++] = vector.z;
+ array[offset++] = vector.w;
+ }
+
+ return this;
+ },
+ applyMatrix3: function applyMatrix3(m) {
+ if (this.itemSize === 2) {
+ for (var i = 0, l = this.count; i < l; i++) {
+ _vector2$1.fromBufferAttribute(this, i);
+
+ _vector2$1.applyMatrix3(m);
+
+ this.setXY(i, _vector2$1.x, _vector2$1.y);
+ }
+ } else if (this.itemSize === 3) {
+ for (var _i = 0, _l = this.count; _i < _l; _i++) {
+ _vector$3.fromBufferAttribute(this, _i);
+
+ _vector$3.applyMatrix3(m);
+
+ this.setXYZ(_i, _vector$3.x, _vector$3.y, _vector$3.z);
+ }
+ }
+
+ return this;
+ },
+ applyMatrix4: function applyMatrix4(m) {
+ for (var i = 0, l = this.count; i < l; i++) {
+ _vector$3.x = this.getX(i);
+ _vector$3.y = this.getY(i);
+ _vector$3.z = this.getZ(i);
+
+ _vector$3.applyMatrix4(m);
+
+ this.setXYZ(i, _vector$3.x, _vector$3.y, _vector$3.z);
+ }
+
+ return this;
+ },
+ applyNormalMatrix: function applyNormalMatrix(m) {
+ for (var i = 0, l = this.count; i < l; i++) {
+ _vector$3.x = this.getX(i);
+ _vector$3.y = this.getY(i);
+ _vector$3.z = this.getZ(i);
+
+ _vector$3.applyNormalMatrix(m);
+
+ this.setXYZ(i, _vector$3.x, _vector$3.y, _vector$3.z);
+ }
+
+ return this;
+ },
+ transformDirection: function transformDirection(m) {
+ for (var i = 0, l = this.count; i < l; i++) {
+ _vector$3.x = this.getX(i);
+ _vector$3.y = this.getY(i);
+ _vector$3.z = this.getZ(i);
+
+ _vector$3.transformDirection(m);
+
+ this.setXYZ(i, _vector$3.x, _vector$3.y, _vector$3.z);
+ }
+
+ return this;
+ },
+ set: function set(value, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this.array.set(value, offset);
+ return this;
+ },
+ getX: function getX(index) {
+ return this.array[index * this.itemSize];
+ },
+ setX: function setX(index, x) {
+ this.array[index * this.itemSize] = x;
+ return this;
+ },
+ getY: function getY(index) {
+ return this.array[index * this.itemSize + 1];
+ },
+ setY: function setY(index, y) {
+ this.array[index * this.itemSize + 1] = y;
+ return this;
+ },
+ getZ: function getZ(index) {
+ return this.array[index * this.itemSize + 2];
+ },
+ setZ: function setZ(index, z) {
+ this.array[index * this.itemSize + 2] = z;
+ return this;
+ },
+ getW: function getW(index) {
+ return this.array[index * this.itemSize + 3];
+ },
+ setW: function setW(index, w) {
+ this.array[index * this.itemSize + 3] = w;
+ return this;
+ },
+ setXY: function setXY(index, x, y) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ return this;
+ },
+ setXYZ: function setXYZ(index, x, y, z) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ this.array[index + 2] = z;
+ return this;
+ },
+ setXYZW: function setXYZW(index, x, y, z, w) {
+ index *= this.itemSize;
+ this.array[index + 0] = x;
+ this.array[index + 1] = y;
+ this.array[index + 2] = z;
+ this.array[index + 3] = w;
+ return this;
+ },
+ onUpload: function onUpload(callback) {
+ this.onUploadCallback = callback;
+ return this;
+ },
+ clone: function clone() {
+ return new this.constructor(this.array, this.itemSize).copy(this);
+ },
+ toJSON: function toJSON() {
+ return {
+ itemSize: this.itemSize,
+ type: this.array.constructor.name,
+ array: Array.prototype.slice.call(this.array),
+ normalized: this.normalized
+ };
+ }
+ }); //
+
+ function Int8BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Int8Array(array), itemSize, normalized);
+ }
+
+ Int8BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;
+
+ function Uint8BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Uint8Array(array), itemSize, normalized);
+ }
+
+ Uint8BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;
+
+ function Uint8ClampedBufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Uint8ClampedArray(array), itemSize, normalized);
+ }
+
+ Uint8ClampedBufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;
+
+ function Int16BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Int16Array(array), itemSize, normalized);
+ }
+
+ Int16BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;
+
+ function Uint16BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Uint16Array(array), itemSize, normalized);
+ }
+
+ Uint16BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;
+
+ function Int32BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Int32Array(array), itemSize, normalized);
+ }
+
+ Int32BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;
+
+ function Uint32BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Uint32Array(array), itemSize, normalized);
+ }
+
+ Uint32BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;
+
+ function Float16BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Uint16Array(array), itemSize, normalized);
+ }
+
+ Float16BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Float16BufferAttribute.prototype.constructor = Float16BufferAttribute;
+ Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
+
+ function Float32BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Float32Array(array), itemSize, normalized);
+ }
+
+ Float32BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;
+
+ function Float64BufferAttribute(array, itemSize, normalized) {
+ BufferAttribute.call(this, new Float64Array(array), itemSize, normalized);
+ }
+
+ Float64BufferAttribute.prototype = Object.create(BufferAttribute.prototype);
+ Float64BufferAttribute.prototype.constructor = Float64BufferAttribute; //
+
+ function arrayMax(array) {
+ if (array.length === 0) return -Infinity;
+ var max = array[0];
+
+ for (var i = 1, l = array.length; i < l; ++i) {
+ if (array[i] > max) max = array[i];
+ }
+
+ return max;
+ }
+
+ var TYPED_ARRAYS = {
+ Int8Array: Int8Array,
+ Uint8Array: Uint8Array,
+ // Workaround for IE11 pre KB2929437. See #11440
+ Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array,
+ Int16Array: Int16Array,
+ Uint16Array: Uint16Array,
+ Int32Array: Int32Array,
+ Uint32Array: Uint32Array,
+ Float32Array: Float32Array,
+ Float64Array: Float64Array
+ };
+
+ function getTypedArray(type, buffer) {
+ return new TYPED_ARRAYS[type](buffer);
+ }
+
+ var _id = 0;
+
+ var _m1$2 = new Matrix4();
+
+ var _obj = new Object3D();
+
+ var _offset = new Vector3();
+
+ var _box$2 = new Box3();
+
+ var _boxMorphTargets = new Box3();
+
+ var _vector$4 = new Vector3();
+
+ function BufferGeometry() {
+ Object.defineProperty(this, 'id', {
+ value: _id++
+ });
+ this.uuid = MathUtils.generateUUID();
+ this.name = '';
+ this.type = 'BufferGeometry';
+ this.index = null;
+ this.attributes = {};
+ this.morphAttributes = {};
+ this.morphTargetsRelative = false;
+ this.groups = [];
+ this.boundingBox = null;
+ this.boundingSphere = null;
+ this.drawRange = {
+ start: 0,
+ count: Infinity
+ };
+ this.userData = {};
+ }
+
+ BufferGeometry.prototype = Object.assign(Object.create(EventDispatcher.prototype), {
+ constructor: BufferGeometry,
+ isBufferGeometry: true,
+ getIndex: function getIndex() {
+ return this.index;
+ },
+ setIndex: function setIndex(index) {
+ if (Array.isArray(index)) {
+ this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
+ } else {
+ this.index = index;
+ }
+
+ return this;
+ },
+ getAttribute: function getAttribute(name) {
+ return this.attributes[name];
+ },
+ setAttribute: function setAttribute(name, attribute) {
+ this.attributes[name] = attribute;
+ return this;
+ },
+ deleteAttribute: function deleteAttribute(name) {
+ delete this.attributes[name];
+ return this;
+ },
+ hasAttribute: function hasAttribute(name) {
+ return this.attributes[name] !== undefined;
+ },
+ addGroup: function addGroup(start, count, materialIndex) {
+ if (materialIndex === void 0) {
+ materialIndex = 0;
+ }
+
+ this.groups.push({
+ start: start,
+ count: count,
+ materialIndex: materialIndex
+ });
+ },
+ clearGroups: function clearGroups() {
+ this.groups = [];
+ },
+ setDrawRange: function setDrawRange(start, count) {
+ this.drawRange.start = start;
+ this.drawRange.count = count;
+ },
+ applyMatrix4: function applyMatrix4(matrix) {
+ var position = this.attributes.position;
+
+ if (position !== undefined) {
+ position.applyMatrix4(matrix);
+ position.needsUpdate = true;
+ }
+
+ var normal = this.attributes.normal;
+
+ if (normal !== undefined) {
+ var normalMatrix = new Matrix3().getNormalMatrix(matrix);
+ normal.applyNormalMatrix(normalMatrix);
+ normal.needsUpdate = true;
+ }
+
+ var tangent = this.attributes.tangent;
+
+ if (tangent !== undefined) {
+ tangent.transformDirection(matrix);
+ tangent.needsUpdate = true;
+ }
+
+ if (this.boundingBox !== null) {
+ this.computeBoundingBox();
+ }
+
+ if (this.boundingSphere !== null) {
+ this.computeBoundingSphere();
+ }
+
+ return this;
+ },
+ rotateX: function rotateX(angle) {
+ // rotate geometry around world x-axis
+ _m1$2.makeRotationX(angle);
+
+ this.applyMatrix4(_m1$2);
+ return this;
+ },
+ rotateY: function rotateY(angle) {
+ // rotate geometry around world y-axis
+ _m1$2.makeRotationY(angle);
+
+ this.applyMatrix4(_m1$2);
+ return this;
+ },
+ rotateZ: function rotateZ(angle) {
+ // rotate geometry around world z-axis
+ _m1$2.makeRotationZ(angle);
+
+ this.applyMatrix4(_m1$2);
+ return this;
+ },
+ translate: function translate(x, y, z) {
+ // translate geometry
+ _m1$2.makeTranslation(x, y, z);
+
+ this.applyMatrix4(_m1$2);
+ return this;
+ },
+ scale: function scale(x, y, z) {
+ // scale geometry
+ _m1$2.makeScale(x, y, z);
+
+ this.applyMatrix4(_m1$2);
+ return this;
+ },
+ lookAt: function lookAt(vector) {
+ _obj.lookAt(vector);
+
+ _obj.updateMatrix();
+
+ this.applyMatrix4(_obj.matrix);
+ return this;
+ },
+ center: function center() {
+ this.computeBoundingBox();
+ this.boundingBox.getCenter(_offset).negate();
+ this.translate(_offset.x, _offset.y, _offset.z);
+ return this;
+ },
+ setFromPoints: function setFromPoints(points) {
+ var position = [];
+
+ for (var i = 0, l = points.length; i < l; i++) {
+ var point = points[i];
+ position.push(point.x, point.y, point.z || 0);
+ }
+
+ this.setAttribute('position', new Float32BufferAttribute(position, 3));
+ return this;
+ },
+ computeBoundingBox: function computeBoundingBox() {
+ if (this.boundingBox === null) {
+ this.boundingBox = new Box3();
+ }
+
+ var position = this.attributes.position;
+ var morphAttributesPosition = this.morphAttributes.position;
+
+ if (position && position.isGLBufferAttribute) {
+ console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
+ this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
+ return;
+ }
+
+ if (position !== undefined) {
+ this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
+
+ if (morphAttributesPosition) {
+ for (var i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ var morphAttribute = morphAttributesPosition[i];
+
+ _box$2.setFromBufferAttribute(morphAttribute);
+
+ if (this.morphTargetsRelative) {
+ _vector$4.addVectors(this.boundingBox.min, _box$2.min);
+
+ this.boundingBox.expandByPoint(_vector$4);
+
+ _vector$4.addVectors(this.boundingBox.max, _box$2.max);
+
+ this.boundingBox.expandByPoint(_vector$4);
+ } else {
+ this.boundingBox.expandByPoint(_box$2.min);
+ this.boundingBox.expandByPoint(_box$2.max);
+ }
+ }
+ }
+ } else {
+ this.boundingBox.makeEmpty();
+ }
+
+ if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
+ console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
+ }
+ },
+ computeBoundingSphere: function computeBoundingSphere() {
+ if (this.boundingSphere === null) {
+ this.boundingSphere = new Sphere();
+ }
+
+ var position = this.attributes.position;
+ var morphAttributesPosition = this.morphAttributes.position;
+
+ if (position && position.isGLBufferAttribute) {
+ console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
+ this.boundingSphere.set(new Vector3(), Infinity);
+ return;
+ }
+
+ if (position) {
+ // first, find the center of the bounding sphere
+ var center = this.boundingSphere.center;
+
+ _box$2.setFromBufferAttribute(position); // process morph attributes if present
+
+
+ if (morphAttributesPosition) {
+ for (var i = 0, il = morphAttributesPosition.length; i < il; i++) {
+ var morphAttribute = morphAttributesPosition[i];
+
+ _boxMorphTargets.setFromBufferAttribute(morphAttribute);
+
+ if (this.morphTargetsRelative) {
+ _vector$4.addVectors(_box$2.min, _boxMorphTargets.min);
+
+ _box$2.expandByPoint(_vector$4);
+
+ _vector$4.addVectors(_box$2.max, _boxMorphTargets.max);
+
+ _box$2.expandByPoint(_vector$4);
+ } else {
+ _box$2.expandByPoint(_boxMorphTargets.min);
+
+ _box$2.expandByPoint(_boxMorphTargets.max);
+ }
+ }
+ }
+
+ _box$2.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
+ // boundingSphere of the boundingBox: sqrt(3) smaller in the best case
+
+
+ var maxRadiusSq = 0;
+
+ for (var _i = 0, _il = position.count; _i < _il; _i++) {
+ _vector$4.fromBufferAttribute(position, _i);
+
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$4));
+ } // process morph attributes if present
+
+
+ if (morphAttributesPosition) {
+ for (var _i2 = 0, _il2 = morphAttributesPosition.length; _i2 < _il2; _i2++) {
+ var _morphAttribute = morphAttributesPosition[_i2];
+ var morphTargetsRelative = this.morphTargetsRelative;
+
+ for (var j = 0, jl = _morphAttribute.count; j < jl; j++) {
+ _vector$4.fromBufferAttribute(_morphAttribute, j);
+
+ if (morphTargetsRelative) {
+ _offset.fromBufferAttribute(position, j);
+
+ _vector$4.add(_offset);
+ }
+
+ maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$4));
+ }
+ }
+ }
+
+ this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
+
+ if (isNaN(this.boundingSphere.radius)) {
+ console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
+ }
+ }
+ },
+ computeFaceNormals: function computeFaceNormals() {// backwards compatibility
+ },
+ computeTangents: function computeTangents() {
+ var index = this.index;
+ var attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
+ // (per vertex tangents)
+
+ if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
+ console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
+ return;
+ }
+
+ var indices = index.array;
+ var positions = attributes.position.array;
+ var normals = attributes.normal.array;
+ var uvs = attributes.uv.array;
+ var nVertices = positions.length / 3;
+
+ if (attributes.tangent === undefined) {
+ this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
+ }
+
+ var tangents = attributes.tangent.array;
+ var tan1 = [],
+ tan2 = [];
+
+ for (var i = 0; i < nVertices; i++) {
+ tan1[i] = new Vector3();
+ tan2[i] = new Vector3();
+ }
+
+ var vA = new Vector3(),
+ vB = new Vector3(),
+ vC = new Vector3(),
+ uvA = new Vector2(),
+ uvB = new Vector2(),
+ uvC = new Vector2(),
+ sdir = new Vector3(),
+ tdir = new Vector3();
+
+ function handleTriangle(a, b, c) {
+ vA.fromArray(positions, a * 3);
+ vB.fromArray(positions, b * 3);
+ vC.fromArray(positions, c * 3);
+ uvA.fromArray(uvs, a * 2);
+ uvB.fromArray(uvs, b * 2);
+ uvC.fromArray(uvs, c * 2);
+ vB.sub(vA);
+ vC.sub(vA);
+ uvB.sub(uvA);
+ uvC.sub(uvA);
+ var r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
+
+ if (!isFinite(r)) return;
+ sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
+ tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
+ tan1[a].add(sdir);
+ tan1[b].add(sdir);
+ tan1[c].add(sdir);
+ tan2[a].add(tdir);
+ tan2[b].add(tdir);
+ tan2[c].add(tdir);
+ }
+
+ var groups = this.groups;
+
+ if (groups.length === 0) {
+ groups = [{
+ start: 0,
+ count: indices.length
+ }];
+ }
+
+ for (var _i3 = 0, il = groups.length; _i3 < il; ++_i3) {
+ var group = groups[_i3];
+ var start = group.start;
+ var count = group.count;
+
+ for (var j = start, jl = start + count; j < jl; j += 3) {
+ handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
+ }
+ }
+
+ var tmp = new Vector3(),
+ tmp2 = new Vector3();
+ var n = new Vector3(),
+ n2 = new Vector3();
+
+ function handleVertex(v) {
+ n.fromArray(normals, v * 3);
+ n2.copy(n);
+ var t = tan1[v]; // Gram-Schmidt orthogonalize
+
+ tmp.copy(t);
+ tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
+
+ tmp2.crossVectors(n2, t);
+ var test = tmp2.dot(tan2[v]);
+ var w = test < 0.0 ? -1.0 : 1.0;
+ tangents[v * 4] = tmp.x;
+ tangents[v * 4 + 1] = tmp.y;
+ tangents[v * 4 + 2] = tmp.z;
+ tangents[v * 4 + 3] = w;
+ }
+
+ for (var _i4 = 0, _il3 = groups.length; _i4 < _il3; ++_i4) {
+ var _group = groups[_i4];
+ var _start = _group.start;
+ var _count = _group.count;
+
+ for (var _j = _start, _jl = _start + _count; _j < _jl; _j += 3) {
+ handleVertex(indices[_j + 0]);
+ handleVertex(indices[_j + 1]);
+ handleVertex(indices[_j + 2]);
+ }
+ }
+ },
+ computeVertexNormals: function computeVertexNormals() {
+ var index = this.index;
+ var positionAttribute = this.getAttribute('position');
+
+ if (positionAttribute !== undefined) {
+ var normalAttribute = this.getAttribute('normal');
+
+ if (normalAttribute === undefined) {
+ normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
+ this.setAttribute('normal', normalAttribute);
+ } else {
+ // reset existing normals to zero
+ for (var i = 0, il = normalAttribute.count; i < il; i++) {
+ normalAttribute.setXYZ(i, 0, 0, 0);
+ }
+ }
+
+ var pA = new Vector3(),
+ pB = new Vector3(),
+ pC = new Vector3();
+ var nA = new Vector3(),
+ nB = new Vector3(),
+ nC = new Vector3();
+ var cb = new Vector3(),
+ ab = new Vector3(); // indexed elements
+
+ if (index) {
+ for (var _i5 = 0, _il4 = index.count; _i5 < _il4; _i5 += 3) {
+ var vA = index.getX(_i5 + 0);
+ var vB = index.getX(_i5 + 1);
+ var vC = index.getX(_i5 + 2);
+ pA.fromBufferAttribute(positionAttribute, vA);
+ pB.fromBufferAttribute(positionAttribute, vB);
+ pC.fromBufferAttribute(positionAttribute, vC);
+ cb.subVectors(pC, pB);
+ ab.subVectors(pA, pB);
+ cb.cross(ab);
+ nA.fromBufferAttribute(normalAttribute, vA);
+ nB.fromBufferAttribute(normalAttribute, vB);
+ nC.fromBufferAttribute(normalAttribute, vC);
+ nA.add(cb);
+ nB.add(cb);
+ nC.add(cb);
+ normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
+ normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
+ normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
+ }
+ } else {
+ // non-indexed elements (unconnected triangle soup)
+ for (var _i6 = 0, _il5 = positionAttribute.count; _i6 < _il5; _i6 += 3) {
+ pA.fromBufferAttribute(positionAttribute, _i6 + 0);
+ pB.fromBufferAttribute(positionAttribute, _i6 + 1);
+ pC.fromBufferAttribute(positionAttribute, _i6 + 2);
+ cb.subVectors(pC, pB);
+ ab.subVectors(pA, pB);
+ cb.cross(ab);
+ normalAttribute.setXYZ(_i6 + 0, cb.x, cb.y, cb.z);
+ normalAttribute.setXYZ(_i6 + 1, cb.x, cb.y, cb.z);
+ normalAttribute.setXYZ(_i6 + 2, cb.x, cb.y, cb.z);
+ }
+ }
+
+ this.normalizeNormals();
+ normalAttribute.needsUpdate = true;
+ }
+ },
+ merge: function merge(geometry, offset) {
+ if (!(geometry && geometry.isBufferGeometry)) {
+ console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
+ return;
+ }
+
+ if (offset === undefined) {
+ offset = 0;
+ console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
+ }
+
+ var attributes = this.attributes;
+
+ for (var key in attributes) {
+ if (geometry.attributes[key] === undefined) continue;
+ var attribute1 = attributes[key];
+ var attributeArray1 = attribute1.array;
+ var attribute2 = geometry.attributes[key];
+ var attributeArray2 = attribute2.array;
+ var attributeOffset = attribute2.itemSize * offset;
+ var length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
+
+ for (var i = 0, j = attributeOffset; i < length; i++, j++) {
+ attributeArray1[j] = attributeArray2[i];
+ }
+ }
+
+ return this;
+ },
+ normalizeNormals: function normalizeNormals() {
+ var normals = this.attributes.normal;
+
+ for (var i = 0, il = normals.count; i < il; i++) {
+ _vector$4.fromBufferAttribute(normals, i);
+
+ _vector$4.normalize();
+
+ normals.setXYZ(i, _vector$4.x, _vector$4.y, _vector$4.z);
+ }
+ },
+ toNonIndexed: function toNonIndexed() {
+ function convertBufferAttribute(attribute, indices) {
+ var array = attribute.array;
+ var itemSize = attribute.itemSize;
+ var normalized = attribute.normalized;
+ var array2 = new array.constructor(indices.length * itemSize);
+ var index = 0,
+ index2 = 0;
+
+ for (var i = 0, l = indices.length; i < l; i++) {
+ index = indices[i] * itemSize;
+
+ for (var j = 0; j < itemSize; j++) {
+ array2[index2++] = array[index++];
+ }
+ }
+
+ return new BufferAttribute(array2, itemSize, normalized);
+ } //
+
+
+ if (this.index === null) {
+ console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
+ return this;
+ }
+
+ var geometry2 = new BufferGeometry();
+ var indices = this.index.array;
+ var attributes = this.attributes; // attributes
+
+ for (var name in attributes) {
+ var attribute = attributes[name];
+ var newAttribute = convertBufferAttribute(attribute, indices);
+ geometry2.setAttribute(name, newAttribute);
+ } // morph attributes
+
+
+ var morphAttributes = this.morphAttributes;
+
+ for (var _name in morphAttributes) {
+ var morphArray = [];
+ var morphAttribute = morphAttributes[_name]; // morphAttribute: array of Float32BufferAttributes
+
+ for (var i = 0, il = morphAttribute.length; i < il; i++) {
+ var _attribute = morphAttribute[i];
+
+ var _newAttribute = convertBufferAttribute(_attribute, indices);
+
+ morphArray.push(_newAttribute);
+ }
+
+ geometry2.morphAttributes[_name] = morphArray;
+ }
+
+ geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
+
+ var groups = this.groups;
+
+ for (var _i7 = 0, l = groups.length; _i7 < l; _i7++) {
+ var group = groups[_i7];
+ geometry2.addGroup(group.start, group.count, group.materialIndex);
+ }
+
+ return geometry2;
+ },
+ toJSON: function toJSON() {
+ var data = {
+ metadata: {
+ version: 4.5,
+ type: 'BufferGeometry',
+ generator: 'BufferGeometry.toJSON'
+ }
+ }; // standard BufferGeometry serialization
+
+ data.uuid = this.uuid;
+ data.type = this.type;
+ if (this.name !== '') data.name = this.name;
+ if (Object.keys(this.userData).length > 0) data.userData = this.userData;
+
+ if (this.parameters !== undefined) {
+ var parameters = this.parameters;
+
+ for (var key in parameters) {
+ if (parameters[key] !== undefined) data[key] = parameters[key];
+ }
+
+ return data;
+ }
+
+ data.data = {
+ attributes: {}
+ };
+ var index = this.index;
+
+ if (index !== null) {
+ data.data.index = {
+ type: index.array.constructor.name,
+ array: Array.prototype.slice.call(index.array)
+ };
+ }
+
+ var attributes = this.attributes;
+
+ for (var _key in attributes) {
+ var attribute = attributes[_key];
+ var attributeData = attribute.toJSON(data.data);
+ if (attribute.name !== '') attributeData.name = attribute.name;
+ data.data.attributes[_key] = attributeData;
+ }
+
+ var morphAttributes = {};
+ var hasMorphAttributes = false;
+
+ for (var _key2 in this.morphAttributes) {
+ var attributeArray = this.morphAttributes[_key2];
+ var array = [];
+
+ for (var i = 0, il = attributeArray.length; i < il; i++) {
+ var _attribute2 = attributeArray[i];
+
+ var _attributeData = _attribute2.toJSON(data.data);
+
+ if (_attribute2.name !== '') _attributeData.name = _attribute2.name;
+ array.push(_attributeData);
+ }
+
+ if (array.length > 0) {
+ morphAttributes[_key2] = array;
+ hasMorphAttributes = true;
+ }
+ }
+
+ if (hasMorphAttributes) {
+ data.data.morphAttributes = morphAttributes;
+ data.data.morphTargetsRelative = this.morphTargetsRelative;
+ }
+
+ var groups = this.groups;
+
+ if (groups.length > 0) {
+ data.data.groups = JSON.parse(JSON.stringify(groups));
+ }
+
+ var boundingSphere = this.boundingSphere;
+
+ if (boundingSphere !== null) {
+ data.data.boundingSphere = {
+ center: boundingSphere.center.toArray(),
+ radius: boundingSphere.radius
+ };
+ }
+
+ return data;
+ },
+ clone: function clone() {
+ /*
+ // Handle primitives
+ const parameters = this.parameters;
+ if ( parameters !== undefined ) {
+ const values = [];
+ for ( const key in parameters ) {
+ values.push( parameters[ key ] );
+ }
+ const geometry = Object.create( this.constructor.prototype );
+ this.constructor.apply( geometry, values );
+ return geometry;
+ }
+ return new this.constructor().copy( this );
+ */
+ return new BufferGeometry().copy(this);
+ },
+ copy: function copy(source) {
+ // reset
+ this.index = null;
+ this.attributes = {};
+ this.morphAttributes = {};
+ this.groups = [];
+ this.boundingBox = null;
+ this.boundingSphere = null; // used for storing cloned, shared data
+
+ var data = {}; // name
+
+ this.name = source.name; // index
+
+ var index = source.index;
+
+ if (index !== null) {
+ this.setIndex(index.clone(data));
+ } // attributes
+
+
+ var attributes = source.attributes;
+
+ for (var name in attributes) {
+ var attribute = attributes[name];
+ this.setAttribute(name, attribute.clone(data));
+ } // morph attributes
+
+
+ var morphAttributes = source.morphAttributes;
+
+ for (var _name2 in morphAttributes) {
+ var array = [];
+ var morphAttribute = morphAttributes[_name2]; // morphAttribute: array of Float32BufferAttributes
+
+ for (var i = 0, l = morphAttribute.length; i < l; i++) {
+ array.push(morphAttribute[i].clone(data));
+ }
+
+ this.morphAttributes[_name2] = array;
+ }
+
+ this.morphTargetsRelative = source.morphTargetsRelative; // groups
+
+ var groups = source.groups;
+
+ for (var _i8 = 0, _l = groups.length; _i8 < _l; _i8++) {
+ var group = groups[_i8];
+ this.addGroup(group.start, group.count, group.materialIndex);
+ } // bounding box
+
+
+ var boundingBox = source.boundingBox;
+
+ if (boundingBox !== null) {
+ this.boundingBox = boundingBox.clone();
+ } // bounding sphere
+
+
+ var boundingSphere = source.boundingSphere;
+
+ if (boundingSphere !== null) {
+ this.boundingSphere = boundingSphere.clone();
+ } // draw range
+
+
+ this.drawRange.start = source.drawRange.start;
+ this.drawRange.count = source.drawRange.count; // user data
+
+ this.userData = source.userData;
+ return this;
+ },
+ dispose: function dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+ });
+
+ var _inverseMatrix = new Matrix4();
+
+ var _ray = new Ray();
+
+ var _sphere = new Sphere();
+
+ var _vA = new Vector3();
+
+ var _vB = new Vector3();
+
+ var _vC = new Vector3();
+
+ var _tempA = new Vector3();
+
+ var _tempB = new Vector3();
+
+ var _tempC = new Vector3();
+
+ var _morphA = new Vector3();
+
+ var _morphB = new Vector3();
+
+ var _morphC = new Vector3();
+
+ var _uvA = new Vector2();
+
+ var _uvB = new Vector2();
+
+ var _uvC = new Vector2();
+
+ var _intersectionPoint = new Vector3();
+
+ var _intersectionPointWorld = new Vector3();
+
+ function Mesh(geometry, material) {
+ if (geometry === void 0) {
+ geometry = new BufferGeometry();
+ }
+
+ if (material === void 0) {
+ material = new MeshBasicMaterial();
+ }
+
+ Object3D.call(this);
+ this.type = 'Mesh';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
+
+ Mesh.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Mesh,
+ isMesh: true,
+ copy: function copy(source) {
+ Object3D.prototype.copy.call(this, source);
+
+ if (source.morphTargetInfluences !== undefined) {
+ this.morphTargetInfluences = source.morphTargetInfluences.slice();
+ }
+
+ if (source.morphTargetDictionary !== undefined) {
+ this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
+ }
+
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ },
+ updateMorphTargets: function updateMorphTargets() {
+ var geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ var morphAttributes = geometry.morphAttributes;
+ var keys = Object.keys(morphAttributes);
+
+ if (keys.length > 0) {
+ var morphAttribute = morphAttributes[keys[0]];
+
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
+
+ for (var m = 0, ml = morphAttribute.length; m < ml; m++) {
+ var name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
+ }
+ } else {
+ var morphTargets = geometry.morphTargets;
+
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
+ },
+ raycast: function raycast(raycaster, intersects) {
+ var geometry = this.geometry;
+ var material = this.material;
+ var matrixWorld = this.matrixWorld;
+ if (material === undefined) return; // Checking boundingSphere distance to ray
+
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+
+ _sphere.copy(geometry.boundingSphere);
+
+ _sphere.applyMatrix4(matrixWorld);
+
+ if (raycaster.ray.intersectsSphere(_sphere) === false) return; //
+
+ _inverseMatrix.copy(matrixWorld).invert();
+
+ _ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix); // Check boundingBox before continuing
+
+
+ if (geometry.boundingBox !== null) {
+ if (_ray.intersectsBox(geometry.boundingBox) === false) return;
+ }
+
+ var intersection;
+
+ if (geometry.isBufferGeometry) {
+ var index = geometry.index;
+ var position = geometry.attributes.position;
+ var morphPosition = geometry.morphAttributes.position;
+ var morphTargetsRelative = geometry.morphTargetsRelative;
+ var uv = geometry.attributes.uv;
+ var uv2 = geometry.attributes.uv2;
+ var groups = geometry.groups;
+ var drawRange = geometry.drawRange;
+
+ if (index !== null) {
+ // indexed buffer geometry
+ if (Array.isArray(material)) {
+ for (var i = 0, il = groups.length; i < il; i++) {
+ var group = groups[i];
+ var groupMaterial = material[group.materialIndex];
+ var start = Math.max(group.start, drawRange.start);
+ var end = Math.min(group.start + group.count, drawRange.start + drawRange.count);
+
+ for (var j = start, jl = end; j < jl; j += 3) {
+ var a = index.getX(j);
+ var b = index.getX(j + 1);
+ var c = index.getX(j + 2);
+ intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
+
+ intersection.face.materialIndex = group.materialIndex;
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else {
+ var _start = Math.max(0, drawRange.start);
+
+ var _end = Math.min(index.count, drawRange.start + drawRange.count);
+
+ for (var _i = _start, _il = _end; _i < _il; _i += 3) {
+ var _a = index.getX(_i);
+
+ var _b = index.getX(_i + 1);
+
+ var _c = index.getX(_i + 2);
+
+ intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, _a, _b, _c);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(_i / 3); // triangle number in indexed buffer semantics
+
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else if (position !== undefined) {
+ // non-indexed buffer geometry
+ if (Array.isArray(material)) {
+ for (var _i2 = 0, _il2 = groups.length; _i2 < _il2; _i2++) {
+ var _group = groups[_i2];
+ var _groupMaterial = material[_group.materialIndex];
+
+ var _start2 = Math.max(_group.start, drawRange.start);
+
+ var _end2 = Math.min(_group.start + _group.count, drawRange.start + drawRange.count);
+
+ for (var _j = _start2, _jl = _end2; _j < _jl; _j += 3) {
+ var _a2 = _j;
+
+ var _b2 = _j + 1;
+
+ var _c2 = _j + 2;
+
+ intersection = checkBufferGeometryIntersection(this, _groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, _a2, _b2, _c2);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(_j / 3); // triangle number in non-indexed buffer semantics
+
+ intersection.face.materialIndex = _group.materialIndex;
+ intersects.push(intersection);
+ }
+ }
+ }
+ } else {
+ var _start3 = Math.max(0, drawRange.start);
+
+ var _end3 = Math.min(position.count, drawRange.start + drawRange.count);
+
+ for (var _i3 = _start3, _il3 = _end3; _i3 < _il3; _i3 += 3) {
+ var _a3 = _i3;
+
+ var _b3 = _i3 + 1;
+
+ var _c3 = _i3 + 2;
+
+ intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, _a3, _b3, _c3);
+
+ if (intersection) {
+ intersection.faceIndex = Math.floor(_i3 / 3); // triangle number in non-indexed buffer semantics
+
+ intersects.push(intersection);
+ }
+ }
+ }
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
+ });
+
+ function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
+ var intersect;
+
+ if (material.side === BackSide) {
+ intersect = ray.intersectTriangle(pC, pB, pA, true, point);
+ } else {
+ intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
+ }
+
+ if (intersect === null) return null;
+
+ _intersectionPointWorld.copy(point);
+
+ _intersectionPointWorld.applyMatrix4(object.matrixWorld);
+
+ var distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
+ if (distance < raycaster.near || distance > raycaster.far) return null;
+ return {
+ distance: distance,
+ point: _intersectionPointWorld.clone(),
+ object: object
+ };
+ }
+
+ function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
+ _vA.fromBufferAttribute(position, a);
+
+ _vB.fromBufferAttribute(position, b);
+
+ _vC.fromBufferAttribute(position, c);
+
+ var morphInfluences = object.morphTargetInfluences;
+
+ if (material.morphTargets && morphPosition && morphInfluences) {
+ _morphA.set(0, 0, 0);
+
+ _morphB.set(0, 0, 0);
+
+ _morphC.set(0, 0, 0);
+
+ for (var i = 0, il = morphPosition.length; i < il; i++) {
+ var influence = morphInfluences[i];
+ var morphAttribute = morphPosition[i];
+ if (influence === 0) continue;
+
+ _tempA.fromBufferAttribute(morphAttribute, a);
+
+ _tempB.fromBufferAttribute(morphAttribute, b);
+
+ _tempC.fromBufferAttribute(morphAttribute, c);
+
+ if (morphTargetsRelative) {
+ _morphA.addScaledVector(_tempA, influence);
+
+ _morphB.addScaledVector(_tempB, influence);
+
+ _morphC.addScaledVector(_tempC, influence);
+ } else {
+ _morphA.addScaledVector(_tempA.sub(_vA), influence);
+
+ _morphB.addScaledVector(_tempB.sub(_vB), influence);
+
+ _morphC.addScaledVector(_tempC.sub(_vC), influence);
+ }
+ }
+
+ _vA.add(_morphA);
+
+ _vB.add(_morphB);
+
+ _vC.add(_morphC);
+ }
+
+ if (object.isSkinnedMesh) {
+ object.boneTransform(a, _vA);
+ object.boneTransform(b, _vB);
+ object.boneTransform(c, _vC);
+ }
+
+ var intersection = checkIntersection(object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint);
+
+ if (intersection) {
+ if (uv) {
+ _uvA.fromBufferAttribute(uv, a);
+
+ _uvB.fromBufferAttribute(uv, b);
+
+ _uvC.fromBufferAttribute(uv, c);
+
+ intersection.uv = Triangle.getUV(_intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2());
+ }
+
+ if (uv2) {
+ _uvA.fromBufferAttribute(uv2, a);
+
+ _uvB.fromBufferAttribute(uv2, b);
+
+ _uvC.fromBufferAttribute(uv2, c);
+
+ intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2());
+ }
+
+ var face = new Face3(a, b, c);
+ Triangle.getNormal(_vA, _vB, _vC, face.normal);
+ intersection.face = face;
+ }
+
+ return intersection;
+ }
+
+ var BoxGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(BoxGeometry, _BufferGeometry);
+
+ function BoxGeometry(width, height, depth, widthSegments, heightSegments, depthSegments) {
+ var _this;
+
+ if (width === void 0) {
+ width = 1;
+ }
+
+ if (height === void 0) {
+ height = 1;
+ }
+
+ if (depth === void 0) {
+ depth = 1;
+ }
+
+ if (widthSegments === void 0) {
+ widthSegments = 1;
+ }
+
+ if (heightSegments === void 0) {
+ heightSegments = 1;
+ }
+
+ if (depthSegments === void 0) {
+ depthSegments = 1;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'BoxGeometry';
+ _this.parameters = {
+ width: width,
+ height: height,
+ depth: depth,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments,
+ depthSegments: depthSegments
+ };
+
+ var scope = _assertThisInitialized(_this); // segments
+
+
+ widthSegments = Math.floor(widthSegments);
+ heightSegments = Math.floor(heightSegments);
+ depthSegments = Math.floor(depthSegments); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // helper variables
+
+ var numberOfVertices = 0;
+ var groupStart = 0; // build each side of the box geometry
+
+ buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
+
+ buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
+
+ buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
+
+ buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
+
+ buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
+
+ buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
+ // build geometry
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
+ var segmentWidth = width / gridX;
+ var segmentHeight = height / gridY;
+ var widthHalf = width / 2;
+ var heightHalf = height / 2;
+ var depthHalf = depth / 2;
+ var gridX1 = gridX + 1;
+ var gridY1 = gridY + 1;
+ var vertexCounter = 0;
+ var groupCount = 0;
+ var vector = new Vector3(); // generate vertices, normals and uvs
+
+ for (var iy = 0; iy < gridY1; iy++) {
+ var y = iy * segmentHeight - heightHalf;
+
+ for (var ix = 0; ix < gridX1; ix++) {
+ var x = ix * segmentWidth - widthHalf; // set values to correct vector component
+
+ vector[u] = x * udir;
+ vector[v] = y * vdir;
+ vector[w] = depthHalf; // now apply vector to vertex buffer
+
+ vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
+
+ vector[u] = 0;
+ vector[v] = 0;
+ vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
+
+ normals.push(vector.x, vector.y, vector.z); // uvs
+
+ uvs.push(ix / gridX);
+ uvs.push(1 - iy / gridY); // counters
+
+ vertexCounter += 1;
+ }
+ } // indices
+ // 1. you need three indices to draw a single face
+ // 2. a single segment consists of two faces
+ // 3. so we need to generate six (2*3) indices per segment
+
+
+ for (var _iy = 0; _iy < gridY; _iy++) {
+ for (var _ix = 0; _ix < gridX; _ix++) {
+ var a = numberOfVertices + _ix + gridX1 * _iy;
+ var b = numberOfVertices + _ix + gridX1 * (_iy + 1);
+ var c = numberOfVertices + (_ix + 1) + gridX1 * (_iy + 1);
+ var d = numberOfVertices + (_ix + 1) + gridX1 * _iy; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d); // increase counter
+
+ groupCount += 6;
+ }
+ } // add a group to the geometry. this will ensure multi material support
+
+
+ scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
+
+ groupStart += groupCount; // update total number of vertices
+
+ numberOfVertices += vertexCounter;
+ }
+
+ return _this;
+ }
+
+ return BoxGeometry;
+ }(BufferGeometry);
+
+ /**
+ * Uniform Utilities
+ */
+ function cloneUniforms(src) {
+ var dst = {};
+
+ for (var u in src) {
+ dst[u] = {};
+
+ for (var p in src[u]) {
+ var property = src[u][p];
+
+ if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture)) {
+ dst[u][p] = property.clone();
+ } else if (Array.isArray(property)) {
+ dst[u][p] = property.slice();
+ } else {
+ dst[u][p] = property;
+ }
+ }
+ }
+
+ return dst;
+ }
+ function mergeUniforms(uniforms) {
+ var merged = {};
+
+ for (var u = 0; u < uniforms.length; u++) {
+ var tmp = cloneUniforms(uniforms[u]);
+
+ for (var p in tmp) {
+ merged[p] = tmp[p];
+ }
+ }
+
+ return merged;
+ } // Legacy
+
+ var UniformsUtils = {
+ clone: cloneUniforms,
+ merge: mergeUniforms
+ };
+
+ var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
+
+ var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
+
+ /**
+ * parameters = {
+ * defines: { "label" : "value" },
+ * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
+ *
+ * fragmentShader: <string>,
+ * vertexShader: <string>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * lights: <bool>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function ShaderMaterial(parameters) {
+ Material.call(this);
+ this.type = 'ShaderMaterial';
+ this.defines = {};
+ this.uniforms = {};
+ this.vertexShader = default_vertex;
+ this.fragmentShader = default_fragment;
+ this.linewidth = 1;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false; // set to use scene fog
+
+ this.lights = false; // set to use scene lights
+
+ this.clipping = false; // set to use user-defined clipping planes
+
+ this.skinning = false; // set to use skinning attribute streams
+
+ this.morphTargets = false; // set to use morph targets
+
+ this.morphNormals = false; // set to use morph normals
+
+ this.extensions = {
+ derivatives: false,
+ // set to use derivatives
+ fragDepth: false,
+ // set to use fragment depth values
+ drawBuffers: false,
+ // set to use draw buffers
+ shaderTextureLOD: false // set to use shader texture LOD
+
+ }; // When rendered geometry doesn't include these attributes but the material does,
+ // use these default values in WebGL. This avoids errors when buffer data is missing.
+
+ this.defaultAttributeValues = {
+ 'color': [1, 1, 1],
+ 'uv': [0, 0],
+ 'uv2': [0, 0]
+ };
+ this.index0AttributeName = undefined;
+ this.uniformsNeedUpdate = false;
+ this.glslVersion = null;
+
+ if (parameters !== undefined) {
+ if (parameters.attributes !== undefined) {
+ console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
+ }
+
+ this.setValues(parameters);
+ }
+ }
+
+ ShaderMaterial.prototype = Object.create(Material.prototype);
+ ShaderMaterial.prototype.constructor = ShaderMaterial;
+ ShaderMaterial.prototype.isShaderMaterial = true;
+
+ ShaderMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.fragmentShader = source.fragmentShader;
+ this.vertexShader = source.vertexShader;
+ this.uniforms = cloneUniforms(source.uniforms);
+ this.defines = Object.assign({}, source.defines);
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.lights = source.lights;
+ this.clipping = source.clipping;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ this.extensions = Object.assign({}, source.extensions);
+ this.glslVersion = source.glslVersion;
+ return this;
+ };
+
+ ShaderMaterial.prototype.toJSON = function (meta) {
+ var data = Material.prototype.toJSON.call(this, meta);
+ data.glslVersion = this.glslVersion;
+ data.uniforms = {};
+
+ for (var name in this.uniforms) {
+ var uniform = this.uniforms[name];
+ var value = uniform.value;
+
+ if (value && value.isTexture) {
+ data.uniforms[name] = {
+ type: 't',
+ value: value.toJSON(meta).uuid
+ };
+ } else if (value && value.isColor) {
+ data.uniforms[name] = {
+ type: 'c',
+ value: value.getHex()
+ };
+ } else if (value && value.isVector2) {
+ data.uniforms[name] = {
+ type: 'v2',
+ value: value.toArray()
+ };
+ } else if (value && value.isVector3) {
+ data.uniforms[name] = {
+ type: 'v3',
+ value: value.toArray()
+ };
+ } else if (value && value.isVector4) {
+ data.uniforms[name] = {
+ type: 'v4',
+ value: value.toArray()
+ };
+ } else if (value && value.isMatrix3) {
+ data.uniforms[name] = {
+ type: 'm3',
+ value: value.toArray()
+ };
+ } else if (value && value.isMatrix4) {
+ data.uniforms[name] = {
+ type: 'm4',
+ value: value.toArray()
+ };
+ } else {
+ data.uniforms[name] = {
+ value: value
+ }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
+ }
+ }
+
+ if (Object.keys(this.defines).length > 0) data.defines = this.defines;
+ data.vertexShader = this.vertexShader;
+ data.fragmentShader = this.fragmentShader;
+ var extensions = {};
+
+ for (var key in this.extensions) {
+ if (this.extensions[key] === true) extensions[key] = true;
+ }
+
+ if (Object.keys(extensions).length > 0) data.extensions = extensions;
+ return data;
+ };
+
+ function Camera() {
+ Object3D.call(this);
+ this.type = 'Camera';
+ this.matrixWorldInverse = new Matrix4();
+ this.projectionMatrix = new Matrix4();
+ this.projectionMatrixInverse = new Matrix4();
+ }
+
+ Camera.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Camera,
+ isCamera: true,
+ copy: function copy(source, recursive) {
+ Object3D.prototype.copy.call(this, source, recursive);
+ this.matrixWorldInverse.copy(source.matrixWorldInverse);
+ this.projectionMatrix.copy(source.projectionMatrix);
+ this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
+ return this;
+ },
+ getWorldDirection: function getWorldDirection(target) {
+ if (target === undefined) {
+ console.warn('THREE.Camera: .getWorldDirection() target is now required');
+ target = new Vector3();
+ }
+
+ this.updateWorldMatrix(true, false);
+ var e = this.matrixWorld.elements;
+ return target.set(-e[8], -e[9], -e[10]).normalize();
+ },
+ updateMatrixWorld: function updateMatrixWorld(force) {
+ Object3D.prototype.updateMatrixWorld.call(this, force);
+ this.matrixWorldInverse.copy(this.matrixWorld).invert();
+ },
+ updateWorldMatrix: function updateWorldMatrix(updateParents, updateChildren) {
+ Object3D.prototype.updateWorldMatrix.call(this, updateParents, updateChildren);
+ this.matrixWorldInverse.copy(this.matrixWorld).invert();
+ },
+ clone: function clone() {
+ return new this.constructor().copy(this);
+ }
+ });
+
+ function PerspectiveCamera(fov, aspect, near, far) {
+ if (fov === void 0) {
+ fov = 50;
+ }
+
+ if (aspect === void 0) {
+ aspect = 1;
+ }
+
+ if (near === void 0) {
+ near = 0.1;
+ }
+
+ if (far === void 0) {
+ far = 2000;
+ }
+
+ Camera.call(this);
+ this.type = 'PerspectiveCamera';
+ this.fov = fov;
+ this.zoom = 1;
+ this.near = near;
+ this.far = far;
+ this.focus = 10;
+ this.aspect = aspect;
+ this.view = null;
+ this.filmGauge = 35; // width of the film (default in millimeters)
+
+ this.filmOffset = 0; // horizontal film offset (same unit as gauge)
+
+ this.updateProjectionMatrix();
+ }
+
+ PerspectiveCamera.prototype = Object.assign(Object.create(Camera.prototype), {
+ constructor: PerspectiveCamera,
+ isPerspectiveCamera: true,
+ copy: function copy(source, recursive) {
+ Camera.prototype.copy.call(this, source, recursive);
+ this.fov = source.fov;
+ this.zoom = source.zoom;
+ this.near = source.near;
+ this.far = source.far;
+ this.focus = source.focus;
+ this.aspect = source.aspect;
+ this.view = source.view === null ? null : Object.assign({}, source.view);
+ this.filmGauge = source.filmGauge;
+ this.filmOffset = source.filmOffset;
+ return this;
+ },
+
+ /**
+ * Sets the FOV by focal length in respect to the current .filmGauge.
+ *
+ * The default film gauge is 35, so that the focal length can be specified for
+ * a 35mm (full frame) camera.
+ *
+ * Values for focal length and film gauge must have the same unit.
+ */
+ setFocalLength: function setFocalLength(focalLength) {
+ /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
+ var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
+ this.fov = MathUtils.RAD2DEG * 2 * Math.atan(vExtentSlope);
+ this.updateProjectionMatrix();
+ },
+
+ /**
+ * Calculates the focal length from the current .fov and .filmGauge.
+ */
+ getFocalLength: function getFocalLength() {
+ var vExtentSlope = Math.tan(MathUtils.DEG2RAD * 0.5 * this.fov);
+ return 0.5 * this.getFilmHeight() / vExtentSlope;
+ },
+ getEffectiveFOV: function getEffectiveFOV() {
+ return MathUtils.RAD2DEG * 2 * Math.atan(Math.tan(MathUtils.DEG2RAD * 0.5 * this.fov) / this.zoom);
+ },
+ getFilmWidth: function getFilmWidth() {
+ // film not completely covered in portrait format (aspect < 1)
+ return this.filmGauge * Math.min(this.aspect, 1);
+ },
+ getFilmHeight: function getFilmHeight() {
+ // film not completely covered in landscape format (aspect > 1)
+ return this.filmGauge / Math.max(this.aspect, 1);
+ },
+
+ /**
+ * Sets an offset in a larger frustum. This is useful for multi-window or
+ * multi-monitor/multi-machine setups.
+ *
+ * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
+ * the monitors are in grid like this
+ *
+ * +---+---+---+
+ * | A | B | C |
+ * +---+---+---+
+ * | D | E | F |
+ * +---+---+---+
+ *
+ * then for each monitor you would call it like this
+ *
+ * const w = 1920;
+ * const h = 1080;
+ * const fullWidth = w * 3;
+ * const fullHeight = h * 2;
+ *
+ * --A--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
+ * --B--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
+ * --C--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
+ * --D--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
+ * --E--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
+ * --F--
+ * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
+ *
+ * Note there is no reason monitors have to be the same size or in a grid.
+ */
+ setViewOffset: function setViewOffset(fullWidth, fullHeight, x, y, width, height) {
+ this.aspect = fullWidth / fullHeight;
+
+ if (this.view === null) {
+ this.view = {
+ enabled: true,
+ fullWidth: 1,
+ fullHeight: 1,
+ offsetX: 0,
+ offsetY: 0,
+ width: 1,
+ height: 1
+ };
+ }
+
+ this.view.enabled = true;
+ this.view.fullWidth = fullWidth;
+ this.view.fullHeight = fullHeight;
+ this.view.offsetX = x;
+ this.view.offsetY = y;
+ this.view.width = width;
+ this.view.height = height;
+ this.updateProjectionMatrix();
+ },
+ clearViewOffset: function clearViewOffset() {
+ if (this.view !== null) {
+ this.view.enabled = false;
+ }
+
+ this.updateProjectionMatrix();
+ },
+ updateProjectionMatrix: function updateProjectionMatrix() {
+ var near = this.near;
+ var top = near * Math.tan(MathUtils.DEG2RAD * 0.5 * this.fov) / this.zoom;
+ var height = 2 * top;
+ var width = this.aspect * height;
+ var left = -0.5 * width;
+ var view = this.view;
+
+ if (this.view !== null && this.view.enabled) {
+ var fullWidth = view.fullWidth,
+ fullHeight = view.fullHeight;
+ left += view.offsetX * width / fullWidth;
+ top -= view.offsetY * height / fullHeight;
+ width *= view.width / fullWidth;
+ height *= view.height / fullHeight;
+ }
+
+ var skew = this.filmOffset;
+ if (skew !== 0) left += near * skew / this.getFilmWidth();
+ this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
+ this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
+ },
+ toJSON: function toJSON(meta) {
+ var data = Object3D.prototype.toJSON.call(this, meta);
+ data.object.fov = this.fov;
+ data.object.zoom = this.zoom;
+ data.object.near = this.near;
+ data.object.far = this.far;
+ data.object.focus = this.focus;
+ data.object.aspect = this.aspect;
+ if (this.view !== null) data.object.view = Object.assign({}, this.view);
+ data.object.filmGauge = this.filmGauge;
+ data.object.filmOffset = this.filmOffset;
+ return data;
+ }
+ });
+
+ var fov = 90,
+ aspect = 1;
+
+ function CubeCamera(near, far, renderTarget) {
+ Object3D.call(this);
+ this.type = 'CubeCamera';
+
+ if (renderTarget.isWebGLCubeRenderTarget !== true) {
+ console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
+ return;
+ }
+
+ this.renderTarget = renderTarget;
+ var cameraPX = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPX.layers = this.layers;
+ cameraPX.up.set(0, -1, 0);
+ cameraPX.lookAt(new Vector3(1, 0, 0));
+ this.add(cameraPX);
+ var cameraNX = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNX.layers = this.layers;
+ cameraNX.up.set(0, -1, 0);
+ cameraNX.lookAt(new Vector3(-1, 0, 0));
+ this.add(cameraNX);
+ var cameraPY = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPY.layers = this.layers;
+ cameraPY.up.set(0, 0, 1);
+ cameraPY.lookAt(new Vector3(0, 1, 0));
+ this.add(cameraPY);
+ var cameraNY = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNY.layers = this.layers;
+ cameraNY.up.set(0, 0, -1);
+ cameraNY.lookAt(new Vector3(0, -1, 0));
+ this.add(cameraNY);
+ var cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
+ cameraPZ.layers = this.layers;
+ cameraPZ.up.set(0, -1, 0);
+ cameraPZ.lookAt(new Vector3(0, 0, 1));
+ this.add(cameraPZ);
+ var cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
+ cameraNZ.layers = this.layers;
+ cameraNZ.up.set(0, -1, 0);
+ cameraNZ.lookAt(new Vector3(0, 0, -1));
+ this.add(cameraNZ);
+
+ this.update = function (renderer, scene) {
+ if (this.parent === null) this.updateMatrixWorld();
+ var currentXrEnabled = renderer.xr.enabled;
+ var currentRenderTarget = renderer.getRenderTarget();
+ renderer.xr.enabled = false;
+ var generateMipmaps = renderTarget.texture.generateMipmaps;
+ renderTarget.texture.generateMipmaps = false;
+ renderer.setRenderTarget(renderTarget, 0);
+ renderer.render(scene, cameraPX);
+ renderer.setRenderTarget(renderTarget, 1);
+ renderer.render(scene, cameraNX);
+ renderer.setRenderTarget(renderTarget, 2);
+ renderer.render(scene, cameraPY);
+ renderer.setRenderTarget(renderTarget, 3);
+ renderer.render(scene, cameraNY);
+ renderer.setRenderTarget(renderTarget, 4);
+ renderer.render(scene, cameraPZ);
+ renderTarget.texture.generateMipmaps = generateMipmaps;
+ renderer.setRenderTarget(renderTarget, 5);
+ renderer.render(scene, cameraNZ);
+ renderer.setRenderTarget(currentRenderTarget);
+ renderer.xr.enabled = currentXrEnabled;
+ };
+ }
+
+ CubeCamera.prototype = Object.create(Object3D.prototype);
+ CubeCamera.prototype.constructor = CubeCamera;
+
+ function CubeTexture(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
+ images = images !== undefined ? images : [];
+ mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
+ format = format !== undefined ? format : RGBFormat;
+ Texture.call(this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.flipY = false; // Why CubeTexture._needsFlipEnvMap is necessary:
+ //
+ // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
+ // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
+ // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
+ // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
+ // and the flag _needsFlipEnvMap controls this conversion. The flip is not required (and thus _needsFlipEnvMap is set to false)
+ // when using WebGLCubeRenderTarget.texture as a cube texture.
+
+ this._needsFlipEnvMap = true;
+ }
+
+ CubeTexture.prototype = Object.create(Texture.prototype);
+ CubeTexture.prototype.constructor = CubeTexture;
+ CubeTexture.prototype.isCubeTexture = true;
+ Object.defineProperty(CubeTexture.prototype, 'images', {
+ get: function get() {
+ return this.image;
+ },
+ set: function set(value) {
+ this.image = value;
+ }
+ });
+
+ var WebGLCubeRenderTarget = /*#__PURE__*/function (_WebGLRenderTarget) {
+ _inheritsLoose(WebGLCubeRenderTarget, _WebGLRenderTarget);
+
+ function WebGLCubeRenderTarget(size, options, dummy) {
+ var _this;
+
+ if (Number.isInteger(options)) {
+ console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
+ options = dummy;
+ }
+
+ _this = _WebGLRenderTarget.call(this, size, size, options) || this;
+ Object.defineProperty(_assertThisInitialized(_this), 'isWebGLCubeRenderTarget', {
+ value: true
+ });
+ options = options || {};
+ _this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
+ _this.texture._needsFlipEnvMap = false;
+ return _this;
+ }
+
+ var _proto = WebGLCubeRenderTarget.prototype;
+
+ _proto.fromEquirectangularTexture = function fromEquirectangularTexture(renderer, texture) {
+ this.texture.type = texture.type;
+ this.texture.format = RGBAFormat; // see #18859
+
+ this.texture.encoding = texture.encoding;
+ this.texture.generateMipmaps = texture.generateMipmaps;
+ this.texture.minFilter = texture.minFilter;
+ this.texture.magFilter = texture.magFilter;
+ var shader = {
+ uniforms: {
+ tEquirect: {
+ value: null
+ }
+ },
+ vertexShader:
+ /* glsl */
+ "\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\tvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\n\t\t\t\t\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n\n\t\t\t\t}\n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvWorldDirection = transformDirection( position, modelMatrix );\n\n\t\t\t\t\t#include <begin_vertex>\n\t\t\t\t\t#include <project_vertex>\n\n\t\t\t\t}\n\t\t\t",
+ fragmentShader:
+ /* glsl */
+ "\n\n\t\t\t\tuniform sampler2D tEquirect;\n\n\t\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t\t#include <common>\n\n\t\t\t\tvoid main() {\n\n\t\t\t\t\tvec3 direction = normalize( vWorldDirection );\n\n\t\t\t\t\tvec2 sampleUV = equirectUv( direction );\n\n\t\t\t\t\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\n\t\t\t\t}\n\t\t\t"
+ };
+ var geometry = new BoxGeometry(5, 5, 5);
+ var material = new ShaderMaterial({
+ name: 'CubemapFromEquirect',
+ uniforms: cloneUniforms(shader.uniforms),
+ vertexShader: shader.vertexShader,
+ fragmentShader: shader.fragmentShader,
+ side: BackSide,
+ blending: NoBlending
+ });
+ material.uniforms.tEquirect.value = texture;
+ var mesh = new Mesh(geometry, material);
+ var currentMinFilter = texture.minFilter; // Avoid blurred poles
+
+ if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
+ var camera = new CubeCamera(1, 10, this);
+ camera.update(renderer, mesh);
+ texture.minFilter = currentMinFilter;
+ mesh.geometry.dispose();
+ mesh.material.dispose();
+ return this;
+ };
+
+ _proto.clear = function clear(renderer, color, depth, stencil) {
+ var currentRenderTarget = renderer.getRenderTarget();
+
+ for (var i = 0; i < 6; i++) {
+ renderer.setRenderTarget(this, i);
+ renderer.clear(color, depth, stencil);
+ }
+
+ renderer.setRenderTarget(currentRenderTarget);
+ };
+
+ return WebGLCubeRenderTarget;
+ }(WebGLRenderTarget);
+
+ function DataTexture(data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
+ Texture.call(this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.image = {
+ data: data || null,
+ width: width || 1,
+ height: height || 1
+ };
+ this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
+ this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
+ this.generateMipmaps = false;
+ this.flipY = false;
+ this.unpackAlignment = 1;
+ this.needsUpdate = true;
+ }
+
+ DataTexture.prototype = Object.create(Texture.prototype);
+ DataTexture.prototype.constructor = DataTexture;
+ DataTexture.prototype.isDataTexture = true;
+
+ var _sphere$1 = /*@__PURE__*/new Sphere();
+
+ var _vector$5 = /*@__PURE__*/new Vector3();
+
+ var Frustum = /*#__PURE__*/function () {
+ function Frustum(p0, p1, p2, p3, p4, p5) {
+ this.planes = [p0 !== undefined ? p0 : new Plane(), p1 !== undefined ? p1 : new Plane(), p2 !== undefined ? p2 : new Plane(), p3 !== undefined ? p3 : new Plane(), p4 !== undefined ? p4 : new Plane(), p5 !== undefined ? p5 : new Plane()];
+ }
+
+ var _proto = Frustum.prototype;
+
+ _proto.set = function set(p0, p1, p2, p3, p4, p5) {
+ var planes = this.planes;
+ planes[0].copy(p0);
+ planes[1].copy(p1);
+ planes[2].copy(p2);
+ planes[3].copy(p3);
+ planes[4].copy(p4);
+ planes[5].copy(p5);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(frustum) {
+ var planes = this.planes;
+
+ for (var i = 0; i < 6; i++) {
+ planes[i].copy(frustum.planes[i]);
+ }
+
+ return this;
+ };
+
+ _proto.setFromProjectionMatrix = function setFromProjectionMatrix(m) {
+ var planes = this.planes;
+ var me = m.elements;
+ var me0 = me[0],
+ me1 = me[1],
+ me2 = me[2],
+ me3 = me[3];
+ var me4 = me[4],
+ me5 = me[5],
+ me6 = me[6],
+ me7 = me[7];
+ var me8 = me[8],
+ me9 = me[9],
+ me10 = me[10],
+ me11 = me[11];
+ var me12 = me[12],
+ me13 = me[13],
+ me14 = me[14],
+ me15 = me[15];
+ planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
+ planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
+ planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
+ planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
+ planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
+ planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
+ return this;
+ };
+
+ _proto.intersectsObject = function intersectsObject(object) {
+ var geometry = object.geometry;
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+
+ _sphere$1.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
+
+ return this.intersectsSphere(_sphere$1);
+ };
+
+ _proto.intersectsSprite = function intersectsSprite(sprite) {
+ _sphere$1.center.set(0, 0, 0);
+
+ _sphere$1.radius = 0.7071067811865476;
+
+ _sphere$1.applyMatrix4(sprite.matrixWorld);
+
+ return this.intersectsSphere(_sphere$1);
+ };
+
+ _proto.intersectsSphere = function intersectsSphere(sphere) {
+ var planes = this.planes;
+ var center = sphere.center;
+ var negRadius = -sphere.radius;
+
+ for (var i = 0; i < 6; i++) {
+ var distance = planes[i].distanceToPoint(center);
+
+ if (distance < negRadius) {
+ return false;
+ }
+ }
+
+ return true;
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ var planes = this.planes;
+
+ for (var i = 0; i < 6; i++) {
+ var plane = planes[i]; // corner at max distance
+
+ _vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x;
+ _vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y;
+ _vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z;
+
+ if (plane.distanceToPoint(_vector$5) < 0) {
+ return false;
+ }
+ }
+
+ return true;
+ };
+
+ _proto.containsPoint = function containsPoint(point) {
+ var planes = this.planes;
+
+ for (var i = 0; i < 6; i++) {
+ if (planes[i].distanceToPoint(point) < 0) {
+ return false;
+ }
+ }
+
+ return true;
+ };
+
+ return Frustum;
+ }();
+
+ function WebGLAnimation() {
+ var context = null;
+ var isAnimating = false;
+ var animationLoop = null;
+ var requestId = null;
+
+ function onAnimationFrame(time, frame) {
+ animationLoop(time, frame);
+ requestId = context.requestAnimationFrame(onAnimationFrame);
+ }
+
+ return {
+ start: function start() {
+ if (isAnimating === true) return;
+ if (animationLoop === null) return;
+ requestId = context.requestAnimationFrame(onAnimationFrame);
+ isAnimating = true;
+ },
+ stop: function stop() {
+ context.cancelAnimationFrame(requestId);
+ isAnimating = false;
+ },
+ setAnimationLoop: function setAnimationLoop(callback) {
+ animationLoop = callback;
+ },
+ setContext: function setContext(value) {
+ context = value;
+ }
+ };
+ }
+
+ function WebGLAttributes(gl, capabilities) {
+ var isWebGL2 = capabilities.isWebGL2;
+ var buffers = new WeakMap();
+
+ function createBuffer(attribute, bufferType) {
+ var array = attribute.array;
+ var usage = attribute.usage;
+ var buffer = gl.createBuffer();
+ gl.bindBuffer(bufferType, buffer);
+ gl.bufferData(bufferType, array, usage);
+ attribute.onUploadCallback();
+ var type = 5126;
+
+ if (array instanceof Float32Array) {
+ type = 5126;
+ } else if (array instanceof Float64Array) {
+ console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
+ } else if (array instanceof Uint16Array) {
+ if (attribute.isFloat16BufferAttribute) {
+ if (isWebGL2) {
+ type = 5131;
+ } else {
+ console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
+ }
+ } else {
+ type = 5123;
+ }
+ } else if (array instanceof Int16Array) {
+ type = 5122;
+ } else if (array instanceof Uint32Array) {
+ type = 5125;
+ } else if (array instanceof Int32Array) {
+ type = 5124;
+ } else if (array instanceof Int8Array) {
+ type = 5120;
+ } else if (array instanceof Uint8Array) {
+ type = 5121;
+ }
+
+ return {
+ buffer: buffer,
+ type: type,
+ bytesPerElement: array.BYTES_PER_ELEMENT,
+ version: attribute.version
+ };
+ }
+
+ function updateBuffer(buffer, attribute, bufferType) {
+ var array = attribute.array;
+ var updateRange = attribute.updateRange;
+ gl.bindBuffer(bufferType, buffer);
+
+ if (updateRange.count === -1) {
+ // Not using update ranges
+ gl.bufferSubData(bufferType, 0, array);
+ } else {
+ if (isWebGL2) {
+ gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
+ } else {
+ gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
+ }
+
+ updateRange.count = -1; // reset range
+ }
+ } //
+
+
+ function get(attribute) {
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ return buffers.get(attribute);
+ }
+
+ function remove(attribute) {
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ var data = buffers.get(attribute);
+
+ if (data) {
+ gl.deleteBuffer(data.buffer);
+ buffers.delete(attribute);
+ }
+ }
+
+ function update(attribute, bufferType) {
+ if (attribute.isGLBufferAttribute) {
+ var cached = buffers.get(attribute);
+
+ if (!cached || cached.version < attribute.version) {
+ buffers.set(attribute, {
+ buffer: attribute.buffer,
+ type: attribute.type,
+ bytesPerElement: attribute.elementSize,
+ version: attribute.version
+ });
+ }
+
+ return;
+ }
+
+ if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
+ var data = buffers.get(attribute);
+
+ if (data === undefined) {
+ buffers.set(attribute, createBuffer(attribute, bufferType));
+ } else if (data.version < attribute.version) {
+ updateBuffer(data.buffer, attribute, bufferType);
+ data.version = attribute.version;
+ }
+ }
+
+ return {
+ get: get,
+ remove: remove,
+ update: update
+ };
+ }
+
+ var PlaneGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(PlaneGeometry, _BufferGeometry);
+
+ function PlaneGeometry(width, height, widthSegments, heightSegments) {
+ var _this;
+
+ if (width === void 0) {
+ width = 1;
+ }
+
+ if (height === void 0) {
+ height = 1;
+ }
+
+ if (widthSegments === void 0) {
+ widthSegments = 1;
+ }
+
+ if (heightSegments === void 0) {
+ heightSegments = 1;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'PlaneGeometry';
+ _this.parameters = {
+ width: width,
+ height: height,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments
+ };
+ var width_half = width / 2;
+ var height_half = height / 2;
+ var gridX = Math.floor(widthSegments);
+ var gridY = Math.floor(heightSegments);
+ var gridX1 = gridX + 1;
+ var gridY1 = gridY + 1;
+ var segment_width = width / gridX;
+ var segment_height = height / gridY; //
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = [];
+
+ for (var iy = 0; iy < gridY1; iy++) {
+ var y = iy * segment_height - height_half;
+
+ for (var ix = 0; ix < gridX1; ix++) {
+ var x = ix * segment_width - width_half;
+ vertices.push(x, -y, 0);
+ normals.push(0, 0, 1);
+ uvs.push(ix / gridX);
+ uvs.push(1 - iy / gridY);
+ }
+ }
+
+ for (var _iy = 0; _iy < gridY; _iy++) {
+ for (var _ix = 0; _ix < gridX; _ix++) {
+ var a = _ix + gridX1 * _iy;
+ var b = _ix + gridX1 * (_iy + 1);
+ var c = _ix + 1 + gridX1 * (_iy + 1);
+ var d = _ix + 1 + gridX1 * _iy;
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ }
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ return _this;
+ }
+
+ return PlaneGeometry;
+ }(BufferGeometry);
+
+ var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
+
+ var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
+
+ var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif";
+
+ var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif";
+
+ var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
+
+ var begin_vertex = "vec3 transformed = vec3( position );";
+
+ var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
+
+ var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif";
+
+ var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
+
+ var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
+
+ var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
+
+ var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
+
+ var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
+
+ var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";
+
+ var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";
+
+ var color_pars_vertex = "#if defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
+
+ var color_vertex = "#if defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor.xyz *= color.xyz;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
+
+ var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
+
+ var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
+
+ var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
+
+ var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
+
+ var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
+
+ var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
+
+ var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
+
+ var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
+
+ var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
+
+ var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
+
+ var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
+
+ var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
+
+ var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
+
+ var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
+
+ var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = - mvPosition.z;\n#endif";
+
+ var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif";
+
+ var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
+
+ var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
+
+ var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
+
+ var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif";
+
+ var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
+
+ var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
+
+ var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif";
+
+ var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif";
+
+ var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
+
+ var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
+
+ var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
+
+ var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
+
+ var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif";
+
+ var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat specularRoughness;\n\tvec3 specularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
+
+ var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
+
+ var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif";
+
+ var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
+
+ var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
+
+ var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
+
+ var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
+
+ var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
+
+ var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
+
+ var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
+
+ var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
+
+ var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
+
+ var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
+
+ var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
+
+ var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif";
+
+ var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";
+
+ var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif";
+
+ var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
+
+ var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif";
+
+ var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif";
+
+ var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
+
+ var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif";
+
+ var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
+
+ var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
+
+ var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
+
+ var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
+
+ var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
+
+ var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
+
+ var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
+
+ var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
+
+ var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
+
+ var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
+
+ var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
+
+ var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
+
+ var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
+
+ var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
+
+ var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
+
+ var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
+
+ var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
+
+ var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
+
+ var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
+
+ var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
+
+ var transmissionmap_fragment = "#ifdef USE_TRANSMISSIONMAP\n\ttotalTransmission *= texture2D( transmissionMap, vUv ).r;\n#endif";
+
+ var transmissionmap_pars_fragment = "#ifdef USE_TRANSMISSIONMAP\n\tuniform sampler2D transmissionMap;\n#endif";
+
+ var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
+
+ var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
+
+ var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
+
+ var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
+
+ var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
+
+ var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
+
+ var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
+
+ var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
+
+ var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
+
+ var cube_frag = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
+
+ var cube_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
+
+ var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
+
+ var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
+
+ var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
+
+ var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
+
+ var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
+
+ var equirect_vert = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
+
+ var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
+
+ var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
+
+ var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+
+ var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
+
+ var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+
+ var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+
+ var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+
+ var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
+
+ var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+
+ var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+
+ var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+
+ var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+
+ var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSMISSION\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSMISSION\n\tuniform float transmission;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <transmissionmap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#ifdef TRANSMISSION\n\t\tfloat totalTransmission = transmission;\n\t#endif\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <transmissionmap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSMISSION\n\t\tdiffuseColor.a *= mix( saturate( 1. - totalTransmission + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) ), 1.0, metalness );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
+
+ var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+
+ var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
+
+ var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
+
+ var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
+
+ var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
+
+ var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
+
+ var shadow_vert = "#include <common>\n#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
+
+ var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
+
+ var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
+
+ var ShaderChunk = {
+ alphamap_fragment: alphamap_fragment,
+ alphamap_pars_fragment: alphamap_pars_fragment,
+ alphatest_fragment: alphatest_fragment,
+ aomap_fragment: aomap_fragment,
+ aomap_pars_fragment: aomap_pars_fragment,
+ begin_vertex: begin_vertex,
+ beginnormal_vertex: beginnormal_vertex,
+ bsdfs: bsdfs,
+ bumpmap_pars_fragment: bumpmap_pars_fragment,
+ clipping_planes_fragment: clipping_planes_fragment,
+ clipping_planes_pars_fragment: clipping_planes_pars_fragment,
+ clipping_planes_pars_vertex: clipping_planes_pars_vertex,
+ clipping_planes_vertex: clipping_planes_vertex,
+ color_fragment: color_fragment,
+ color_pars_fragment: color_pars_fragment,
+ color_pars_vertex: color_pars_vertex,
+ color_vertex: color_vertex,
+ common: common,
+ cube_uv_reflection_fragment: cube_uv_reflection_fragment,
+ defaultnormal_vertex: defaultnormal_vertex,
+ displacementmap_pars_vertex: displacementmap_pars_vertex,
+ displacementmap_vertex: displacementmap_vertex,
+ emissivemap_fragment: emissivemap_fragment,
+ emissivemap_pars_fragment: emissivemap_pars_fragment,
+ encodings_fragment: encodings_fragment,
+ encodings_pars_fragment: encodings_pars_fragment,
+ envmap_fragment: envmap_fragment,
+ envmap_common_pars_fragment: envmap_common_pars_fragment,
+ envmap_pars_fragment: envmap_pars_fragment,
+ envmap_pars_vertex: envmap_pars_vertex,
+ envmap_physical_pars_fragment: envmap_physical_pars_fragment,
+ envmap_vertex: envmap_vertex,
+ fog_vertex: fog_vertex,
+ fog_pars_vertex: fog_pars_vertex,
+ fog_fragment: fog_fragment,
+ fog_pars_fragment: fog_pars_fragment,
+ gradientmap_pars_fragment: gradientmap_pars_fragment,
+ lightmap_fragment: lightmap_fragment,
+ lightmap_pars_fragment: lightmap_pars_fragment,
+ lights_lambert_vertex: lights_lambert_vertex,
+ lights_pars_begin: lights_pars_begin,
+ lights_toon_fragment: lights_toon_fragment,
+ lights_toon_pars_fragment: lights_toon_pars_fragment,
+ lights_phong_fragment: lights_phong_fragment,
+ lights_phong_pars_fragment: lights_phong_pars_fragment,
+ lights_physical_fragment: lights_physical_fragment,
+ lights_physical_pars_fragment: lights_physical_pars_fragment,
+ lights_fragment_begin: lights_fragment_begin,
+ lights_fragment_maps: lights_fragment_maps,
+ lights_fragment_end: lights_fragment_end,
+ logdepthbuf_fragment: logdepthbuf_fragment,
+ logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
+ logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
+ logdepthbuf_vertex: logdepthbuf_vertex,
+ map_fragment: map_fragment,
+ map_pars_fragment: map_pars_fragment,
+ map_particle_fragment: map_particle_fragment,
+ map_particle_pars_fragment: map_particle_pars_fragment,
+ metalnessmap_fragment: metalnessmap_fragment,
+ metalnessmap_pars_fragment: metalnessmap_pars_fragment,
+ morphnormal_vertex: morphnormal_vertex,
+ morphtarget_pars_vertex: morphtarget_pars_vertex,
+ morphtarget_vertex: morphtarget_vertex,
+ normal_fragment_begin: normal_fragment_begin,
+ normal_fragment_maps: normal_fragment_maps,
+ normalmap_pars_fragment: normalmap_pars_fragment,
+ clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
+ clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
+ clearcoat_pars_fragment: clearcoat_pars_fragment,
+ packing: packing,
+ premultiplied_alpha_fragment: premultiplied_alpha_fragment,
+ project_vertex: project_vertex,
+ dithering_fragment: dithering_fragment,
+ dithering_pars_fragment: dithering_pars_fragment,
+ roughnessmap_fragment: roughnessmap_fragment,
+ roughnessmap_pars_fragment: roughnessmap_pars_fragment,
+ shadowmap_pars_fragment: shadowmap_pars_fragment,
+ shadowmap_pars_vertex: shadowmap_pars_vertex,
+ shadowmap_vertex: shadowmap_vertex,
+ shadowmask_pars_fragment: shadowmask_pars_fragment,
+ skinbase_vertex: skinbase_vertex,
+ skinning_pars_vertex: skinning_pars_vertex,
+ skinning_vertex: skinning_vertex,
+ skinnormal_vertex: skinnormal_vertex,
+ specularmap_fragment: specularmap_fragment,
+ specularmap_pars_fragment: specularmap_pars_fragment,
+ tonemapping_fragment: tonemapping_fragment,
+ tonemapping_pars_fragment: tonemapping_pars_fragment,
+ transmissionmap_fragment: transmissionmap_fragment,
+ transmissionmap_pars_fragment: transmissionmap_pars_fragment,
+ uv_pars_fragment: uv_pars_fragment,
+ uv_pars_vertex: uv_pars_vertex,
+ uv_vertex: uv_vertex,
+ uv2_pars_fragment: uv2_pars_fragment,
+ uv2_pars_vertex: uv2_pars_vertex,
+ uv2_vertex: uv2_vertex,
+ worldpos_vertex: worldpos_vertex,
+ background_frag: background_frag,
+ background_vert: background_vert,
+ cube_frag: cube_frag,
+ cube_vert: cube_vert,
+ depth_frag: depth_frag,
+ depth_vert: depth_vert,
+ distanceRGBA_frag: distanceRGBA_frag,
+ distanceRGBA_vert: distanceRGBA_vert,
+ equirect_frag: equirect_frag,
+ equirect_vert: equirect_vert,
+ linedashed_frag: linedashed_frag,
+ linedashed_vert: linedashed_vert,
+ meshbasic_frag: meshbasic_frag,
+ meshbasic_vert: meshbasic_vert,
+ meshlambert_frag: meshlambert_frag,
+ meshlambert_vert: meshlambert_vert,
+ meshmatcap_frag: meshmatcap_frag,
+ meshmatcap_vert: meshmatcap_vert,
+ meshtoon_frag: meshtoon_frag,
+ meshtoon_vert: meshtoon_vert,
+ meshphong_frag: meshphong_frag,
+ meshphong_vert: meshphong_vert,
+ meshphysical_frag: meshphysical_frag,
+ meshphysical_vert: meshphysical_vert,
+ normal_frag: normal_frag,
+ normal_vert: normal_vert,
+ points_frag: points_frag,
+ points_vert: points_vert,
+ shadow_frag: shadow_frag,
+ shadow_vert: shadow_vert,
+ sprite_frag: sprite_frag,
+ sprite_vert: sprite_vert
+ };
+
+ /**
+ * Uniforms library for shared webgl shaders
+ */
+
+ var UniformsLib = {
+ common: {
+ diffuse: {
+ value: new Color(0xeeeeee)
+ },
+ opacity: {
+ value: 1.0
+ },
+ map: {
+ value: null
+ },
+ uvTransform: {
+ value: new Matrix3()
+ },
+ uv2Transform: {
+ value: new Matrix3()
+ },
+ alphaMap: {
+ value: null
+ }
+ },
+ specularmap: {
+ specularMap: {
+ value: null
+ }
+ },
+ envmap: {
+ envMap: {
+ value: null
+ },
+ flipEnvMap: {
+ value: -1
+ },
+ reflectivity: {
+ value: 1.0
+ },
+ refractionRatio: {
+ value: 0.98
+ },
+ maxMipLevel: {
+ value: 0
+ }
+ },
+ aomap: {
+ aoMap: {
+ value: null
+ },
+ aoMapIntensity: {
+ value: 1
+ }
+ },
+ lightmap: {
+ lightMap: {
+ value: null
+ },
+ lightMapIntensity: {
+ value: 1
+ }
+ },
+ emissivemap: {
+ emissiveMap: {
+ value: null
+ }
+ },
+ bumpmap: {
+ bumpMap: {
+ value: null
+ },
+ bumpScale: {
+ value: 1
+ }
+ },
+ normalmap: {
+ normalMap: {
+ value: null
+ },
+ normalScale: {
+ value: new Vector2(1, 1)
+ }
+ },
+ displacementmap: {
+ displacementMap: {
+ value: null
+ },
+ displacementScale: {
+ value: 1
+ },
+ displacementBias: {
+ value: 0
+ }
+ },
+ roughnessmap: {
+ roughnessMap: {
+ value: null
+ }
+ },
+ metalnessmap: {
+ metalnessMap: {
+ value: null
+ }
+ },
+ gradientmap: {
+ gradientMap: {
+ value: null
+ }
+ },
+ fog: {
+ fogDensity: {
+ value: 0.00025
+ },
+ fogNear: {
+ value: 1
+ },
+ fogFar: {
+ value: 2000
+ },
+ fogColor: {
+ value: new Color(0xffffff)
+ }
+ },
+ lights: {
+ ambientLightColor: {
+ value: []
+ },
+ lightProbe: {
+ value: []
+ },
+ directionalLights: {
+ value: [],
+ properties: {
+ direction: {},
+ color: {}
+ }
+ },
+ directionalLightShadows: {
+ value: [],
+ properties: {
+ shadowBias: {},
+ shadowNormalBias: {},
+ shadowRadius: {},
+ shadowMapSize: {}
+ }
+ },
+ directionalShadowMap: {
+ value: []
+ },
+ directionalShadowMatrix: {
+ value: []
+ },
+ spotLights: {
+ value: [],
+ properties: {
+ color: {},
+ position: {},
+ direction: {},
+ distance: {},
+ coneCos: {},
+ penumbraCos: {},
+ decay: {}
+ }
+ },
+ spotLightShadows: {
+ value: [],
+ properties: {
+ shadowBias: {},
+ shadowNormalBias: {},
+ shadowRadius: {},
+ shadowMapSize: {}
+ }
+ },
+ spotShadowMap: {
+ value: []
+ },
+ spotShadowMatrix: {
+ value: []
+ },
+ pointLights: {
+ value: [],
+ properties: {
+ color: {},
+ position: {},
+ decay: {},
+ distance: {}
+ }
+ },
+ pointLightShadows: {
+ value: [],
+ properties: {
+ shadowBias: {},
+ shadowNormalBias: {},
+ shadowRadius: {},
+ shadowMapSize: {},
+ shadowCameraNear: {},
+ shadowCameraFar: {}
+ }
+ },
+ pointShadowMap: {
+ value: []
+ },
+ pointShadowMatrix: {
+ value: []
+ },
+ hemisphereLights: {
+ value: [],
+ properties: {
+ direction: {},
+ skyColor: {},
+ groundColor: {}
+ }
+ },
+ // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
+ rectAreaLights: {
+ value: [],
+ properties: {
+ color: {},
+ position: {},
+ width: {},
+ height: {}
+ }
+ },
+ ltc_1: {
+ value: null
+ },
+ ltc_2: {
+ value: null
+ }
+ },
+ points: {
+ diffuse: {
+ value: new Color(0xeeeeee)
+ },
+ opacity: {
+ value: 1.0
+ },
+ size: {
+ value: 1.0
+ },
+ scale: {
+ value: 1.0
+ },
+ map: {
+ value: null
+ },
+ alphaMap: {
+ value: null
+ },
+ uvTransform: {
+ value: new Matrix3()
+ }
+ },
+ sprite: {
+ diffuse: {
+ value: new Color(0xeeeeee)
+ },
+ opacity: {
+ value: 1.0
+ },
+ center: {
+ value: new Vector2(0.5, 0.5)
+ },
+ rotation: {
+ value: 0.0
+ },
+ map: {
+ value: null
+ },
+ alphaMap: {
+ value: null
+ },
+ uvTransform: {
+ value: new Matrix3()
+ }
+ }
+ };
+
+ var ShaderLib = {
+ basic: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),
+ vertexShader: ShaderChunk.meshbasic_vert,
+ fragmentShader: ShaderChunk.meshbasic_frag
+ },
+ lambert: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ }
+ }]),
+ vertexShader: ShaderChunk.meshlambert_vert,
+ fragmentShader: ShaderChunk.meshlambert_frag
+ },
+ phong: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ },
+ specular: {
+ value: new Color(0x111111)
+ },
+ shininess: {
+ value: 30
+ }
+ }]),
+ vertexShader: ShaderChunk.meshphong_vert,
+ fragmentShader: ShaderChunk.meshphong_frag
+ },
+ standard: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ },
+ roughness: {
+ value: 1.0
+ },
+ metalness: {
+ value: 0.0
+ },
+ envMapIntensity: {
+ value: 1
+ } // temporary
+
+ }]),
+ vertexShader: ShaderChunk.meshphysical_vert,
+ fragmentShader: ShaderChunk.meshphysical_frag
+ },
+ toon: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {
+ emissive: {
+ value: new Color(0x000000)
+ }
+ }]),
+ vertexShader: ShaderChunk.meshtoon_vert,
+ fragmentShader: ShaderChunk.meshtoon_frag
+ },
+ matcap: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {
+ matcap: {
+ value: null
+ }
+ }]),
+ vertexShader: ShaderChunk.meshmatcap_vert,
+ fragmentShader: ShaderChunk.meshmatcap_frag
+ },
+ points: {
+ uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),
+ vertexShader: ShaderChunk.points_vert,
+ fragmentShader: ShaderChunk.points_frag
+ },
+ dashed: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {
+ scale: {
+ value: 1
+ },
+ dashSize: {
+ value: 1
+ },
+ totalSize: {
+ value: 2
+ }
+ }]),
+ vertexShader: ShaderChunk.linedashed_vert,
+ fragmentShader: ShaderChunk.linedashed_frag
+ },
+ depth: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),
+ vertexShader: ShaderChunk.depth_vert,
+ fragmentShader: ShaderChunk.depth_frag
+ },
+ normal: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {
+ opacity: {
+ value: 1.0
+ }
+ }]),
+ vertexShader: ShaderChunk.normal_vert,
+ fragmentShader: ShaderChunk.normal_frag
+ },
+ sprite: {
+ uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),
+ vertexShader: ShaderChunk.sprite_vert,
+ fragmentShader: ShaderChunk.sprite_frag
+ },
+ background: {
+ uniforms: {
+ uvTransform: {
+ value: new Matrix3()
+ },
+ t2D: {
+ value: null
+ }
+ },
+ vertexShader: ShaderChunk.background_vert,
+ fragmentShader: ShaderChunk.background_frag
+ },
+
+ /* -------------------------------------------------------------------------
+ // Cube map shader
+ ------------------------------------------------------------------------- */
+ cube: {
+ uniforms: mergeUniforms([UniformsLib.envmap, {
+ opacity: {
+ value: 1.0
+ }
+ }]),
+ vertexShader: ShaderChunk.cube_vert,
+ fragmentShader: ShaderChunk.cube_frag
+ },
+ equirect: {
+ uniforms: {
+ tEquirect: {
+ value: null
+ }
+ },
+ vertexShader: ShaderChunk.equirect_vert,
+ fragmentShader: ShaderChunk.equirect_frag
+ },
+ distanceRGBA: {
+ uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {
+ referencePosition: {
+ value: new Vector3()
+ },
+ nearDistance: {
+ value: 1
+ },
+ farDistance: {
+ value: 1000
+ }
+ }]),
+ vertexShader: ShaderChunk.distanceRGBA_vert,
+ fragmentShader: ShaderChunk.distanceRGBA_frag
+ },
+ shadow: {
+ uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {
+ color: {
+ value: new Color(0x00000)
+ },
+ opacity: {
+ value: 1.0
+ }
+ }]),
+ vertexShader: ShaderChunk.shadow_vert,
+ fragmentShader: ShaderChunk.shadow_frag
+ }
+ };
+ ShaderLib.physical = {
+ uniforms: mergeUniforms([ShaderLib.standard.uniforms, {
+ clearcoat: {
+ value: 0
+ },
+ clearcoatMap: {
+ value: null
+ },
+ clearcoatRoughness: {
+ value: 0
+ },
+ clearcoatRoughnessMap: {
+ value: null
+ },
+ clearcoatNormalScale: {
+ value: new Vector2(1, 1)
+ },
+ clearcoatNormalMap: {
+ value: null
+ },
+ sheen: {
+ value: new Color(0x000000)
+ },
+ transmission: {
+ value: 0
+ },
+ transmissionMap: {
+ value: null
+ }
+ }]),
+ vertexShader: ShaderChunk.meshphysical_vert,
+ fragmentShader: ShaderChunk.meshphysical_frag
+ };
+
+ function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {
+ var clearColor = new Color(0x000000);
+ var clearAlpha = 0;
+ var planeMesh;
+ var boxMesh;
+ var currentBackground = null;
+ var currentBackgroundVersion = 0;
+ var currentTonemapping = null;
+
+ function render(renderList, scene, camera, forceClear) {
+ var background = scene.isScene === true ? scene.background : null;
+
+ if (background && background.isTexture) {
+ background = cubemaps.get(background);
+ } // Ignore background in AR
+ // TODO: Reconsider this.
+
+
+ var xr = renderer.xr;
+ var session = xr.getSession && xr.getSession();
+
+ if (session && session.environmentBlendMode === 'additive') {
+ background = null;
+ }
+
+ if (background === null) {
+ setClear(clearColor, clearAlpha);
+ } else if (background && background.isColor) {
+ setClear(background, 1);
+ forceClear = true;
+ }
+
+ if (renderer.autoClear || forceClear) {
+ renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);
+ }
+
+ if (background && (background.isCubeTexture || background.isWebGLCubeRenderTarget || background.mapping === CubeUVReflectionMapping)) {
+ if (boxMesh === undefined) {
+ boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({
+ name: 'BackgroundCubeMaterial',
+ uniforms: cloneUniforms(ShaderLib.cube.uniforms),
+ vertexShader: ShaderLib.cube.vertexShader,
+ fragmentShader: ShaderLib.cube.fragmentShader,
+ side: BackSide,
+ depthTest: false,
+ depthWrite: false,
+ fog: false
+ }));
+ boxMesh.geometry.deleteAttribute('normal');
+ boxMesh.geometry.deleteAttribute('uv');
+
+ boxMesh.onBeforeRender = function (renderer, scene, camera) {
+ this.matrixWorld.copyPosition(camera.matrixWorld);
+ }; // enable code injection for non-built-in material
+
+
+ Object.defineProperty(boxMesh.material, 'envMap', {
+ get: function get() {
+ return this.uniforms.envMap.value;
+ }
+ });
+ objects.update(boxMesh);
+ }
+
+ if (background.isWebGLCubeRenderTarget) {
+ // TODO Deprecate
+ background = background.texture;
+ }
+
+ boxMesh.material.uniforms.envMap.value = background;
+ boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background._needsFlipEnvMap ? -1 : 1;
+
+ if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
+ boxMesh.material.needsUpdate = true;
+ currentBackground = background;
+ currentBackgroundVersion = background.version;
+ currentTonemapping = renderer.toneMapping;
+ } // push to the pre-sorted opaque render list
+
+
+ renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);
+ } else if (background && background.isTexture) {
+ if (planeMesh === undefined) {
+ planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({
+ name: 'BackgroundMaterial',
+ uniforms: cloneUniforms(ShaderLib.background.uniforms),
+ vertexShader: ShaderLib.background.vertexShader,
+ fragmentShader: ShaderLib.background.fragmentShader,
+ side: FrontSide,
+ depthTest: false,
+ depthWrite: false,
+ fog: false
+ }));
+ planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material
+
+ Object.defineProperty(planeMesh.material, 'map', {
+ get: function get() {
+ return this.uniforms.t2D.value;
+ }
+ });
+ objects.update(planeMesh);
+ }
+
+ planeMesh.material.uniforms.t2D.value = background;
+
+ if (background.matrixAutoUpdate === true) {
+ background.updateMatrix();
+ }
+
+ planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);
+
+ if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
+ planeMesh.material.needsUpdate = true;
+ currentBackground = background;
+ currentBackgroundVersion = background.version;
+ currentTonemapping = renderer.toneMapping;
+ } // push to the pre-sorted opaque render list
+
+
+ renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);
+ }
+ }
+
+ function setClear(color, alpha) {
+ state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);
+ }
+
+ return {
+ getClearColor: function getClearColor() {
+ return clearColor;
+ },
+ setClearColor: function setClearColor(color, alpha) {
+ if (alpha === void 0) {
+ alpha = 1;
+ }
+
+ clearColor.set(color);
+ clearAlpha = alpha;
+ setClear(clearColor, clearAlpha);
+ },
+ getClearAlpha: function getClearAlpha() {
+ return clearAlpha;
+ },
+ setClearAlpha: function setClearAlpha(alpha) {
+ clearAlpha = alpha;
+ setClear(clearColor, clearAlpha);
+ },
+ render: render
+ };
+ }
+
+ function WebGLBindingStates(gl, extensions, attributes, capabilities) {
+ var maxVertexAttributes = gl.getParameter(34921);
+ var extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');
+ var vaoAvailable = capabilities.isWebGL2 || extension !== null;
+ var bindingStates = {};
+ var defaultState = createBindingState(null);
+ var currentState = defaultState;
+
+ function setup(object, material, program, geometry, index) {
+ var updateBuffers = false;
+
+ if (vaoAvailable) {
+ var state = getBindingState(geometry, program, material);
+
+ if (currentState !== state) {
+ currentState = state;
+ bindVertexArrayObject(currentState.object);
+ }
+
+ updateBuffers = needsUpdate(geometry, index);
+ if (updateBuffers) saveCache(geometry, index);
+ } else {
+ var wireframe = material.wireframe === true;
+
+ if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {
+ currentState.geometry = geometry.id;
+ currentState.program = program.id;
+ currentState.wireframe = wireframe;
+ updateBuffers = true;
+ }
+ }
+
+ if (object.isInstancedMesh === true) {
+ updateBuffers = true;
+ }
+
+ if (index !== null) {
+ attributes.update(index, 34963);
+ }
+
+ if (updateBuffers) {
+ setupVertexAttributes(object, material, program, geometry);
+
+ if (index !== null) {
+ gl.bindBuffer(34963, attributes.get(index).buffer);
+ }
+ }
+ }
+
+ function createVertexArrayObject() {
+ if (capabilities.isWebGL2) return gl.createVertexArray();
+ return extension.createVertexArrayOES();
+ }
+
+ function bindVertexArrayObject(vao) {
+ if (capabilities.isWebGL2) return gl.bindVertexArray(vao);
+ return extension.bindVertexArrayOES(vao);
+ }
+
+ function deleteVertexArrayObject(vao) {
+ if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);
+ return extension.deleteVertexArrayOES(vao);
+ }
+
+ function getBindingState(geometry, program, material) {
+ var wireframe = material.wireframe === true;
+ var programMap = bindingStates[geometry.id];
+
+ if (programMap === undefined) {
+ programMap = {};
+ bindingStates[geometry.id] = programMap;
+ }
+
+ var stateMap = programMap[program.id];
+
+ if (stateMap === undefined) {
+ stateMap = {};
+ programMap[program.id] = stateMap;
+ }
+
+ var state = stateMap[wireframe];
+
+ if (state === undefined) {
+ state = createBindingState(createVertexArrayObject());
+ stateMap[wireframe] = state;
+ }
+
+ return state;
+ }
+
+ function createBindingState(vao) {
+ var newAttributes = [];
+ var enabledAttributes = [];
+ var attributeDivisors = [];
+
+ for (var i = 0; i < maxVertexAttributes; i++) {
+ newAttributes[i] = 0;
+ enabledAttributes[i] = 0;
+ attributeDivisors[i] = 0;
+ }
+
+ return {
+ // for backward compatibility on non-VAO support browser
+ geometry: null,
+ program: null,
+ wireframe: false,
+ newAttributes: newAttributes,
+ enabledAttributes: enabledAttributes,
+ attributeDivisors: attributeDivisors,
+ object: vao,
+ attributes: {},
+ index: null
+ };
+ }
+
+ function needsUpdate(geometry, index) {
+ var cachedAttributes = currentState.attributes;
+ var geometryAttributes = geometry.attributes;
+ var attributesNum = 0;
+
+ for (var key in geometryAttributes) {
+ var cachedAttribute = cachedAttributes[key];
+ var geometryAttribute = geometryAttributes[key];
+ if (cachedAttribute === undefined) return true;
+ if (cachedAttribute.attribute !== geometryAttribute) return true;
+ if (cachedAttribute.data !== geometryAttribute.data) return true;
+ attributesNum++;
+ }
+
+ if (currentState.attributesNum !== attributesNum) return true;
+ if (currentState.index !== index) return true;
+ return false;
+ }
+
+ function saveCache(geometry, index) {
+ var cache = {};
+ var attributes = geometry.attributes;
+ var attributesNum = 0;
+
+ for (var key in attributes) {
+ var attribute = attributes[key];
+ var data = {};
+ data.attribute = attribute;
+
+ if (attribute.data) {
+ data.data = attribute.data;
+ }
+
+ cache[key] = data;
+ attributesNum++;
+ }
+
+ currentState.attributes = cache;
+ currentState.attributesNum = attributesNum;
+ currentState.index = index;
+ }
+
+ function initAttributes() {
+ var newAttributes = currentState.newAttributes;
+
+ for (var i = 0, il = newAttributes.length; i < il; i++) {
+ newAttributes[i] = 0;
+ }
+ }
+
+ function enableAttribute(attribute) {
+ enableAttributeAndDivisor(attribute, 0);
+ }
+
+ function enableAttributeAndDivisor(attribute, meshPerAttribute) {
+ var newAttributes = currentState.newAttributes;
+ var enabledAttributes = currentState.enabledAttributes;
+ var attributeDivisors = currentState.attributeDivisors;
+ newAttributes[attribute] = 1;
+
+ if (enabledAttributes[attribute] === 0) {
+ gl.enableVertexAttribArray(attribute);
+ enabledAttributes[attribute] = 1;
+ }
+
+ if (attributeDivisors[attribute] !== meshPerAttribute) {
+ var _extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');
+
+ _extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);
+
+ attributeDivisors[attribute] = meshPerAttribute;
+ }
+ }
+
+ function disableUnusedAttributes() {
+ var newAttributes = currentState.newAttributes;
+ var enabledAttributes = currentState.enabledAttributes;
+
+ for (var i = 0, il = enabledAttributes.length; i < il; i++) {
+ if (enabledAttributes[i] !== newAttributes[i]) {
+ gl.disableVertexAttribArray(i);
+ enabledAttributes[i] = 0;
+ }
+ }
+ }
+
+ function vertexAttribPointer(index, size, type, normalized, stride, offset) {
+ if (capabilities.isWebGL2 === true && (type === 5124 || type === 5125)) {
+ gl.vertexAttribIPointer(index, size, type, stride, offset);
+ } else {
+ gl.vertexAttribPointer(index, size, type, normalized, stride, offset);
+ }
+ }
+
+ function setupVertexAttributes(object, material, program, geometry) {
+ if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {
+ if (extensions.get('ANGLE_instanced_arrays') === null) return;
+ }
+
+ initAttributes();
+ var geometryAttributes = geometry.attributes;
+ var programAttributes = program.getAttributes();
+ var materialDefaultAttributeValues = material.defaultAttributeValues;
+
+ for (var name in programAttributes) {
+ var programAttribute = programAttributes[name];
+
+ if (programAttribute >= 0) {
+ var geometryAttribute = geometryAttributes[name];
+
+ if (geometryAttribute !== undefined) {
+ var normalized = geometryAttribute.normalized;
+ var size = geometryAttribute.itemSize;
+ var attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore
+
+ if (attribute === undefined) continue;
+ var buffer = attribute.buffer;
+ var type = attribute.type;
+ var bytesPerElement = attribute.bytesPerElement;
+
+ if (geometryAttribute.isInterleavedBufferAttribute) {
+ var data = geometryAttribute.data;
+ var stride = data.stride;
+ var offset = geometryAttribute.offset;
+
+ if (data && data.isInstancedInterleavedBuffer) {
+ enableAttributeAndDivisor(programAttribute, data.meshPerAttribute);
+
+ if (geometry._maxInstanceCount === undefined) {
+ geometry._maxInstanceCount = data.meshPerAttribute * data.count;
+ }
+ } else {
+ enableAttribute(programAttribute);
+ }
+
+ gl.bindBuffer(34962, buffer);
+ vertexAttribPointer(programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement);
+ } else {
+ if (geometryAttribute.isInstancedBufferAttribute) {
+ enableAttributeAndDivisor(programAttribute, geometryAttribute.meshPerAttribute);
+
+ if (geometry._maxInstanceCount === undefined) {
+ geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
+ }
+ } else {
+ enableAttribute(programAttribute);
+ }
+
+ gl.bindBuffer(34962, buffer);
+ vertexAttribPointer(programAttribute, size, type, normalized, 0, 0);
+ }
+ } else if (name === 'instanceMatrix') {
+ var _attribute = attributes.get(object.instanceMatrix); // TODO Attribute may not be available on context restore
+
+
+ if (_attribute === undefined) continue;
+ var _buffer = _attribute.buffer;
+ var _type = _attribute.type;
+ enableAttributeAndDivisor(programAttribute + 0, 1);
+ enableAttributeAndDivisor(programAttribute + 1, 1);
+ enableAttributeAndDivisor(programAttribute + 2, 1);
+ enableAttributeAndDivisor(programAttribute + 3, 1);
+ gl.bindBuffer(34962, _buffer);
+ gl.vertexAttribPointer(programAttribute + 0, 4, _type, false, 64, 0);
+ gl.vertexAttribPointer(programAttribute + 1, 4, _type, false, 64, 16);
+ gl.vertexAttribPointer(programAttribute + 2, 4, _type, false, 64, 32);
+ gl.vertexAttribPointer(programAttribute + 3, 4, _type, false, 64, 48);
+ } else if (name === 'instanceColor') {
+ var _attribute2 = attributes.get(object.instanceColor); // TODO Attribute may not be available on context restore
+
+
+ if (_attribute2 === undefined) continue;
+ var _buffer2 = _attribute2.buffer;
+ var _type2 = _attribute2.type;
+ enableAttributeAndDivisor(programAttribute, 1);
+ gl.bindBuffer(34962, _buffer2);
+ gl.vertexAttribPointer(programAttribute, 3, _type2, false, 12, 0);
+ } else if (materialDefaultAttributeValues !== undefined) {
+ var value = materialDefaultAttributeValues[name];
+
+ if (value !== undefined) {
+ switch (value.length) {
+ case 2:
+ gl.vertexAttrib2fv(programAttribute, value);
+ break;
+
+ case 3:
+ gl.vertexAttrib3fv(programAttribute, value);
+ break;
+
+ case 4:
+ gl.vertexAttrib4fv(programAttribute, value);
+ break;
+
+ default:
+ gl.vertexAttrib1fv(programAttribute, value);
+ }
+ }
+ }
+ }
+ }
+
+ disableUnusedAttributes();
+ }
+
+ function dispose() {
+ reset();
+
+ for (var geometryId in bindingStates) {
+ var programMap = bindingStates[geometryId];
+
+ for (var programId in programMap) {
+ var stateMap = programMap[programId];
+
+ for (var wireframe in stateMap) {
+ deleteVertexArrayObject(stateMap[wireframe].object);
+ delete stateMap[wireframe];
+ }
+
+ delete programMap[programId];
+ }
+
+ delete bindingStates[geometryId];
+ }
+ }
+
+ function releaseStatesOfGeometry(geometry) {
+ if (bindingStates[geometry.id] === undefined) return;
+ var programMap = bindingStates[geometry.id];
+
+ for (var programId in programMap) {
+ var stateMap = programMap[programId];
+
+ for (var wireframe in stateMap) {
+ deleteVertexArrayObject(stateMap[wireframe].object);
+ delete stateMap[wireframe];
+ }
+
+ delete programMap[programId];
+ }
+
+ delete bindingStates[geometry.id];
+ }
+
+ function releaseStatesOfProgram(program) {
+ for (var geometryId in bindingStates) {
+ var programMap = bindingStates[geometryId];
+ if (programMap[program.id] === undefined) continue;
+ var stateMap = programMap[program.id];
+
+ for (var wireframe in stateMap) {
+ deleteVertexArrayObject(stateMap[wireframe].object);
+ delete stateMap[wireframe];
+ }
+
+ delete programMap[program.id];
+ }
+ }
+
+ function reset() {
+ resetDefaultState();
+ if (currentState === defaultState) return;
+ currentState = defaultState;
+ bindVertexArrayObject(currentState.object);
+ } // for backward-compatilibity
+
+
+ function resetDefaultState() {
+ defaultState.geometry = null;
+ defaultState.program = null;
+ defaultState.wireframe = false;
+ }
+
+ return {
+ setup: setup,
+ reset: reset,
+ resetDefaultState: resetDefaultState,
+ dispose: dispose,
+ releaseStatesOfGeometry: releaseStatesOfGeometry,
+ releaseStatesOfProgram: releaseStatesOfProgram,
+ initAttributes: initAttributes,
+ enableAttribute: enableAttribute,
+ disableUnusedAttributes: disableUnusedAttributes
+ };
+ }
+
+ function WebGLBufferRenderer(gl, extensions, info, capabilities) {
+ var isWebGL2 = capabilities.isWebGL2;
+ var mode;
+
+ function setMode(value) {
+ mode = value;
+ }
+
+ function render(start, count) {
+ gl.drawArrays(mode, start, count);
+ info.update(count, mode, 1);
+ }
+
+ function renderInstances(start, count, primcount) {
+ if (primcount === 0) return;
+ var extension, methodName;
+
+ if (isWebGL2) {
+ extension = gl;
+ methodName = 'drawArraysInstanced';
+ } else {
+ extension = extensions.get('ANGLE_instanced_arrays');
+ methodName = 'drawArraysInstancedANGLE';
+
+ if (extension === null) {
+ console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
+ return;
+ }
+ }
+
+ extension[methodName](mode, start, count, primcount);
+ info.update(count, mode, primcount);
+ } //
+
+
+ this.setMode = setMode;
+ this.render = render;
+ this.renderInstances = renderInstances;
+ }
+
+ function WebGLCapabilities(gl, extensions, parameters) {
+ var maxAnisotropy;
+
+ function getMaxAnisotropy() {
+ if (maxAnisotropy !== undefined) return maxAnisotropy;
+ var extension = extensions.get('EXT_texture_filter_anisotropic');
+
+ if (extension !== null) {
+ maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);
+ } else {
+ maxAnisotropy = 0;
+ }
+
+ return maxAnisotropy;
+ }
+
+ function getMaxPrecision(precision) {
+ if (precision === 'highp') {
+ if (gl.getShaderPrecisionFormat(35633, 36338).precision > 0 && gl.getShaderPrecisionFormat(35632, 36338).precision > 0) {
+ return 'highp';
+ }
+
+ precision = 'mediump';
+ }
+
+ if (precision === 'mediump') {
+ if (gl.getShaderPrecisionFormat(35633, 36337).precision > 0 && gl.getShaderPrecisionFormat(35632, 36337).precision > 0) {
+ return 'mediump';
+ }
+ }
+
+ return 'lowp';
+ }
+ /* eslint-disable no-undef */
+
+
+ var isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;
+ /* eslint-enable no-undef */
+
+ var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
+ var maxPrecision = getMaxPrecision(precision);
+
+ if (maxPrecision !== precision) {
+ console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');
+ precision = maxPrecision;
+ }
+
+ var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
+ var maxTextures = gl.getParameter(34930);
+ var maxVertexTextures = gl.getParameter(35660);
+ var maxTextureSize = gl.getParameter(3379);
+ var maxCubemapSize = gl.getParameter(34076);
+ var maxAttributes = gl.getParameter(34921);
+ var maxVertexUniforms = gl.getParameter(36347);
+ var maxVaryings = gl.getParameter(36348);
+ var maxFragmentUniforms = gl.getParameter(36349);
+ var vertexTextures = maxVertexTextures > 0;
+ var floatFragmentTextures = isWebGL2 || !!extensions.get('OES_texture_float');
+ var floatVertexTextures = vertexTextures && floatFragmentTextures;
+ var maxSamples = isWebGL2 ? gl.getParameter(36183) : 0;
+ return {
+ isWebGL2: isWebGL2,
+ getMaxAnisotropy: getMaxAnisotropy,
+ getMaxPrecision: getMaxPrecision,
+ precision: precision,
+ logarithmicDepthBuffer: logarithmicDepthBuffer,
+ maxTextures: maxTextures,
+ maxVertexTextures: maxVertexTextures,
+ maxTextureSize: maxTextureSize,
+ maxCubemapSize: maxCubemapSize,
+ maxAttributes: maxAttributes,
+ maxVertexUniforms: maxVertexUniforms,
+ maxVaryings: maxVaryings,
+ maxFragmentUniforms: maxFragmentUniforms,
+ vertexTextures: vertexTextures,
+ floatFragmentTextures: floatFragmentTextures,
+ floatVertexTextures: floatVertexTextures,
+ maxSamples: maxSamples
+ };
+ }
+
+ function WebGLClipping(properties) {
+ var scope = this;
+ var globalState = null,
+ numGlobalPlanes = 0,
+ localClippingEnabled = false,
+ renderingShadows = false;
+ var plane = new Plane(),
+ viewNormalMatrix = new Matrix3(),
+ uniform = {
+ value: null,
+ needsUpdate: false
+ };
+ this.uniform = uniform;
+ this.numPlanes = 0;
+ this.numIntersection = 0;
+
+ this.init = function (planes, enableLocalClipping, camera) {
+ var enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to
+ // run another frame in order to reset the state:
+ numGlobalPlanes !== 0 || localClippingEnabled;
+ localClippingEnabled = enableLocalClipping;
+ globalState = projectPlanes(planes, camera, 0);
+ numGlobalPlanes = planes.length;
+ return enabled;
+ };
+
+ this.beginShadows = function () {
+ renderingShadows = true;
+ projectPlanes(null);
+ };
+
+ this.endShadows = function () {
+ renderingShadows = false;
+ resetGlobalState();
+ };
+
+ this.setState = function (material, camera, useCache) {
+ var planes = material.clippingPlanes,
+ clipIntersection = material.clipIntersection,
+ clipShadows = material.clipShadows;
+ var materialProperties = properties.get(material);
+
+ if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {
+ // there's no local clipping
+ if (renderingShadows) {
+ // there's no global clipping
+ projectPlanes(null);
+ } else {
+ resetGlobalState();
+ }
+ } else {
+ var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
+ lGlobal = nGlobal * 4;
+ var dstArray = materialProperties.clippingState || null;
+ uniform.value = dstArray; // ensure unique state
+
+ dstArray = projectPlanes(planes, camera, lGlobal, useCache);
+
+ for (var i = 0; i !== lGlobal; ++i) {
+ dstArray[i] = globalState[i];
+ }
+
+ materialProperties.clippingState = dstArray;
+ this.numIntersection = clipIntersection ? this.numPlanes : 0;
+ this.numPlanes += nGlobal;
+ }
+ };
+
+ function resetGlobalState() {
+ if (uniform.value !== globalState) {
+ uniform.value = globalState;
+ uniform.needsUpdate = numGlobalPlanes > 0;
+ }
+
+ scope.numPlanes = numGlobalPlanes;
+ scope.numIntersection = 0;
+ }
+
+ function projectPlanes(planes, camera, dstOffset, skipTransform) {
+ var nPlanes = planes !== null ? planes.length : 0;
+ var dstArray = null;
+
+ if (nPlanes !== 0) {
+ dstArray = uniform.value;
+
+ if (skipTransform !== true || dstArray === null) {
+ var flatSize = dstOffset + nPlanes * 4,
+ viewMatrix = camera.matrixWorldInverse;
+ viewNormalMatrix.getNormalMatrix(viewMatrix);
+
+ if (dstArray === null || dstArray.length < flatSize) {
+ dstArray = new Float32Array(flatSize);
+ }
+
+ for (var i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {
+ plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);
+ plane.normal.toArray(dstArray, i4);
+ dstArray[i4 + 3] = plane.constant;
+ }
+ }
+
+ uniform.value = dstArray;
+ uniform.needsUpdate = true;
+ }
+
+ scope.numPlanes = nPlanes;
+ scope.numIntersection = 0;
+ return dstArray;
+ }
+ }
+
+ function WebGLCubeMaps(renderer) {
+ var cubemaps = new WeakMap();
+
+ function mapTextureMapping(texture, mapping) {
+ if (mapping === EquirectangularReflectionMapping) {
+ texture.mapping = CubeReflectionMapping;
+ } else if (mapping === EquirectangularRefractionMapping) {
+ texture.mapping = CubeRefractionMapping;
+ }
+
+ return texture;
+ }
+
+ function get(texture) {
+ if (texture && texture.isTexture) {
+ var mapping = texture.mapping;
+
+ if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {
+ if (cubemaps.has(texture)) {
+ var cubemap = cubemaps.get(texture).texture;
+ return mapTextureMapping(cubemap, texture.mapping);
+ } else {
+ var image = texture.image;
+
+ if (image && image.height > 0) {
+ var currentRenderList = renderer.getRenderList();
+ var currentRenderTarget = renderer.getRenderTarget();
+ var renderTarget = new WebGLCubeRenderTarget(image.height / 2);
+ renderTarget.fromEquirectangularTexture(renderer, texture);
+ cubemaps.set(texture, renderTarget);
+ renderer.setRenderTarget(currentRenderTarget);
+ renderer.setRenderList(currentRenderList);
+ texture.addEventListener('dispose', onTextureDispose);
+ return mapTextureMapping(renderTarget.texture, texture.mapping);
+ } else {
+ // image not yet ready. try the conversion next frame
+ return null;
+ }
+ }
+ }
+ }
+
+ return texture;
+ }
+
+ function onTextureDispose(event) {
+ var texture = event.target;
+ texture.removeEventListener('dispose', onTextureDispose);
+ var cubemap = cubemaps.get(texture);
+
+ if (cubemap !== undefined) {
+ cubemaps.delete(texture);
+ cubemap.dispose();
+ }
+ }
+
+ function dispose() {
+ cubemaps = new WeakMap();
+ }
+
+ return {
+ get: get,
+ dispose: dispose
+ };
+ }
+
+ function WebGLExtensions(gl) {
+ var extensions = {};
+
+ function getExtension(name) {
+ if (extensions[name] !== undefined) {
+ return extensions[name];
+ }
+
+ var extension;
+
+ switch (name) {
+ case 'WEBGL_depth_texture':
+ extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');
+ break;
+
+ case 'EXT_texture_filter_anisotropic':
+ extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');
+ break;
+
+ case 'WEBGL_compressed_texture_s3tc':
+ extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');
+ break;
+
+ case 'WEBGL_compressed_texture_pvrtc':
+ extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');
+ break;
+
+ default:
+ extension = gl.getExtension(name);
+ }
+
+ extensions[name] = extension;
+ return extension;
+ }
+
+ return {
+ has: function has(name) {
+ return getExtension(name) !== null;
+ },
+ init: function init(capabilities) {
+ if (capabilities.isWebGL2) {
+ getExtension('EXT_color_buffer_float');
+ } else {
+ getExtension('WEBGL_depth_texture');
+ getExtension('OES_texture_float');
+ getExtension('OES_texture_half_float');
+ getExtension('OES_texture_half_float_linear');
+ getExtension('OES_standard_derivatives');
+ getExtension('OES_element_index_uint');
+ getExtension('OES_vertex_array_object');
+ getExtension('ANGLE_instanced_arrays');
+ }
+
+ getExtension('OES_texture_float_linear');
+ getExtension('EXT_color_buffer_half_float');
+ },
+ get: function get(name) {
+ var extension = getExtension(name);
+
+ if (extension === null) {
+ console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');
+ }
+
+ return extension;
+ }
+ };
+ }
+
+ function WebGLGeometries(gl, attributes, info, bindingStates) {
+ var geometries = {};
+ var wireframeAttributes = new WeakMap();
+
+ function onGeometryDispose(event) {
+ var geometry = event.target;
+
+ if (geometry.index !== null) {
+ attributes.remove(geometry.index);
+ }
+
+ for (var name in geometry.attributes) {
+ attributes.remove(geometry.attributes[name]);
+ }
+
+ geometry.removeEventListener('dispose', onGeometryDispose);
+ delete geometries[geometry.id];
+ var attribute = wireframeAttributes.get(geometry);
+
+ if (attribute) {
+ attributes.remove(attribute);
+ wireframeAttributes.delete(geometry);
+ }
+
+ bindingStates.releaseStatesOfGeometry(geometry);
+
+ if (geometry.isInstancedBufferGeometry === true) {
+ delete geometry._maxInstanceCount;
+ } //
+
+
+ info.memory.geometries--;
+ }
+
+ function get(object, geometry) {
+ if (geometries[geometry.id] === true) return geometry;
+ geometry.addEventListener('dispose', onGeometryDispose);
+ geometries[geometry.id] = true;
+ info.memory.geometries++;
+ return geometry;
+ }
+
+ function update(geometry) {
+ var geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.
+
+ for (var name in geometryAttributes) {
+ attributes.update(geometryAttributes[name], 34962);
+ } // morph targets
+
+
+ var morphAttributes = geometry.morphAttributes;
+
+ for (var _name in morphAttributes) {
+ var array = morphAttributes[_name];
+
+ for (var i = 0, l = array.length; i < l; i++) {
+ attributes.update(array[i], 34962);
+ }
+ }
+ }
+
+ function updateWireframeAttribute(geometry) {
+ var indices = [];
+ var geometryIndex = geometry.index;
+ var geometryPosition = geometry.attributes.position;
+ var version = 0;
+
+ if (geometryIndex !== null) {
+ var array = geometryIndex.array;
+ version = geometryIndex.version;
+
+ for (var i = 0, l = array.length; i < l; i += 3) {
+ var a = array[i + 0];
+ var b = array[i + 1];
+ var c = array[i + 2];
+ indices.push(a, b, b, c, c, a);
+ }
+ } else {
+ var _array = geometryPosition.array;
+ version = geometryPosition.version;
+
+ for (var _i = 0, _l = _array.length / 3 - 1; _i < _l; _i += 3) {
+ var _a = _i + 0;
+
+ var _b = _i + 1;
+
+ var _c = _i + 2;
+
+ indices.push(_a, _b, _b, _c, _c, _a);
+ }
+ }
+
+ var attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);
+ attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates
+ //
+
+ var previousAttribute = wireframeAttributes.get(geometry);
+ if (previousAttribute) attributes.remove(previousAttribute); //
+
+ wireframeAttributes.set(geometry, attribute);
+ }
+
+ function getWireframeAttribute(geometry) {
+ var currentAttribute = wireframeAttributes.get(geometry);
+
+ if (currentAttribute) {
+ var geometryIndex = geometry.index;
+
+ if (geometryIndex !== null) {
+ // if the attribute is obsolete, create a new one
+ if (currentAttribute.version < geometryIndex.version) {
+ updateWireframeAttribute(geometry);
+ }
+ }
+ } else {
+ updateWireframeAttribute(geometry);
+ }
+
+ return wireframeAttributes.get(geometry);
+ }
+
+ return {
+ get: get,
+ update: update,
+ getWireframeAttribute: getWireframeAttribute
+ };
+ }
+
+ function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {
+ var isWebGL2 = capabilities.isWebGL2;
+ var mode;
+
+ function setMode(value) {
+ mode = value;
+ }
+
+ var type, bytesPerElement;
+
+ function setIndex(value) {
+ type = value.type;
+ bytesPerElement = value.bytesPerElement;
+ }
+
+ function render(start, count) {
+ gl.drawElements(mode, count, type, start * bytesPerElement);
+ info.update(count, mode, 1);
+ }
+
+ function renderInstances(start, count, primcount) {
+ if (primcount === 0) return;
+ var extension, methodName;
+
+ if (isWebGL2) {
+ extension = gl;
+ methodName = 'drawElementsInstanced';
+ } else {
+ extension = extensions.get('ANGLE_instanced_arrays');
+ methodName = 'drawElementsInstancedANGLE';
+
+ if (extension === null) {
+ console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
+ return;
+ }
+ }
+
+ extension[methodName](mode, count, type, start * bytesPerElement, primcount);
+ info.update(count, mode, primcount);
+ } //
+
+
+ this.setMode = setMode;
+ this.setIndex = setIndex;
+ this.render = render;
+ this.renderInstances = renderInstances;
+ }
+
+ function WebGLInfo(gl) {
+ var memory = {
+ geometries: 0,
+ textures: 0
+ };
+ var render = {
+ frame: 0,
+ calls: 0,
+ triangles: 0,
+ points: 0,
+ lines: 0
+ };
+
+ function update(count, mode, instanceCount) {
+ render.calls++;
+
+ switch (mode) {
+ case 4:
+ render.triangles += instanceCount * (count / 3);
+ break;
+
+ case 1:
+ render.lines += instanceCount * (count / 2);
+ break;
+
+ case 3:
+ render.lines += instanceCount * (count - 1);
+ break;
+
+ case 2:
+ render.lines += instanceCount * count;
+ break;
+
+ case 0:
+ render.points += instanceCount * count;
+ break;
+
+ default:
+ console.error('THREE.WebGLInfo: Unknown draw mode:', mode);
+ break;
+ }
+ }
+
+ function reset() {
+ render.frame++;
+ render.calls = 0;
+ render.triangles = 0;
+ render.points = 0;
+ render.lines = 0;
+ }
+
+ return {
+ memory: memory,
+ render: render,
+ programs: null,
+ autoReset: true,
+ reset: reset,
+ update: update
+ };
+ }
+
+ function numericalSort(a, b) {
+ return a[0] - b[0];
+ }
+
+ function absNumericalSort(a, b) {
+ return Math.abs(b[1]) - Math.abs(a[1]);
+ }
+
+ function WebGLMorphtargets(gl) {
+ var influencesList = {};
+ var morphInfluences = new Float32Array(8);
+ var workInfluences = [];
+
+ for (var i = 0; i < 8; i++) {
+ workInfluences[i] = [i, 0];
+ }
+
+ function update(object, geometry, material, program) {
+ var objectInfluences = object.morphTargetInfluences; // When object doesn't have morph target influences defined, we treat it as a 0-length array
+ // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
+
+ var length = objectInfluences === undefined ? 0 : objectInfluences.length;
+ var influences = influencesList[geometry.id];
+
+ if (influences === undefined) {
+ // initialise list
+ influences = [];
+
+ for (var _i = 0; _i < length; _i++) {
+ influences[_i] = [_i, 0];
+ }
+
+ influencesList[geometry.id] = influences;
+ } // Collect influences
+
+
+ for (var _i2 = 0; _i2 < length; _i2++) {
+ var influence = influences[_i2];
+ influence[0] = _i2;
+ influence[1] = objectInfluences[_i2];
+ }
+
+ influences.sort(absNumericalSort);
+
+ for (var _i3 = 0; _i3 < 8; _i3++) {
+ if (_i3 < length && influences[_i3][1]) {
+ workInfluences[_i3][0] = influences[_i3][0];
+ workInfluences[_i3][1] = influences[_i3][1];
+ } else {
+ workInfluences[_i3][0] = Number.MAX_SAFE_INTEGER;
+ workInfluences[_i3][1] = 0;
+ }
+ }
+
+ workInfluences.sort(numericalSort);
+ var morphTargets = material.morphTargets && geometry.morphAttributes.position;
+ var morphNormals = material.morphNormals && geometry.morphAttributes.normal;
+ var morphInfluencesSum = 0;
+
+ for (var _i4 = 0; _i4 < 8; _i4++) {
+ var _influence = workInfluences[_i4];
+ var index = _influence[0];
+ var value = _influence[1];
+
+ if (index !== Number.MAX_SAFE_INTEGER && value) {
+ if (morphTargets && geometry.getAttribute('morphTarget' + _i4) !== morphTargets[index]) {
+ geometry.setAttribute('morphTarget' + _i4, morphTargets[index]);
+ }
+
+ if (morphNormals && geometry.getAttribute('morphNormal' + _i4) !== morphNormals[index]) {
+ geometry.setAttribute('morphNormal' + _i4, morphNormals[index]);
+ }
+
+ morphInfluences[_i4] = value;
+ morphInfluencesSum += value;
+ } else {
+ if (morphTargets && geometry.hasAttribute('morphTarget' + _i4) === true) {
+ geometry.deleteAttribute('morphTarget' + _i4);
+ }
+
+ if (morphNormals && geometry.hasAttribute('morphNormal' + _i4) === true) {
+ geometry.deleteAttribute('morphNormal' + _i4);
+ }
+
+ morphInfluences[_i4] = 0;
+ }
+ } // GLSL shader uses formula baseinfluence * base + sum(target * influence)
+ // This allows us to switch between absolute morphs and relative morphs without changing shader code
+ // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
+
+
+ var morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
+ program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
+ program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);
+ }
+
+ return {
+ update: update
+ };
+ }
+
+ function WebGLObjects(gl, geometries, attributes, info) {
+ var updateMap = new WeakMap();
+
+ function update(object) {
+ var frame = info.render.frame;
+ var geometry = object.geometry;
+ var buffergeometry = geometries.get(object, geometry); // Update once per frame
+
+ if (updateMap.get(buffergeometry) !== frame) {
+ geometries.update(buffergeometry);
+ updateMap.set(buffergeometry, frame);
+ }
+
+ if (object.isInstancedMesh) {
+ if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {
+ object.addEventListener('dispose', onInstancedMeshDispose);
+ }
+
+ attributes.update(object.instanceMatrix, 34962);
+
+ if (object.instanceColor !== null) {
+ attributes.update(object.instanceColor, 34962);
+ }
+ }
+
+ return buffergeometry;
+ }
+
+ function dispose() {
+ updateMap = new WeakMap();
+ }
+
+ function onInstancedMeshDispose(event) {
+ var instancedMesh = event.target;
+ instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);
+ attributes.remove(instancedMesh.instanceMatrix);
+ if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);
+ }
+
+ return {
+ update: update,
+ dispose: dispose
+ };
+ }
+
+ function DataTexture2DArray(data, width, height, depth) {
+ if (data === void 0) {
+ data = null;
+ }
+
+ if (width === void 0) {
+ width = 1;
+ }
+
+ if (height === void 0) {
+ height = 1;
+ }
+
+ if (depth === void 0) {
+ depth = 1;
+ }
+
+ Texture.call(this, null);
+ this.image = {
+ data: data,
+ width: width,
+ height: height,
+ depth: depth
+ };
+ this.magFilter = NearestFilter;
+ this.minFilter = NearestFilter;
+ this.wrapR = ClampToEdgeWrapping;
+ this.generateMipmaps = false;
+ this.flipY = false;
+ this.needsUpdate = true;
+ }
+
+ DataTexture2DArray.prototype = Object.create(Texture.prototype);
+ DataTexture2DArray.prototype.constructor = DataTexture2DArray;
+ DataTexture2DArray.prototype.isDataTexture2DArray = true;
+
+ function DataTexture3D(data, width, height, depth) {
+ if (data === void 0) {
+ data = null;
+ }
+
+ if (width === void 0) {
+ width = 1;
+ }
+
+ if (height === void 0) {
+ height = 1;
+ }
+
+ if (depth === void 0) {
+ depth = 1;
+ }
+
+ // We're going to add .setXXX() methods for setting properties later.
+ // Users can still set in DataTexture3D directly.
+ //
+ // const texture = new THREE.DataTexture3D( data, width, height, depth );
+ // texture.anisotropy = 16;
+ //
+ // See #14839
+ Texture.call(this, null);
+ this.image = {
+ data: data,
+ width: width,
+ height: height,
+ depth: depth
+ };
+ this.magFilter = NearestFilter;
+ this.minFilter = NearestFilter;
+ this.wrapR = ClampToEdgeWrapping;
+ this.generateMipmaps = false;
+ this.flipY = false;
+ this.needsUpdate = true;
+ }
+
+ DataTexture3D.prototype = Object.create(Texture.prototype);
+ DataTexture3D.prototype.constructor = DataTexture3D;
+ DataTexture3D.prototype.isDataTexture3D = true;
+
+ /**
+ * Uniforms of a program.
+ * Those form a tree structure with a special top-level container for the root,
+ * which you get by calling 'new WebGLUniforms( gl, program )'.
+ *
+ *
+ * Properties of inner nodes including the top-level container:
+ *
+ * .seq - array of nested uniforms
+ * .map - nested uniforms by name
+ *
+ *
+ * Methods of all nodes except the top-level container:
+ *
+ * .setValue( gl, value, [textures] )
+ *
+ * uploads a uniform value(s)
+ * the 'textures' parameter is needed for sampler uniforms
+ *
+ *
+ * Static methods of the top-level container (textures factorizations):
+ *
+ * .upload( gl, seq, values, textures )
+ *
+ * sets uniforms in 'seq' to 'values[id].value'
+ *
+ * .seqWithValue( seq, values ) : filteredSeq
+ *
+ * filters 'seq' entries with corresponding entry in values
+ *
+ *
+ * Methods of the top-level container (textures factorizations):
+ *
+ * .setValue( gl, name, value, textures )
+ *
+ * sets uniform with name 'name' to 'value'
+ *
+ * .setOptional( gl, obj, prop )
+ *
+ * like .set for an optional property of the object
+ *
+ */
+ var emptyTexture = new Texture();
+ var emptyTexture2dArray = new DataTexture2DArray();
+ var emptyTexture3d = new DataTexture3D();
+ var emptyCubeTexture = new CubeTexture(); // --- Utilities ---
+ // Array Caches (provide typed arrays for temporary by size)
+
+ var arrayCacheF32 = [];
+ var arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms
+
+ var mat4array = new Float32Array(16);
+ var mat3array = new Float32Array(9);
+ var mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices
+
+ function flatten(array, nBlocks, blockSize) {
+ var firstElem = array[0];
+ if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )
+ // see http://jacksondunstan.com/articles/983
+
+ var n = nBlocks * blockSize;
+ var r = arrayCacheF32[n];
+
+ if (r === undefined) {
+ r = new Float32Array(n);
+ arrayCacheF32[n] = r;
+ }
+
+ if (nBlocks !== 0) {
+ firstElem.toArray(r, 0);
+
+ for (var i = 1, offset = 0; i !== nBlocks; ++i) {
+ offset += blockSize;
+ array[i].toArray(r, offset);
+ }
+ }
+
+ return r;
+ }
+
+ function arraysEqual(a, b) {
+ if (a.length !== b.length) return false;
+
+ for (var i = 0, l = a.length; i < l; i++) {
+ if (a[i] !== b[i]) return false;
+ }
+
+ return true;
+ }
+
+ function copyArray(a, b) {
+ for (var i = 0, l = b.length; i < l; i++) {
+ a[i] = b[i];
+ }
+ } // Texture unit allocation
+
+
+ function allocTexUnits(textures, n) {
+ var r = arrayCacheI32[n];
+
+ if (r === undefined) {
+ r = new Int32Array(n);
+ arrayCacheI32[n] = r;
+ }
+
+ for (var i = 0; i !== n; ++i) {
+ r[i] = textures.allocateTextureUnit();
+ }
+
+ return r;
+ } // --- Setters ---
+ // Note: Defining these methods externally, because they come in a bunch
+ // and this way their names minify.
+ // Single scalar
+
+
+ function setValueV1f(gl, v) {
+ var cache = this.cache;
+ if (cache[0] === v) return;
+ gl.uniform1f(this.addr, v);
+ cache[0] = v;
+ } // Single float vector (from flat array or THREE.VectorN)
+
+
+ function setValueV2f(gl, v) {
+ var cache = this.cache;
+
+ if (v.x !== undefined) {
+ if (cache[0] !== v.x || cache[1] !== v.y) {
+ gl.uniform2f(this.addr, v.x, v.y);
+ cache[0] = v.x;
+ cache[1] = v.y;
+ }
+ } else {
+ if (arraysEqual(cache, v)) return;
+ gl.uniform2fv(this.addr, v);
+ copyArray(cache, v);
+ }
+ }
+
+ function setValueV3f(gl, v) {
+ var cache = this.cache;
+
+ if (v.x !== undefined) {
+ if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {
+ gl.uniform3f(this.addr, v.x, v.y, v.z);
+ cache[0] = v.x;
+ cache[1] = v.y;
+ cache[2] = v.z;
+ }
+ } else if (v.r !== undefined) {
+ if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {
+ gl.uniform3f(this.addr, v.r, v.g, v.b);
+ cache[0] = v.r;
+ cache[1] = v.g;
+ cache[2] = v.b;
+ }
+ } else {
+ if (arraysEqual(cache, v)) return;
+ gl.uniform3fv(this.addr, v);
+ copyArray(cache, v);
+ }
+ }
+
+ function setValueV4f(gl, v) {
+ var cache = this.cache;
+
+ if (v.x !== undefined) {
+ if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {
+ gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);
+ cache[0] = v.x;
+ cache[1] = v.y;
+ cache[2] = v.z;
+ cache[3] = v.w;
+ }
+ } else {
+ if (arraysEqual(cache, v)) return;
+ gl.uniform4fv(this.addr, v);
+ copyArray(cache, v);
+ }
+ } // Single matrix (from flat array or MatrixN)
+
+
+ function setValueM2(gl, v) {
+ var cache = this.cache;
+ var elements = v.elements;
+
+ if (elements === undefined) {
+ if (arraysEqual(cache, v)) return;
+ gl.uniformMatrix2fv(this.addr, false, v);
+ copyArray(cache, v);
+ } else {
+ if (arraysEqual(cache, elements)) return;
+ mat2array.set(elements);
+ gl.uniformMatrix2fv(this.addr, false, mat2array);
+ copyArray(cache, elements);
+ }
+ }
+
+ function setValueM3(gl, v) {
+ var cache = this.cache;
+ var elements = v.elements;
+
+ if (elements === undefined) {
+ if (arraysEqual(cache, v)) return;
+ gl.uniformMatrix3fv(this.addr, false, v);
+ copyArray(cache, v);
+ } else {
+ if (arraysEqual(cache, elements)) return;
+ mat3array.set(elements);
+ gl.uniformMatrix3fv(this.addr, false, mat3array);
+ copyArray(cache, elements);
+ }
+ }
+
+ function setValueM4(gl, v) {
+ var cache = this.cache;
+ var elements = v.elements;
+
+ if (elements === undefined) {
+ if (arraysEqual(cache, v)) return;
+ gl.uniformMatrix4fv(this.addr, false, v);
+ copyArray(cache, v);
+ } else {
+ if (arraysEqual(cache, elements)) return;
+ mat4array.set(elements);
+ gl.uniformMatrix4fv(this.addr, false, mat4array);
+ copyArray(cache, elements);
+ }
+ } // Single texture (2D / Cube)
+
+
+ function setValueT1(gl, v, textures) {
+ var cache = this.cache;
+ var unit = textures.allocateTextureUnit();
+
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
+
+ textures.safeSetTexture2D(v || emptyTexture, unit);
+ }
+
+ function setValueT2DArray1(gl, v, textures) {
+ var cache = this.cache;
+ var unit = textures.allocateTextureUnit();
+
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
+
+ textures.setTexture2DArray(v || emptyTexture2dArray, unit);
+ }
+
+ function setValueT3D1(gl, v, textures) {
+ var cache = this.cache;
+ var unit = textures.allocateTextureUnit();
+
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
+
+ textures.setTexture3D(v || emptyTexture3d, unit);
+ }
+
+ function setValueT6(gl, v, textures) {
+ var cache = this.cache;
+ var unit = textures.allocateTextureUnit();
+
+ if (cache[0] !== unit) {
+ gl.uniform1i(this.addr, unit);
+ cache[0] = unit;
+ }
+
+ textures.safeSetTextureCube(v || emptyCubeTexture, unit);
+ } // Integer / Boolean vectors or arrays thereof (always flat arrays)
+
+
+ function setValueV1i(gl, v) {
+ var cache = this.cache;
+ if (cache[0] === v) return;
+ gl.uniform1i(this.addr, v);
+ cache[0] = v;
+ }
+
+ function setValueV2i(gl, v) {
+ var cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform2iv(this.addr, v);
+ copyArray(cache, v);
+ }
+
+ function setValueV3i(gl, v) {
+ var cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform3iv(this.addr, v);
+ copyArray(cache, v);
+ }
+
+ function setValueV4i(gl, v) {
+ var cache = this.cache;
+ if (arraysEqual(cache, v)) return;
+ gl.uniform4iv(this.addr, v);
+ copyArray(cache, v);
+ } // uint
+
+
+ function setValueV1ui(gl, v) {
+ var cache = this.cache;
+ if (cache[0] === v) return;
+ gl.uniform1ui(this.addr, v);
+ cache[0] = v;
+ } // Helper to pick the right setter for the singular case
+
+
+ function getSingularSetter(type) {
+ switch (type) {
+ case 0x1406:
+ return setValueV1f;
+ // FLOAT
+
+ case 0x8b50:
+ return setValueV2f;
+ // _VEC2
+
+ case 0x8b51:
+ return setValueV3f;
+ // _VEC3
+
+ case 0x8b52:
+ return setValueV4f;
+ // _VEC4
+
+ case 0x8b5a:
+ return setValueM2;
+ // _MAT2
+
+ case 0x8b5b:
+ return setValueM3;
+ // _MAT3
+
+ case 0x8b5c:
+ return setValueM4;
+ // _MAT4
+
+ case 0x1404:
+ case 0x8b56:
+ return setValueV1i;
+ // INT, BOOL
+
+ case 0x8b53:
+ case 0x8b57:
+ return setValueV2i;
+ // _VEC2
+
+ case 0x8b54:
+ case 0x8b58:
+ return setValueV3i;
+ // _VEC3
+
+ case 0x8b55:
+ case 0x8b59:
+ return setValueV4i;
+ // _VEC4
+
+ case 0x1405:
+ return setValueV1ui;
+ // UINT
+
+ case 0x8b5e: // SAMPLER_2D
+
+ case 0x8d66: // SAMPLER_EXTERNAL_OES
+
+ case 0x8dca: // INT_SAMPLER_2D
+
+ case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
+
+ case 0x8b62:
+ // SAMPLER_2D_SHADOW
+ return setValueT1;
+
+ case 0x8b5f: // SAMPLER_3D
+
+ case 0x8dcb: // INT_SAMPLER_3D
+
+ case 0x8dd3:
+ // UNSIGNED_INT_SAMPLER_3D
+ return setValueT3D1;
+
+ case 0x8b60: // SAMPLER_CUBE
+
+ case 0x8dcc: // INT_SAMPLER_CUBE
+
+ case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
+
+ case 0x8dc5:
+ // SAMPLER_CUBE_SHADOW
+ return setValueT6;
+
+ case 0x8dc1: // SAMPLER_2D_ARRAY
+
+ case 0x8dcf: // INT_SAMPLER_2D_ARRAY
+
+ case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
+
+ case 0x8dc4:
+ // SAMPLER_2D_ARRAY_SHADOW
+ return setValueT2DArray1;
+ }
+ } // Array of scalars
+
+
+ function setValueV1fArray(gl, v) {
+ gl.uniform1fv(this.addr, v);
+ } // Integer / Boolean vectors or arrays thereof (always flat arrays)
+
+
+ function setValueV1iArray(gl, v) {
+ gl.uniform1iv(this.addr, v);
+ }
+
+ function setValueV2iArray(gl, v) {
+ gl.uniform2iv(this.addr, v);
+ }
+
+ function setValueV3iArray(gl, v) {
+ gl.uniform3iv(this.addr, v);
+ }
+
+ function setValueV4iArray(gl, v) {
+ gl.uniform4iv(this.addr, v);
+ } // Array of vectors (flat or from THREE classes)
+
+
+ function setValueV2fArray(gl, v) {
+ var data = flatten(v, this.size, 2);
+ gl.uniform2fv(this.addr, data);
+ }
+
+ function setValueV3fArray(gl, v) {
+ var data = flatten(v, this.size, 3);
+ gl.uniform3fv(this.addr, data);
+ }
+
+ function setValueV4fArray(gl, v) {
+ var data = flatten(v, this.size, 4);
+ gl.uniform4fv(this.addr, data);
+ } // Array of matrices (flat or from THREE clases)
+
+
+ function setValueM2Array(gl, v) {
+ var data = flatten(v, this.size, 4);
+ gl.uniformMatrix2fv(this.addr, false, data);
+ }
+
+ function setValueM3Array(gl, v) {
+ var data = flatten(v, this.size, 9);
+ gl.uniformMatrix3fv(this.addr, false, data);
+ }
+
+ function setValueM4Array(gl, v) {
+ var data = flatten(v, this.size, 16);
+ gl.uniformMatrix4fv(this.addr, false, data);
+ } // Array of textures (2D / Cube)
+
+
+ function setValueT1Array(gl, v, textures) {
+ var n = v.length;
+ var units = allocTexUnits(textures, n);
+ gl.uniform1iv(this.addr, units);
+
+ for (var i = 0; i !== n; ++i) {
+ textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);
+ }
+ }
+
+ function setValueT6Array(gl, v, textures) {
+ var n = v.length;
+ var units = allocTexUnits(textures, n);
+ gl.uniform1iv(this.addr, units);
+
+ for (var i = 0; i !== n; ++i) {
+ textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);
+ }
+ } // Helper to pick the right setter for a pure (bottom-level) array
+
+
+ function getPureArraySetter(type) {
+ switch (type) {
+ case 0x1406:
+ return setValueV1fArray;
+ // FLOAT
+
+ case 0x8b50:
+ return setValueV2fArray;
+ // _VEC2
+
+ case 0x8b51:
+ return setValueV3fArray;
+ // _VEC3
+
+ case 0x8b52:
+ return setValueV4fArray;
+ // _VEC4
+
+ case 0x8b5a:
+ return setValueM2Array;
+ // _MAT2
+
+ case 0x8b5b:
+ return setValueM3Array;
+ // _MAT3
+
+ case 0x8b5c:
+ return setValueM4Array;
+ // _MAT4
+
+ case 0x1404:
+ case 0x8b56:
+ return setValueV1iArray;
+ // INT, BOOL
+
+ case 0x8b53:
+ case 0x8b57:
+ return setValueV2iArray;
+ // _VEC2
+
+ case 0x8b54:
+ case 0x8b58:
+ return setValueV3iArray;
+ // _VEC3
+
+ case 0x8b55:
+ case 0x8b59:
+ return setValueV4iArray;
+ // _VEC4
+
+ case 0x8b5e: // SAMPLER_2D
+
+ case 0x8d66: // SAMPLER_EXTERNAL_OES
+
+ case 0x8dca: // INT_SAMPLER_2D
+
+ case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
+
+ case 0x8b62:
+ // SAMPLER_2D_SHADOW
+ return setValueT1Array;
+
+ case 0x8b60: // SAMPLER_CUBE
+
+ case 0x8dcc: // INT_SAMPLER_CUBE
+
+ case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
+
+ case 0x8dc5:
+ // SAMPLER_CUBE_SHADOW
+ return setValueT6Array;
+ }
+ } // --- Uniform Classes ---
+
+
+ function SingleUniform(id, activeInfo, addr) {
+ this.id = id;
+ this.addr = addr;
+ this.cache = [];
+ this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
+ }
+
+ function PureArrayUniform(id, activeInfo, addr) {
+ this.id = id;
+ this.addr = addr;
+ this.cache = [];
+ this.size = activeInfo.size;
+ this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
+ }
+
+ PureArrayUniform.prototype.updateCache = function (data) {
+ var cache = this.cache;
+
+ if (data instanceof Float32Array && cache.length !== data.length) {
+ this.cache = new Float32Array(data.length);
+ }
+
+ copyArray(cache, data);
+ };
+
+ function StructuredUniform(id) {
+ this.id = id;
+ this.seq = [];
+ this.map = {};
+ }
+
+ StructuredUniform.prototype.setValue = function (gl, value, textures) {
+ var seq = this.seq;
+
+ for (var i = 0, n = seq.length; i !== n; ++i) {
+ var u = seq[i];
+ u.setValue(gl, value[u.id], textures);
+ }
+ }; // --- Top-level ---
+ // Parser - builds up the property tree from the path strings
+
+
+ var RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts
+ // - the identifier (member name or array index)
+ // - followed by an optional right bracket (found when array index)
+ // - followed by an optional left bracket or dot (type of subscript)
+ //
+ // Note: These portions can be read in a non-overlapping fashion and
+ // allow straightforward parsing of the hierarchy that WebGL encodes
+ // in the uniform names.
+
+ function addUniform(container, uniformObject) {
+ container.seq.push(uniformObject);
+ container.map[uniformObject.id] = uniformObject;
+ }
+
+ function parseUniform(activeInfo, addr, container) {
+ var path = activeInfo.name,
+ pathLength = path.length; // reset RegExp object, because of the early exit of a previous run
+
+ RePathPart.lastIndex = 0;
+
+ while (true) {
+ var match = RePathPart.exec(path),
+ matchEnd = RePathPart.lastIndex;
+ var id = match[1];
+ var idIsIndex = match[2] === ']',
+ subscript = match[3];
+ if (idIsIndex) id = id | 0; // convert to integer
+
+ if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {
+ // bare name or "pure" bottom-level array "[0]" suffix
+ addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));
+ break;
+ } else {
+ // step into inner node / create it in case it doesn't exist
+ var map = container.map;
+ var next = map[id];
+
+ if (next === undefined) {
+ next = new StructuredUniform(id);
+ addUniform(container, next);
+ }
+
+ container = next;
+ }
+ }
+ } // Root Container
+
+
+ function WebGLUniforms(gl, program) {
+ this.seq = [];
+ this.map = {};
+ var n = gl.getProgramParameter(program, 35718);
+
+ for (var i = 0; i < n; ++i) {
+ var info = gl.getActiveUniform(program, i),
+ addr = gl.getUniformLocation(program, info.name);
+ parseUniform(info, addr, this);
+ }
+ }
+
+ WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {
+ var u = this.map[name];
+ if (u !== undefined) u.setValue(gl, value, textures);
+ };
+
+ WebGLUniforms.prototype.setOptional = function (gl, object, name) {
+ var v = object[name];
+ if (v !== undefined) this.setValue(gl, name, v);
+ }; // Static interface
+
+
+ WebGLUniforms.upload = function (gl, seq, values, textures) {
+ for (var i = 0, n = seq.length; i !== n; ++i) {
+ var u = seq[i],
+ v = values[u.id];
+
+ if (v.needsUpdate !== false) {
+ // note: always updating when .needsUpdate is undefined
+ u.setValue(gl, v.value, textures);
+ }
+ }
+ };
+
+ WebGLUniforms.seqWithValue = function (seq, values) {
+ var r = [];
+
+ for (var i = 0, n = seq.length; i !== n; ++i) {
+ var u = seq[i];
+ if (u.id in values) r.push(u);
+ }
+
+ return r;
+ };
+
+ function WebGLShader(gl, type, string) {
+ var shader = gl.createShader(type);
+ gl.shaderSource(shader, string);
+ gl.compileShader(shader);
+ return shader;
+ }
+
+ var programIdCount = 0;
+
+ function addLineNumbers(string) {
+ var lines = string.split('\n');
+
+ for (var i = 0; i < lines.length; i++) {
+ lines[i] = i + 1 + ': ' + lines[i];
+ }
+
+ return lines.join('\n');
+ }
+
+ function getEncodingComponents(encoding) {
+ switch (encoding) {
+ case LinearEncoding:
+ return ['Linear', '( value )'];
+
+ case sRGBEncoding:
+ return ['sRGB', '( value )'];
+
+ case RGBEEncoding:
+ return ['RGBE', '( value )'];
+
+ case RGBM7Encoding:
+ return ['RGBM', '( value, 7.0 )'];
+
+ case RGBM16Encoding:
+ return ['RGBM', '( value, 16.0 )'];
+
+ case RGBDEncoding:
+ return ['RGBD', '( value, 256.0 )'];
+
+ case GammaEncoding:
+ return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];
+
+ case LogLuvEncoding:
+ return ['LogLuv', '( value )'];
+
+ default:
+ console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);
+ return ['Linear', '( value )'];
+ }
+ }
+
+ function getShaderErrors(gl, shader, type) {
+ var status = gl.getShaderParameter(shader, 35713);
+ var log = gl.getShaderInfoLog(shader).trim();
+ if (status && log === '') return ''; // --enable-privileged-webgl-extension
+ // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
+
+ var source = gl.getShaderSource(shader);
+ return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers(source);
+ }
+
+ function getTexelDecodingFunction(functionName, encoding) {
+ var components = getEncodingComponents(encoding);
+ return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';
+ }
+
+ function getTexelEncodingFunction(functionName, encoding) {
+ var components = getEncodingComponents(encoding);
+ return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';
+ }
+
+ function getToneMappingFunction(functionName, toneMapping) {
+ var toneMappingName;
+
+ switch (toneMapping) {
+ case LinearToneMapping:
+ toneMappingName = 'Linear';
+ break;
+
+ case ReinhardToneMapping:
+ toneMappingName = 'Reinhard';
+ break;
+
+ case CineonToneMapping:
+ toneMappingName = 'OptimizedCineon';
+ break;
+
+ case ACESFilmicToneMapping:
+ toneMappingName = 'ACESFilmic';
+ break;
+
+ case CustomToneMapping:
+ toneMappingName = 'Custom';
+ break;
+
+ default:
+ console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);
+ toneMappingName = 'Linear';
+ }
+
+ return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
+ }
+
+ function generateExtensions(parameters) {
+ var chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];
+ return chunks.filter(filterEmptyLine).join('\n');
+ }
+
+ function generateDefines(defines) {
+ var chunks = [];
+
+ for (var name in defines) {
+ var value = defines[name];
+ if (value === false) continue;
+ chunks.push('#define ' + name + ' ' + value);
+ }
+
+ return chunks.join('\n');
+ }
+
+ function fetchAttributeLocations(gl, program) {
+ var attributes = {};
+ var n = gl.getProgramParameter(program, 35721);
+
+ for (var i = 0; i < n; i++) {
+ var info = gl.getActiveAttrib(program, i);
+ var name = info.name; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
+
+ attributes[name] = gl.getAttribLocation(program, name);
+ }
+
+ return attributes;
+ }
+
+ function filterEmptyLine(string) {
+ return string !== '';
+ }
+
+ function replaceLightNums(string, parameters) {
+ return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);
+ }
+
+ function replaceClippingPlaneNums(string, parameters) {
+ return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);
+ } // Resolve Includes
+
+
+ var includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
+
+ function resolveIncludes(string) {
+ return string.replace(includePattern, includeReplacer);
+ }
+
+ function includeReplacer(match, include) {
+ var string = ShaderChunk[include];
+
+ if (string === undefined) {
+ throw new Error('Can not resolve #include <' + include + '>');
+ }
+
+ return resolveIncludes(string);
+ } // Unroll Loops
+
+
+ var deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
+ var unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;
+
+ function unrollLoops(string) {
+ return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);
+ }
+
+ function deprecatedLoopReplacer(match, start, end, snippet) {
+ console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');
+ return loopReplacer(match, start, end, snippet);
+ }
+
+ function loopReplacer(match, start, end, snippet) {
+ var string = '';
+
+ for (var i = parseInt(start); i < parseInt(end); i++) {
+ string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);
+ }
+
+ return string;
+ } //
+
+
+ function generatePrecision(parameters) {
+ var precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';
+
+ if (parameters.precision === 'highp') {
+ precisionstring += '\n#define HIGH_PRECISION';
+ } else if (parameters.precision === 'mediump') {
+ precisionstring += '\n#define MEDIUM_PRECISION';
+ } else if (parameters.precision === 'lowp') {
+ precisionstring += '\n#define LOW_PRECISION';
+ }
+
+ return precisionstring;
+ }
+
+ function generateShadowMapTypeDefine(parameters) {
+ var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
+
+ if (parameters.shadowMapType === PCFShadowMap) {
+ shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
+ } else if (parameters.shadowMapType === PCFSoftShadowMap) {
+ shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
+ } else if (parameters.shadowMapType === VSMShadowMap) {
+ shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
+ }
+
+ return shadowMapTypeDefine;
+ }
+
+ function generateEnvMapTypeDefine(parameters) {
+ var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
+
+ if (parameters.envMap) {
+ switch (parameters.envMapMode) {
+ case CubeReflectionMapping:
+ case CubeRefractionMapping:
+ envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
+ break;
+
+ case CubeUVReflectionMapping:
+ case CubeUVRefractionMapping:
+ envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
+ break;
+ }
+ }
+
+ return envMapTypeDefine;
+ }
+
+ function generateEnvMapModeDefine(parameters) {
+ var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
+
+ if (parameters.envMap) {
+ switch (parameters.envMapMode) {
+ case CubeRefractionMapping:
+ case CubeUVRefractionMapping:
+ envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
+ break;
+ }
+ }
+
+ return envMapModeDefine;
+ }
+
+ function generateEnvMapBlendingDefine(parameters) {
+ var envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
+
+ if (parameters.envMap) {
+ switch (parameters.combine) {
+ case MultiplyOperation:
+ envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
+ break;
+
+ case MixOperation:
+ envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
+ break;
+
+ case AddOperation:
+ envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
+ break;
+ }
+ }
+
+ return envMapBlendingDefine;
+ }
+
+ function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {
+ var gl = renderer.getContext();
+ var defines = parameters.defines;
+ var vertexShader = parameters.vertexShader;
+ var fragmentShader = parameters.fragmentShader;
+ var shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);
+ var envMapTypeDefine = generateEnvMapTypeDefine(parameters);
+ var envMapModeDefine = generateEnvMapModeDefine(parameters);
+ var envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);
+ var gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;
+ var customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);
+ var customDefines = generateDefines(defines);
+ var program = gl.createProgram();
+ var prefixVertex, prefixFragment;
+ var versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';
+
+ if (parameters.isRawShaderMaterial) {
+ prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');
+
+ if (prefixVertex.length > 0) {
+ prefixVertex += '\n';
+ }
+
+ prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');
+
+ if (prefixFragment.length > 0) {
+ prefixFragment += '\n';
+ }
+ } else {
+ prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');
+ prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + (parameters.alphaTest % 1 ? '' : '.0') : '', // add '.0' if integer
+ '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below
+ parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below
+ parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');
+ }
+
+ vertexShader = resolveIncludes(vertexShader);
+ vertexShader = replaceLightNums(vertexShader, parameters);
+ vertexShader = replaceClippingPlaneNums(vertexShader, parameters);
+ fragmentShader = resolveIncludes(fragmentShader);
+ fragmentShader = replaceLightNums(fragmentShader, parameters);
+ fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);
+ vertexShader = unrollLoops(vertexShader);
+ fragmentShader = unrollLoops(fragmentShader);
+
+ if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {
+ // GLSL 3.0 conversion for built-in materials and ShaderMaterial
+ versionString = '#version 300 es\n';
+ prefixVertex = ['#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;
+ prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;
+ }
+
+ var vertexGlsl = versionString + prefixVertex + vertexShader;
+ var fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );
+ // console.log( '*FRAGMENT*', fragmentGlsl );
+
+ var glVertexShader = WebGLShader(gl, 35633, vertexGlsl);
+ var glFragmentShader = WebGLShader(gl, 35632, fragmentGlsl);
+ gl.attachShader(program, glVertexShader);
+ gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.
+
+ if (parameters.index0AttributeName !== undefined) {
+ gl.bindAttribLocation(program, 0, parameters.index0AttributeName);
+ } else if (parameters.morphTargets === true) {
+ // programs with morphTargets displace position out of attribute 0
+ gl.bindAttribLocation(program, 0, 'position');
+ }
+
+ gl.linkProgram(program); // check for link errors
+
+ if (renderer.debug.checkShaderErrors) {
+ var programLog = gl.getProgramInfoLog(program).trim();
+ var vertexLog = gl.getShaderInfoLog(glVertexShader).trim();
+ var fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();
+ var runnable = true;
+ var haveDiagnostics = true;
+
+ if (gl.getProgramParameter(program, 35714) === false) {
+ runnable = false;
+ var vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');
+ var fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');
+ console.error('THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter(program, 35715), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors);
+ } else if (programLog !== '') {
+ console.warn('THREE.WebGLProgram: gl.getProgramInfoLog()', programLog);
+ } else if (vertexLog === '' || fragmentLog === '') {
+ haveDiagnostics = false;
+ }
+
+ if (haveDiagnostics) {
+ this.diagnostics = {
+ runnable: runnable,
+ programLog: programLog,
+ vertexShader: {
+ log: vertexLog,
+ prefix: prefixVertex
+ },
+ fragmentShader: {
+ log: fragmentLog,
+ prefix: prefixFragment
+ }
+ };
+ }
+ } // Clean up
+ // Crashes in iOS9 and iOS10. #18402
+ // gl.detachShader( program, glVertexShader );
+ // gl.detachShader( program, glFragmentShader );
+
+
+ gl.deleteShader(glVertexShader);
+ gl.deleteShader(glFragmentShader); // set up caching for uniform locations
+
+ var cachedUniforms;
+
+ this.getUniforms = function () {
+ if (cachedUniforms === undefined) {
+ cachedUniforms = new WebGLUniforms(gl, program);
+ }
+
+ return cachedUniforms;
+ }; // set up caching for attribute locations
+
+
+ var cachedAttributes;
+
+ this.getAttributes = function () {
+ if (cachedAttributes === undefined) {
+ cachedAttributes = fetchAttributeLocations(gl, program);
+ }
+
+ return cachedAttributes;
+ }; // free resource
+
+
+ this.destroy = function () {
+ bindingStates.releaseStatesOfProgram(this);
+ gl.deleteProgram(program);
+ this.program = undefined;
+ }; //
+
+
+ this.name = parameters.shaderName;
+ this.id = programIdCount++;
+ this.cacheKey = cacheKey;
+ this.usedTimes = 1;
+ this.program = program;
+ this.vertexShader = glVertexShader;
+ this.fragmentShader = glFragmentShader;
+ return this;
+ }
+
+ function WebGLPrograms(renderer, cubemaps, extensions, capabilities, bindingStates, clipping) {
+ var programs = [];
+ var isWebGL2 = capabilities.isWebGL2;
+ var logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
+ var floatVertexTextures = capabilities.floatVertexTextures;
+ var maxVertexUniforms = capabilities.maxVertexUniforms;
+ var vertexTextures = capabilities.vertexTextures;
+ var precision = capabilities.precision;
+ var shaderIDs = {
+ MeshDepthMaterial: 'depth',
+ MeshDistanceMaterial: 'distanceRGBA',
+ MeshNormalMaterial: 'normal',
+ MeshBasicMaterial: 'basic',
+ MeshLambertMaterial: 'lambert',
+ MeshPhongMaterial: 'phong',
+ MeshToonMaterial: 'toon',
+ MeshStandardMaterial: 'physical',
+ MeshPhysicalMaterial: 'physical',
+ MeshMatcapMaterial: 'matcap',
+ LineBasicMaterial: 'basic',
+ LineDashedMaterial: 'dashed',
+ PointsMaterial: 'points',
+ ShadowMaterial: 'shadow',
+ SpriteMaterial: 'sprite'
+ };
+ var parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'combine', 'vertexColors', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'maxMorphTargets', 'maxMorphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'alphaTest', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'sheen', 'transmissionMap'];
+
+ function getMaxBones(object) {
+ var skeleton = object.skeleton;
+ var bones = skeleton.bones;
+
+ if (floatVertexTextures) {
+ return 1024;
+ } else {
+ // default for when object is not specified
+ // ( for example when prebuilding shader to be used with multiple objects )
+ //
+ // - leave some extra space for other uniforms
+ // - limit here is ANGLE's 254 max uniform vectors
+ // (up to 54 should be safe)
+ var nVertexUniforms = maxVertexUniforms;
+ var nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);
+ var maxBones = Math.min(nVertexMatrices, bones.length);
+
+ if (maxBones < bones.length) {
+ console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');
+ return 0;
+ }
+
+ return maxBones;
+ }
+ }
+
+ function getTextureEncodingFromMap(map) {
+ var encoding;
+
+ if (map && map.isTexture) {
+ encoding = map.encoding;
+ } else if (map && map.isWebGLRenderTarget) {
+ console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');
+ encoding = map.texture.encoding;
+ } else {
+ encoding = LinearEncoding;
+ }
+
+ return encoding;
+ }
+
+ function getParameters(material, lights, shadows, scene, object) {
+ var fog = scene.fog;
+ var environment = material.isMeshStandardMaterial ? scene.environment : null;
+ var envMap = cubemaps.get(material.envMap || environment);
+ var shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene
+ // (not to blow over maxLights budget)
+
+ var maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;
+
+ if (material.precision !== null) {
+ precision = capabilities.getMaxPrecision(material.precision);
+
+ if (precision !== material.precision) {
+ console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');
+ }
+ }
+
+ var vertexShader, fragmentShader;
+
+ if (shaderID) {
+ var shader = ShaderLib[shaderID];
+ vertexShader = shader.vertexShader;
+ fragmentShader = shader.fragmentShader;
+ } else {
+ vertexShader = material.vertexShader;
+ fragmentShader = material.fragmentShader;
+ }
+
+ var currentRenderTarget = renderer.getRenderTarget();
+ var parameters = {
+ isWebGL2: isWebGL2,
+ shaderID: shaderID,
+ shaderName: material.type,
+ vertexShader: vertexShader,
+ fragmentShader: fragmentShader,
+ defines: material.defines,
+ isRawShaderMaterial: material.isRawShaderMaterial === true,
+ glslVersion: material.glslVersion,
+ precision: precision,
+ instancing: object.isInstancedMesh === true,
+ instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,
+ supportsVertexTextures: vertexTextures,
+ outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,
+ map: !!material.map,
+ mapEncoding: getTextureEncodingFromMap(material.map),
+ matcap: !!material.matcap,
+ matcapEncoding: getTextureEncodingFromMap(material.matcap),
+ envMap: !!envMap,
+ envMapMode: envMap && envMap.mapping,
+ envMapEncoding: getTextureEncodingFromMap(envMap),
+ envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),
+ lightMap: !!material.lightMap,
+ lightMapEncoding: getTextureEncodingFromMap(material.lightMap),
+ aoMap: !!material.aoMap,
+ emissiveMap: !!material.emissiveMap,
+ emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),
+ bumpMap: !!material.bumpMap,
+ normalMap: !!material.normalMap,
+ objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
+ tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
+ clearcoatMap: !!material.clearcoatMap,
+ clearcoatRoughnessMap: !!material.clearcoatRoughnessMap,
+ clearcoatNormalMap: !!material.clearcoatNormalMap,
+ displacementMap: !!material.displacementMap,
+ roughnessMap: !!material.roughnessMap,
+ metalnessMap: !!material.metalnessMap,
+ specularMap: !!material.specularMap,
+ alphaMap: !!material.alphaMap,
+ gradientMap: !!material.gradientMap,
+ sheen: !!material.sheen,
+ transmissionMap: !!material.transmissionMap,
+ combine: material.combine,
+ vertexTangents: material.normalMap && material.vertexTangents,
+ vertexColors: material.vertexColors,
+ vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap,
+ uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || !!material.transmissionMap) && !!material.displacementMap,
+ fog: !!fog,
+ useFog: material.fog,
+ fogExp2: fog && fog.isFogExp2,
+ flatShading: material.flatShading,
+ sizeAttenuation: material.sizeAttenuation,
+ logarithmicDepthBuffer: logarithmicDepthBuffer,
+ skinning: material.skinning && maxBones > 0,
+ maxBones: maxBones,
+ useVertexTexture: floatVertexTextures,
+ morphTargets: material.morphTargets,
+ morphNormals: material.morphNormals,
+ maxMorphTargets: renderer.maxMorphTargets,
+ maxMorphNormals: renderer.maxMorphNormals,
+ numDirLights: lights.directional.length,
+ numPointLights: lights.point.length,
+ numSpotLights: lights.spot.length,
+ numRectAreaLights: lights.rectArea.length,
+ numHemiLights: lights.hemi.length,
+ numDirLightShadows: lights.directionalShadowMap.length,
+ numPointLightShadows: lights.pointShadowMap.length,
+ numSpotLightShadows: lights.spotShadowMap.length,
+ numClippingPlanes: clipping.numPlanes,
+ numClipIntersection: clipping.numIntersection,
+ dithering: material.dithering,
+ shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
+ shadowMapType: renderer.shadowMap.type,
+ toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
+ physicallyCorrectLights: renderer.physicallyCorrectLights,
+ premultipliedAlpha: material.premultipliedAlpha,
+ alphaTest: material.alphaTest,
+ doubleSided: material.side === DoubleSide,
+ flipSided: material.side === BackSide,
+ depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,
+ index0AttributeName: material.index0AttributeName,
+ extensionDerivatives: material.extensions && material.extensions.derivatives,
+ extensionFragDepth: material.extensions && material.extensions.fragDepth,
+ extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
+ extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
+ rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),
+ rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),
+ rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),
+ customProgramCacheKey: material.customProgramCacheKey()
+ };
+ return parameters;
+ }
+
+ function getProgramCacheKey(parameters) {
+ var array = [];
+
+ if (parameters.shaderID) {
+ array.push(parameters.shaderID);
+ } else {
+ array.push(parameters.fragmentShader);
+ array.push(parameters.vertexShader);
+ }
+
+ if (parameters.defines !== undefined) {
+ for (var name in parameters.defines) {
+ array.push(name);
+ array.push(parameters.defines[name]);
+ }
+ }
+
+ if (parameters.isRawShaderMaterial === false) {
+ for (var i = 0; i < parameterNames.length; i++) {
+ array.push(parameters[parameterNames[i]]);
+ }
+
+ array.push(renderer.outputEncoding);
+ array.push(renderer.gammaFactor);
+ }
+
+ array.push(parameters.customProgramCacheKey);
+ return array.join();
+ }
+
+ function getUniforms(material) {
+ var shaderID = shaderIDs[material.type];
+ var uniforms;
+
+ if (shaderID) {
+ var shader = ShaderLib[shaderID];
+ uniforms = UniformsUtils.clone(shader.uniforms);
+ } else {
+ uniforms = material.uniforms;
+ }
+
+ return uniforms;
+ }
+
+ function acquireProgram(parameters, cacheKey) {
+ var program; // Check if code has been already compiled
+
+ for (var p = 0, pl = programs.length; p < pl; p++) {
+ var preexistingProgram = programs[p];
+
+ if (preexistingProgram.cacheKey === cacheKey) {
+ program = preexistingProgram;
+ ++program.usedTimes;
+ break;
+ }
+ }
+
+ if (program === undefined) {
+ program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);
+ programs.push(program);
+ }
+
+ return program;
+ }
+
+ function releaseProgram(program) {
+ if (--program.usedTimes === 0) {
+ // Remove from unordered set
+ var i = programs.indexOf(program);
+ programs[i] = programs[programs.length - 1];
+ programs.pop(); // Free WebGL resources
+
+ program.destroy();
+ }
+ }
+
+ return {
+ getParameters: getParameters,
+ getProgramCacheKey: getProgramCacheKey,
+ getUniforms: getUniforms,
+ acquireProgram: acquireProgram,
+ releaseProgram: releaseProgram,
+ // Exposed for resource monitoring & error feedback via renderer.info:
+ programs: programs
+ };
+ }
+
+ function WebGLProperties() {
+ var properties = new WeakMap();
+
+ function get(object) {
+ var map = properties.get(object);
+
+ if (map === undefined) {
+ map = {};
+ properties.set(object, map);
+ }
+
+ return map;
+ }
+
+ function remove(object) {
+ properties.delete(object);
+ }
+
+ function update(object, key, value) {
+ properties.get(object)[key] = value;
+ }
+
+ function dispose() {
+ properties = new WeakMap();
+ }
+
+ return {
+ get: get,
+ remove: remove,
+ update: update,
+ dispose: dispose
+ };
+ }
+
+ function painterSortStable(a, b) {
+ if (a.groupOrder !== b.groupOrder) {
+ return a.groupOrder - b.groupOrder;
+ } else if (a.renderOrder !== b.renderOrder) {
+ return a.renderOrder - b.renderOrder;
+ } else if (a.program !== b.program) {
+ return a.program.id - b.program.id;
+ } else if (a.material.id !== b.material.id) {
+ return a.material.id - b.material.id;
+ } else if (a.z !== b.z) {
+ return a.z - b.z;
+ } else {
+ return a.id - b.id;
+ }
+ }
+
+ function reversePainterSortStable(a, b) {
+ if (a.groupOrder !== b.groupOrder) {
+ return a.groupOrder - b.groupOrder;
+ } else if (a.renderOrder !== b.renderOrder) {
+ return a.renderOrder - b.renderOrder;
+ } else if (a.z !== b.z) {
+ return b.z - a.z;
+ } else {
+ return a.id - b.id;
+ }
+ }
+
+ function WebGLRenderList(properties) {
+ var renderItems = [];
+ var renderItemsIndex = 0;
+ var opaque = [];
+ var transparent = [];
+ var defaultProgram = {
+ id: -1
+ };
+
+ function init() {
+ renderItemsIndex = 0;
+ opaque.length = 0;
+ transparent.length = 0;
+ }
+
+ function getNextRenderItem(object, geometry, material, groupOrder, z, group) {
+ var renderItem = renderItems[renderItemsIndex];
+ var materialProperties = properties.get(material);
+
+ if (renderItem === undefined) {
+ renderItem = {
+ id: object.id,
+ object: object,
+ geometry: geometry,
+ material: material,
+ program: materialProperties.program || defaultProgram,
+ groupOrder: groupOrder,
+ renderOrder: object.renderOrder,
+ z: z,
+ group: group
+ };
+ renderItems[renderItemsIndex] = renderItem;
+ } else {
+ renderItem.id = object.id;
+ renderItem.object = object;
+ renderItem.geometry = geometry;
+ renderItem.material = material;
+ renderItem.program = materialProperties.program || defaultProgram;
+ renderItem.groupOrder = groupOrder;
+ renderItem.renderOrder = object.renderOrder;
+ renderItem.z = z;
+ renderItem.group = group;
+ }
+
+ renderItemsIndex++;
+ return renderItem;
+ }
+
+ function push(object, geometry, material, groupOrder, z, group) {
+ var renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
+ (material.transparent === true ? transparent : opaque).push(renderItem);
+ }
+
+ function unshift(object, geometry, material, groupOrder, z, group) {
+ var renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
+ (material.transparent === true ? transparent : opaque).unshift(renderItem);
+ }
+
+ function sort(customOpaqueSort, customTransparentSort) {
+ if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);
+ if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);
+ }
+
+ function finish() {
+ // Clear references from inactive renderItems in the list
+ for (var i = renderItemsIndex, il = renderItems.length; i < il; i++) {
+ var renderItem = renderItems[i];
+ if (renderItem.id === null) break;
+ renderItem.id = null;
+ renderItem.object = null;
+ renderItem.geometry = null;
+ renderItem.material = null;
+ renderItem.program = null;
+ renderItem.group = null;
+ }
+ }
+
+ return {
+ opaque: opaque,
+ transparent: transparent,
+ init: init,
+ push: push,
+ unshift: unshift,
+ finish: finish,
+ sort: sort
+ };
+ }
+
+ function WebGLRenderLists(properties) {
+ var lists = new WeakMap();
+
+ function get(scene, camera) {
+ var cameras = lists.get(scene);
+ var list;
+
+ if (cameras === undefined) {
+ list = new WebGLRenderList(properties);
+ lists.set(scene, new WeakMap());
+ lists.get(scene).set(camera, list);
+ } else {
+ list = cameras.get(camera);
+
+ if (list === undefined) {
+ list = new WebGLRenderList(properties);
+ cameras.set(camera, list);
+ }
+ }
+
+ return list;
+ }
+
+ function dispose() {
+ lists = new WeakMap();
+ }
+
+ return {
+ get: get,
+ dispose: dispose
+ };
+ }
+
+ function UniformsCache() {
+ var lights = {};
+ return {
+ get: function get(light) {
+ if (lights[light.id] !== undefined) {
+ return lights[light.id];
+ }
+
+ var uniforms;
+
+ switch (light.type) {
+ case 'DirectionalLight':
+ uniforms = {
+ direction: new Vector3(),
+ color: new Color()
+ };
+ break;
+
+ case 'SpotLight':
+ uniforms = {
+ position: new Vector3(),
+ direction: new Vector3(),
+ color: new Color(),
+ distance: 0,
+ coneCos: 0,
+ penumbraCos: 0,
+ decay: 0
+ };
+ break;
+
+ case 'PointLight':
+ uniforms = {
+ position: new Vector3(),
+ color: new Color(),
+ distance: 0,
+ decay: 0
+ };
+ break;
+
+ case 'HemisphereLight':
+ uniforms = {
+ direction: new Vector3(),
+ skyColor: new Color(),
+ groundColor: new Color()
+ };
+ break;
+
+ case 'RectAreaLight':
+ uniforms = {
+ color: new Color(),
+ position: new Vector3(),
+ halfWidth: new Vector3(),
+ halfHeight: new Vector3()
+ };
+ break;
+ }
+
+ lights[light.id] = uniforms;
+ return uniforms;
+ }
+ };
+ }
+
+ function ShadowUniformsCache() {
+ var lights = {};
+ return {
+ get: function get(light) {
+ if (lights[light.id] !== undefined) {
+ return lights[light.id];
+ }
+
+ var uniforms;
+
+ switch (light.type) {
+ case 'DirectionalLight':
+ uniforms = {
+ shadowBias: 0,
+ shadowNormalBias: 0,
+ shadowRadius: 1,
+ shadowMapSize: new Vector2()
+ };
+ break;
+
+ case 'SpotLight':
+ uniforms = {
+ shadowBias: 0,
+ shadowNormalBias: 0,
+ shadowRadius: 1,
+ shadowMapSize: new Vector2()
+ };
+ break;
+
+ case 'PointLight':
+ uniforms = {
+ shadowBias: 0,
+ shadowNormalBias: 0,
+ shadowRadius: 1,
+ shadowMapSize: new Vector2(),
+ shadowCameraNear: 1,
+ shadowCameraFar: 1000
+ };
+ break;
+ // TODO (abelnation): set RectAreaLight shadow uniforms
+ }
+
+ lights[light.id] = uniforms;
+ return uniforms;
+ }
+ };
+ }
+
+ var nextVersion = 0;
+
+ function shadowCastingLightsFirst(lightA, lightB) {
+ return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);
+ }
+
+ function WebGLLights(extensions, capabilities) {
+ var cache = new UniformsCache();
+ var shadowCache = ShadowUniformsCache();
+ var state = {
+ version: 0,
+ hash: {
+ directionalLength: -1,
+ pointLength: -1,
+ spotLength: -1,
+ rectAreaLength: -1,
+ hemiLength: -1,
+ numDirectionalShadows: -1,
+ numPointShadows: -1,
+ numSpotShadows: -1
+ },
+ ambient: [0, 0, 0],
+ probe: [],
+ directional: [],
+ directionalShadow: [],
+ directionalShadowMap: [],
+ directionalShadowMatrix: [],
+ spot: [],
+ spotShadow: [],
+ spotShadowMap: [],
+ spotShadowMatrix: [],
+ rectArea: [],
+ rectAreaLTC1: null,
+ rectAreaLTC2: null,
+ point: [],
+ pointShadow: [],
+ pointShadowMap: [],
+ pointShadowMatrix: [],
+ hemi: []
+ };
+
+ for (var i = 0; i < 9; i++) {
+ state.probe.push(new Vector3());
+ }
+
+ var vector3 = new Vector3();
+ var matrix4 = new Matrix4();
+ var matrix42 = new Matrix4();
+
+ function setup(lights) {
+ var r = 0,
+ g = 0,
+ b = 0;
+
+ for (var _i = 0; _i < 9; _i++) {
+ state.probe[_i].set(0, 0, 0);
+ }
+
+ var directionalLength = 0;
+ var pointLength = 0;
+ var spotLength = 0;
+ var rectAreaLength = 0;
+ var hemiLength = 0;
+ var numDirectionalShadows = 0;
+ var numPointShadows = 0;
+ var numSpotShadows = 0;
+ lights.sort(shadowCastingLightsFirst);
+
+ for (var _i2 = 0, l = lights.length; _i2 < l; _i2++) {
+ var light = lights[_i2];
+ var color = light.color;
+ var intensity = light.intensity;
+ var distance = light.distance;
+ var shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;
+
+ if (light.isAmbientLight) {
+ r += color.r * intensity;
+ g += color.g * intensity;
+ b += color.b * intensity;
+ } else if (light.isLightProbe) {
+ for (var j = 0; j < 9; j++) {
+ state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);
+ }
+ } else if (light.isDirectionalLight) {
+ var uniforms = cache.get(light);
+ uniforms.color.copy(light.color).multiplyScalar(light.intensity);
+
+ if (light.castShadow) {
+ var shadow = light.shadow;
+ var shadowUniforms = shadowCache.get(light);
+ shadowUniforms.shadowBias = shadow.bias;
+ shadowUniforms.shadowNormalBias = shadow.normalBias;
+ shadowUniforms.shadowRadius = shadow.radius;
+ shadowUniforms.shadowMapSize = shadow.mapSize;
+ state.directionalShadow[directionalLength] = shadowUniforms;
+ state.directionalShadowMap[directionalLength] = shadowMap;
+ state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;
+ numDirectionalShadows++;
+ }
+
+ state.directional[directionalLength] = uniforms;
+ directionalLength++;
+ } else if (light.isSpotLight) {
+ var _uniforms = cache.get(light);
+
+ _uniforms.position.setFromMatrixPosition(light.matrixWorld);
+
+ _uniforms.color.copy(color).multiplyScalar(intensity);
+
+ _uniforms.distance = distance;
+ _uniforms.coneCos = Math.cos(light.angle);
+ _uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));
+ _uniforms.decay = light.decay;
+
+ if (light.castShadow) {
+ var _shadow = light.shadow;
+
+ var _shadowUniforms = shadowCache.get(light);
+
+ _shadowUniforms.shadowBias = _shadow.bias;
+ _shadowUniforms.shadowNormalBias = _shadow.normalBias;
+ _shadowUniforms.shadowRadius = _shadow.radius;
+ _shadowUniforms.shadowMapSize = _shadow.mapSize;
+ state.spotShadow[spotLength] = _shadowUniforms;
+ state.spotShadowMap[spotLength] = shadowMap;
+ state.spotShadowMatrix[spotLength] = light.shadow.matrix;
+ numSpotShadows++;
+ }
+
+ state.spot[spotLength] = _uniforms;
+ spotLength++;
+ } else if (light.isRectAreaLight) {
+ var _uniforms2 = cache.get(light); // (a) intensity is the total visible light emitted
+ //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
+ // (b) intensity is the brightness of the light
+
+
+ _uniforms2.color.copy(color).multiplyScalar(intensity);
+
+ _uniforms2.halfWidth.set(light.width * 0.5, 0.0, 0.0);
+
+ _uniforms2.halfHeight.set(0.0, light.height * 0.5, 0.0);
+
+ state.rectArea[rectAreaLength] = _uniforms2;
+ rectAreaLength++;
+ } else if (light.isPointLight) {
+ var _uniforms3 = cache.get(light);
+
+ _uniforms3.color.copy(light.color).multiplyScalar(light.intensity);
+
+ _uniforms3.distance = light.distance;
+ _uniforms3.decay = light.decay;
+
+ if (light.castShadow) {
+ var _shadow2 = light.shadow;
+
+ var _shadowUniforms2 = shadowCache.get(light);
+
+ _shadowUniforms2.shadowBias = _shadow2.bias;
+ _shadowUniforms2.shadowNormalBias = _shadow2.normalBias;
+ _shadowUniforms2.shadowRadius = _shadow2.radius;
+ _shadowUniforms2.shadowMapSize = _shadow2.mapSize;
+ _shadowUniforms2.shadowCameraNear = _shadow2.camera.near;
+ _shadowUniforms2.shadowCameraFar = _shadow2.camera.far;
+ state.pointShadow[pointLength] = _shadowUniforms2;
+ state.pointShadowMap[pointLength] = shadowMap;
+ state.pointShadowMatrix[pointLength] = light.shadow.matrix;
+ numPointShadows++;
+ }
+
+ state.point[pointLength] = _uniforms3;
+ pointLength++;
+ } else if (light.isHemisphereLight) {
+ var _uniforms4 = cache.get(light);
+
+ _uniforms4.skyColor.copy(light.color).multiplyScalar(intensity);
+
+ _uniforms4.groundColor.copy(light.groundColor).multiplyScalar(intensity);
+
+ state.hemi[hemiLength] = _uniforms4;
+ hemiLength++;
+ }
+ }
+
+ if (rectAreaLength > 0) {
+ if (capabilities.isWebGL2) {
+ // WebGL 2
+ state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
+ state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
+ } else {
+ // WebGL 1
+ if (extensions.has('OES_texture_float_linear') === true) {
+ state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
+ state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
+ } else if (extensions.has('OES_texture_half_float_linear') === true) {
+ state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;
+ state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;
+ } else {
+ console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');
+ }
+ }
+ }
+
+ state.ambient[0] = r;
+ state.ambient[1] = g;
+ state.ambient[2] = b;
+ var hash = state.hash;
+
+ if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {
+ state.directional.length = directionalLength;
+ state.spot.length = spotLength;
+ state.rectArea.length = rectAreaLength;
+ state.point.length = pointLength;
+ state.hemi.length = hemiLength;
+ state.directionalShadow.length = numDirectionalShadows;
+ state.directionalShadowMap.length = numDirectionalShadows;
+ state.pointShadow.length = numPointShadows;
+ state.pointShadowMap.length = numPointShadows;
+ state.spotShadow.length = numSpotShadows;
+ state.spotShadowMap.length = numSpotShadows;
+ state.directionalShadowMatrix.length = numDirectionalShadows;
+ state.pointShadowMatrix.length = numPointShadows;
+ state.spotShadowMatrix.length = numSpotShadows;
+ hash.directionalLength = directionalLength;
+ hash.pointLength = pointLength;
+ hash.spotLength = spotLength;
+ hash.rectAreaLength = rectAreaLength;
+ hash.hemiLength = hemiLength;
+ hash.numDirectionalShadows = numDirectionalShadows;
+ hash.numPointShadows = numPointShadows;
+ hash.numSpotShadows = numSpotShadows;
+ state.version = nextVersion++;
+ }
+ }
+
+ function setupView(lights, camera) {
+ var directionalLength = 0;
+ var pointLength = 0;
+ var spotLength = 0;
+ var rectAreaLength = 0;
+ var hemiLength = 0;
+ var viewMatrix = camera.matrixWorldInverse;
+
+ for (var _i3 = 0, l = lights.length; _i3 < l; _i3++) {
+ var light = lights[_i3];
+
+ if (light.isDirectionalLight) {
+ var uniforms = state.directional[directionalLength];
+ uniforms.direction.setFromMatrixPosition(light.matrixWorld);
+ vector3.setFromMatrixPosition(light.target.matrixWorld);
+ uniforms.direction.sub(vector3);
+ uniforms.direction.transformDirection(viewMatrix);
+ directionalLength++;
+ } else if (light.isSpotLight) {
+ var _uniforms5 = state.spot[spotLength];
+
+ _uniforms5.position.setFromMatrixPosition(light.matrixWorld);
+
+ _uniforms5.position.applyMatrix4(viewMatrix);
+
+ _uniforms5.direction.setFromMatrixPosition(light.matrixWorld);
+
+ vector3.setFromMatrixPosition(light.target.matrixWorld);
+
+ _uniforms5.direction.sub(vector3);
+
+ _uniforms5.direction.transformDirection(viewMatrix);
+
+ spotLength++;
+ } else if (light.isRectAreaLight) {
+ var _uniforms6 = state.rectArea[rectAreaLength];
+
+ _uniforms6.position.setFromMatrixPosition(light.matrixWorld);
+
+ _uniforms6.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors
+
+
+ matrix42.identity();
+ matrix4.copy(light.matrixWorld);
+ matrix4.premultiply(viewMatrix);
+ matrix42.extractRotation(matrix4);
+
+ _uniforms6.halfWidth.set(light.width * 0.5, 0.0, 0.0);
+
+ _uniforms6.halfHeight.set(0.0, light.height * 0.5, 0.0);
+
+ _uniforms6.halfWidth.applyMatrix4(matrix42);
+
+ _uniforms6.halfHeight.applyMatrix4(matrix42);
+
+ rectAreaLength++;
+ } else if (light.isPointLight) {
+ var _uniforms7 = state.point[pointLength];
+
+ _uniforms7.position.setFromMatrixPosition(light.matrixWorld);
+
+ _uniforms7.position.applyMatrix4(viewMatrix);
+
+ pointLength++;
+ } else if (light.isHemisphereLight) {
+ var _uniforms8 = state.hemi[hemiLength];
+
+ _uniforms8.direction.setFromMatrixPosition(light.matrixWorld);
+
+ _uniforms8.direction.transformDirection(viewMatrix);
+
+ _uniforms8.direction.normalize();
+
+ hemiLength++;
+ }
+ }
+ }
+
+ return {
+ setup: setup,
+ setupView: setupView,
+ state: state
+ };
+ }
+
+ function WebGLRenderState(extensions, capabilities) {
+ var lights = new WebGLLights(extensions, capabilities);
+ var lightsArray = [];
+ var shadowsArray = [];
+
+ function init() {
+ lightsArray.length = 0;
+ shadowsArray.length = 0;
+ }
+
+ function pushLight(light) {
+ lightsArray.push(light);
+ }
+
+ function pushShadow(shadowLight) {
+ shadowsArray.push(shadowLight);
+ }
+
+ function setupLights() {
+ lights.setup(lightsArray);
+ }
+
+ function setupLightsView(camera) {
+ lights.setupView(lightsArray, camera);
+ }
+
+ var state = {
+ lightsArray: lightsArray,
+ shadowsArray: shadowsArray,
+ lights: lights
+ };
+ return {
+ init: init,
+ state: state,
+ setupLights: setupLights,
+ setupLightsView: setupLightsView,
+ pushLight: pushLight,
+ pushShadow: pushShadow
+ };
+ }
+
+ function WebGLRenderStates(extensions, capabilities) {
+ var renderStates = new WeakMap();
+
+ function get(scene, renderCallDepth) {
+ if (renderCallDepth === void 0) {
+ renderCallDepth = 0;
+ }
+
+ var renderState;
+
+ if (renderStates.has(scene) === false) {
+ renderState = new WebGLRenderState(extensions, capabilities);
+ renderStates.set(scene, []);
+ renderStates.get(scene).push(renderState);
+ } else {
+ if (renderCallDepth >= renderStates.get(scene).length) {
+ renderState = new WebGLRenderState(extensions, capabilities);
+ renderStates.get(scene).push(renderState);
+ } else {
+ renderState = renderStates.get(scene)[renderCallDepth];
+ }
+ }
+
+ return renderState;
+ }
+
+ function dispose() {
+ renderStates = new WeakMap();
+ }
+
+ return {
+ get: get,
+ dispose: dispose
+ };
+ }
+
+ /**
+ * parameters = {
+ *
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>
+ * }
+ */
+
+ function MeshDepthMaterial(parameters) {
+ Material.call(this);
+ this.type = 'MeshDepthMaterial';
+ this.depthPacking = BasicDepthPacking;
+ this.skinning = false;
+ this.morphTargets = false;
+ this.map = null;
+ this.alphaMap = null;
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false;
+ this.setValues(parameters);
+ }
+
+ MeshDepthMaterial.prototype = Object.create(Material.prototype);
+ MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;
+ MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
+
+ MeshDepthMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.depthPacking = source.depthPacking;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ *
+ * referencePosition: <float>,
+ * nearDistance: <float>,
+ * farDistance: <float>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>
+ *
+ * }
+ */
+
+ function MeshDistanceMaterial(parameters) {
+ Material.call(this);
+ this.type = 'MeshDistanceMaterial';
+ this.referencePosition = new Vector3();
+ this.nearDistance = 1;
+ this.farDistance = 1000;
+ this.skinning = false;
+ this.morphTargets = false;
+ this.map = null;
+ this.alphaMap = null;
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.fog = false;
+ this.setValues(parameters);
+ }
+
+ MeshDistanceMaterial.prototype = Object.create(Material.prototype);
+ MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;
+ MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
+
+ MeshDistanceMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.referencePosition.copy(source.referencePosition);
+ this.nearDistance = source.nearDistance;
+ this.farDistance = source.farDistance;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ return this;
+ };
+
+ var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include <packing>\nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n\tfor ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean * HALF_SAMPLE_RATE;\n\tsquared_mean = squared_mean * HALF_SAMPLE_RATE;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
+
+ var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
+
+ function WebGLShadowMap(_renderer, _objects, maxTextureSize) {
+ var _frustum = new Frustum();
+
+ var _shadowMapSize = new Vector2(),
+ _viewportSize = new Vector2(),
+ _viewport = new Vector4(),
+ _depthMaterials = [],
+ _distanceMaterials = [],
+ _materialCache = {};
+
+ var shadowSide = {
+ 0: BackSide,
+ 1: FrontSide,
+ 2: DoubleSide
+ };
+ var shadowMaterialVertical = new ShaderMaterial({
+ defines: {
+ SAMPLE_RATE: 2.0 / 8.0,
+ HALF_SAMPLE_RATE: 1.0 / 8.0
+ },
+ uniforms: {
+ shadow_pass: {
+ value: null
+ },
+ resolution: {
+ value: new Vector2()
+ },
+ radius: {
+ value: 4.0
+ }
+ },
+ vertexShader: vsm_vert,
+ fragmentShader: vsm_frag
+ });
+ var shadowMaterialHorizontal = shadowMaterialVertical.clone();
+ shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
+ var fullScreenTri = new BufferGeometry();
+ fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));
+ var fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);
+ var scope = this;
+ this.enabled = false;
+ this.autoUpdate = true;
+ this.needsUpdate = false;
+ this.type = PCFShadowMap;
+
+ this.render = function (lights, scene, camera) {
+ if (scope.enabled === false) return;
+ if (scope.autoUpdate === false && scope.needsUpdate === false) return;
+ if (lights.length === 0) return;
+
+ var currentRenderTarget = _renderer.getRenderTarget();
+
+ var activeCubeFace = _renderer.getActiveCubeFace();
+
+ var activeMipmapLevel = _renderer.getActiveMipmapLevel();
+
+ var _state = _renderer.state; // Set GL state for depth map.
+
+ _state.setBlending(NoBlending);
+
+ _state.buffers.color.setClear(1, 1, 1, 1);
+
+ _state.buffers.depth.setTest(true);
+
+ _state.setScissorTest(false); // render depth map
+
+
+ for (var i = 0, il = lights.length; i < il; i++) {
+ var light = lights[i];
+ var shadow = light.shadow;
+
+ if (shadow === undefined) {
+ console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');
+ continue;
+ }
+
+ if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;
+
+ _shadowMapSize.copy(shadow.mapSize);
+
+ var shadowFrameExtents = shadow.getFrameExtents();
+
+ _shadowMapSize.multiply(shadowFrameExtents);
+
+ _viewportSize.copy(shadow.mapSize);
+
+ if (_shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize) {
+ if (_shadowMapSize.x > maxTextureSize) {
+ _viewportSize.x = Math.floor(maxTextureSize / shadowFrameExtents.x);
+ _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
+ shadow.mapSize.x = _viewportSize.x;
+ }
+
+ if (_shadowMapSize.y > maxTextureSize) {
+ _viewportSize.y = Math.floor(maxTextureSize / shadowFrameExtents.y);
+ _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
+ shadow.mapSize.y = _viewportSize.y;
+ }
+ }
+
+ if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {
+ var pars = {
+ minFilter: LinearFilter,
+ magFilter: LinearFilter,
+ format: RGBAFormat
+ };
+ shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
+ shadow.map.texture.name = light.name + '.shadowMap';
+ shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
+ shadow.camera.updateProjectionMatrix();
+ }
+
+ if (shadow.map === null) {
+ var _pars = {
+ minFilter: NearestFilter,
+ magFilter: NearestFilter,
+ format: RGBAFormat
+ };
+ shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, _pars);
+ shadow.map.texture.name = light.name + '.shadowMap';
+ shadow.camera.updateProjectionMatrix();
+ }
+
+ _renderer.setRenderTarget(shadow.map);
+
+ _renderer.clear();
+
+ var viewportCount = shadow.getViewportCount();
+
+ for (var vp = 0; vp < viewportCount; vp++) {
+ var viewport = shadow.getViewport(vp);
+
+ _viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);
+
+ _state.viewport(_viewport);
+
+ shadow.updateMatrices(light, vp);
+ _frustum = shadow.getFrustum();
+ renderObject(scene, camera, shadow.camera, light, this.type);
+ } // do blur pass for VSM
+
+
+ if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {
+ VSMPass(shadow, camera);
+ }
+
+ shadow.needsUpdate = false;
+ }
+
+ scope.needsUpdate = false;
+
+ _renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);
+ };
+
+ function VSMPass(shadow, camera) {
+ var geometry = _objects.update(fullScreenMesh); // vertical pass
+
+
+ shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
+ shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
+ shadowMaterialVertical.uniforms.radius.value = shadow.radius;
+
+ _renderer.setRenderTarget(shadow.mapPass);
+
+ _renderer.clear();
+
+ _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass
+
+
+ shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
+ shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
+ shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
+
+ _renderer.setRenderTarget(shadow.map);
+
+ _renderer.clear();
+
+ _renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);
+ }
+
+ function getDepthMaterialVariant(useMorphing, useSkinning, useInstancing) {
+ var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;
+ var material = _depthMaterials[index];
+
+ if (material === undefined) {
+ material = new MeshDepthMaterial({
+ depthPacking: RGBADepthPacking,
+ morphTargets: useMorphing,
+ skinning: useSkinning
+ });
+ _depthMaterials[index] = material;
+ }
+
+ return material;
+ }
+
+ function getDistanceMaterialVariant(useMorphing, useSkinning, useInstancing) {
+ var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2;
+ var material = _distanceMaterials[index];
+
+ if (material === undefined) {
+ material = new MeshDistanceMaterial({
+ morphTargets: useMorphing,
+ skinning: useSkinning
+ });
+ _distanceMaterials[index] = material;
+ }
+
+ return material;
+ }
+
+ function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {
+ var result = null;
+ var getMaterialVariant = getDepthMaterialVariant;
+ var customMaterial = object.customDepthMaterial;
+
+ if (light.isPointLight === true) {
+ getMaterialVariant = getDistanceMaterialVariant;
+ customMaterial = object.customDistanceMaterial;
+ }
+
+ if (customMaterial === undefined) {
+ var useMorphing = false;
+
+ if (material.morphTargets === true) {
+ useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;
+ }
+
+ var useSkinning = false;
+
+ if (object.isSkinnedMesh === true) {
+ if (material.skinning === true) {
+ useSkinning = true;
+ } else {
+ console.warn('THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object);
+ }
+ }
+
+ var useInstancing = object.isInstancedMesh === true;
+ result = getMaterialVariant(useMorphing, useSkinning, useInstancing);
+ } else {
+ result = customMaterial;
+ }
+
+ if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0) {
+ // in this case we need a unique material instance reflecting the
+ // appropriate state
+ var keyA = result.uuid,
+ keyB = material.uuid;
+ var materialsForVariant = _materialCache[keyA];
+
+ if (materialsForVariant === undefined) {
+ materialsForVariant = {};
+ _materialCache[keyA] = materialsForVariant;
+ }
+
+ var cachedMaterial = materialsForVariant[keyB];
+
+ if (cachedMaterial === undefined) {
+ cachedMaterial = result.clone();
+ materialsForVariant[keyB] = cachedMaterial;
+ }
+
+ result = cachedMaterial;
+ }
+
+ result.visible = material.visible;
+ result.wireframe = material.wireframe;
+
+ if (type === VSMShadowMap) {
+ result.side = material.shadowSide !== null ? material.shadowSide : material.side;
+ } else {
+ result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];
+ }
+
+ result.clipShadows = material.clipShadows;
+ result.clippingPlanes = material.clippingPlanes;
+ result.clipIntersection = material.clipIntersection;
+ result.wireframeLinewidth = material.wireframeLinewidth;
+ result.linewidth = material.linewidth;
+
+ if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {
+ result.referencePosition.setFromMatrixPosition(light.matrixWorld);
+ result.nearDistance = shadowCameraNear;
+ result.farDistance = shadowCameraFar;
+ }
+
+ return result;
+ }
+
+ function renderObject(object, camera, shadowCamera, light, type) {
+ if (object.visible === false) return;
+ var visible = object.layers.test(camera.layers);
+
+ if (visible && (object.isMesh || object.isLine || object.isPoints)) {
+ if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {
+ object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);
+
+ var geometry = _objects.update(object);
+
+ var material = object.material;
+
+ if (Array.isArray(material)) {
+ var groups = geometry.groups;
+
+ for (var k = 0, kl = groups.length; k < kl; k++) {
+ var group = groups[k];
+ var groupMaterial = material[group.materialIndex];
+
+ if (groupMaterial && groupMaterial.visible) {
+ var depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);
+
+ _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);
+ }
+ }
+ } else if (material.visible) {
+ var _depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);
+
+ _renderer.renderBufferDirect(shadowCamera, null, geometry, _depthMaterial, object, null);
+ }
+ }
+ }
+
+ var children = object.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ renderObject(children[i], camera, shadowCamera, light, type);
+ }
+ }
+ }
+
+ function WebGLState(gl, extensions, capabilities) {
+ var _equationToGL, _factorToGL;
+
+ var isWebGL2 = capabilities.isWebGL2;
+
+ function ColorBuffer() {
+ var locked = false;
+ var color = new Vector4();
+ var currentColorMask = null;
+ var currentColorClear = new Vector4(0, 0, 0, 0);
+ return {
+ setMask: function setMask(colorMask) {
+ if (currentColorMask !== colorMask && !locked) {
+ gl.colorMask(colorMask, colorMask, colorMask, colorMask);
+ currentColorMask = colorMask;
+ }
+ },
+ setLocked: function setLocked(lock) {
+ locked = lock;
+ },
+ setClear: function setClear(r, g, b, a, premultipliedAlpha) {
+ if (premultipliedAlpha === true) {
+ r *= a;
+ g *= a;
+ b *= a;
+ }
+
+ color.set(r, g, b, a);
+
+ if (currentColorClear.equals(color) === false) {
+ gl.clearColor(r, g, b, a);
+ currentColorClear.copy(color);
+ }
+ },
+ reset: function reset() {
+ locked = false;
+ currentColorMask = null;
+ currentColorClear.set(-1, 0, 0, 0); // set to invalid state
+ }
+ };
+ }
+
+ function DepthBuffer() {
+ var locked = false;
+ var currentDepthMask = null;
+ var currentDepthFunc = null;
+ var currentDepthClear = null;
+ return {
+ setTest: function setTest(depthTest) {
+ if (depthTest) {
+ enable(2929);
+ } else {
+ disable(2929);
+ }
+ },
+ setMask: function setMask(depthMask) {
+ if (currentDepthMask !== depthMask && !locked) {
+ gl.depthMask(depthMask);
+ currentDepthMask = depthMask;
+ }
+ },
+ setFunc: function setFunc(depthFunc) {
+ if (currentDepthFunc !== depthFunc) {
+ if (depthFunc) {
+ switch (depthFunc) {
+ case NeverDepth:
+ gl.depthFunc(512);
+ break;
+
+ case AlwaysDepth:
+ gl.depthFunc(519);
+ break;
+
+ case LessDepth:
+ gl.depthFunc(513);
+ break;
+
+ case LessEqualDepth:
+ gl.depthFunc(515);
+ break;
+
+ case EqualDepth:
+ gl.depthFunc(514);
+ break;
+
+ case GreaterEqualDepth:
+ gl.depthFunc(518);
+ break;
+
+ case GreaterDepth:
+ gl.depthFunc(516);
+ break;
+
+ case NotEqualDepth:
+ gl.depthFunc(517);
+ break;
+
+ default:
+ gl.depthFunc(515);
+ }
+ } else {
+ gl.depthFunc(515);
+ }
+
+ currentDepthFunc = depthFunc;
+ }
+ },
+ setLocked: function setLocked(lock) {
+ locked = lock;
+ },
+ setClear: function setClear(depth) {
+ if (currentDepthClear !== depth) {
+ gl.clearDepth(depth);
+ currentDepthClear = depth;
+ }
+ },
+ reset: function reset() {
+ locked = false;
+ currentDepthMask = null;
+ currentDepthFunc = null;
+ currentDepthClear = null;
+ }
+ };
+ }
+
+ function StencilBuffer() {
+ var locked = false;
+ var currentStencilMask = null;
+ var currentStencilFunc = null;
+ var currentStencilRef = null;
+ var currentStencilFuncMask = null;
+ var currentStencilFail = null;
+ var currentStencilZFail = null;
+ var currentStencilZPass = null;
+ var currentStencilClear = null;
+ return {
+ setTest: function setTest(stencilTest) {
+ if (!locked) {
+ if (stencilTest) {
+ enable(2960);
+ } else {
+ disable(2960);
+ }
+ }
+ },
+ setMask: function setMask(stencilMask) {
+ if (currentStencilMask !== stencilMask && !locked) {
+ gl.stencilMask(stencilMask);
+ currentStencilMask = stencilMask;
+ }
+ },
+ setFunc: function setFunc(stencilFunc, stencilRef, stencilMask) {
+ if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {
+ gl.stencilFunc(stencilFunc, stencilRef, stencilMask);
+ currentStencilFunc = stencilFunc;
+ currentStencilRef = stencilRef;
+ currentStencilFuncMask = stencilMask;
+ }
+ },
+ setOp: function setOp(stencilFail, stencilZFail, stencilZPass) {
+ if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {
+ gl.stencilOp(stencilFail, stencilZFail, stencilZPass);
+ currentStencilFail = stencilFail;
+ currentStencilZFail = stencilZFail;
+ currentStencilZPass = stencilZPass;
+ }
+ },
+ setLocked: function setLocked(lock) {
+ locked = lock;
+ },
+ setClear: function setClear(stencil) {
+ if (currentStencilClear !== stencil) {
+ gl.clearStencil(stencil);
+ currentStencilClear = stencil;
+ }
+ },
+ reset: function reset() {
+ locked = false;
+ currentStencilMask = null;
+ currentStencilFunc = null;
+ currentStencilRef = null;
+ currentStencilFuncMask = null;
+ currentStencilFail = null;
+ currentStencilZFail = null;
+ currentStencilZPass = null;
+ currentStencilClear = null;
+ }
+ };
+ } //
+
+
+ var colorBuffer = new ColorBuffer();
+ var depthBuffer = new DepthBuffer();
+ var stencilBuffer = new StencilBuffer();
+ var enabledCapabilities = {};
+ var currentProgram = null;
+ var currentBlendingEnabled = null;
+ var currentBlending = null;
+ var currentBlendEquation = null;
+ var currentBlendSrc = null;
+ var currentBlendDst = null;
+ var currentBlendEquationAlpha = null;
+ var currentBlendSrcAlpha = null;
+ var currentBlendDstAlpha = null;
+ var currentPremultipledAlpha = false;
+ var currentFlipSided = null;
+ var currentCullFace = null;
+ var currentLineWidth = null;
+ var currentPolygonOffsetFactor = null;
+ var currentPolygonOffsetUnits = null;
+ var maxTextures = gl.getParameter(35661);
+ var lineWidthAvailable = false;
+ var version = 0;
+ var glVersion = gl.getParameter(7938);
+
+ if (glVersion.indexOf('WebGL') !== -1) {
+ version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);
+ lineWidthAvailable = version >= 1.0;
+ } else if (glVersion.indexOf('OpenGL ES') !== -1) {
+ version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);
+ lineWidthAvailable = version >= 2.0;
+ }
+
+ var currentTextureSlot = null;
+ var currentBoundTextures = {};
+ var currentScissor = new Vector4();
+ var currentViewport = new Vector4();
+
+ function createTexture(type, target, count) {
+ var data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.
+
+ var texture = gl.createTexture();
+ gl.bindTexture(type, texture);
+ gl.texParameteri(type, 10241, 9728);
+ gl.texParameteri(type, 10240, 9728);
+
+ for (var i = 0; i < count; i++) {
+ gl.texImage2D(target + i, 0, 6408, 1, 1, 0, 6408, 5121, data);
+ }
+
+ return texture;
+ }
+
+ var emptyTextures = {};
+ emptyTextures[3553] = createTexture(3553, 3553, 1);
+ emptyTextures[34067] = createTexture(34067, 34069, 6); // init
+
+ colorBuffer.setClear(0, 0, 0, 1);
+ depthBuffer.setClear(1);
+ stencilBuffer.setClear(0);
+ enable(2929);
+ depthBuffer.setFunc(LessEqualDepth);
+ setFlipSided(false);
+ setCullFace(CullFaceBack);
+ enable(2884);
+ setBlending(NoBlending); //
+
+ function enable(id) {
+ if (enabledCapabilities[id] !== true) {
+ gl.enable(id);
+ enabledCapabilities[id] = true;
+ }
+ }
+
+ function disable(id) {
+ if (enabledCapabilities[id] !== false) {
+ gl.disable(id);
+ enabledCapabilities[id] = false;
+ }
+ }
+
+ function useProgram(program) {
+ if (currentProgram !== program) {
+ gl.useProgram(program);
+ currentProgram = program;
+ return true;
+ }
+
+ return false;
+ }
+
+ var equationToGL = (_equationToGL = {}, _equationToGL[AddEquation] = 32774, _equationToGL[SubtractEquation] = 32778, _equationToGL[ReverseSubtractEquation] = 32779, _equationToGL);
+
+ if (isWebGL2) {
+ equationToGL[MinEquation] = 32775;
+ equationToGL[MaxEquation] = 32776;
+ } else {
+ var extension = extensions.get('EXT_blend_minmax');
+
+ if (extension !== null) {
+ equationToGL[MinEquation] = extension.MIN_EXT;
+ equationToGL[MaxEquation] = extension.MAX_EXT;
+ }
+ }
+
+ var factorToGL = (_factorToGL = {}, _factorToGL[ZeroFactor] = 0, _factorToGL[OneFactor] = 1, _factorToGL[SrcColorFactor] = 768, _factorToGL[SrcAlphaFactor] = 770, _factorToGL[SrcAlphaSaturateFactor] = 776, _factorToGL[DstColorFactor] = 774, _factorToGL[DstAlphaFactor] = 772, _factorToGL[OneMinusSrcColorFactor] = 769, _factorToGL[OneMinusSrcAlphaFactor] = 771, _factorToGL[OneMinusDstColorFactor] = 775, _factorToGL[OneMinusDstAlphaFactor] = 773, _factorToGL);
+
+ function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {
+ if (blending === NoBlending) {
+ if (currentBlendingEnabled) {
+ disable(3042);
+ currentBlendingEnabled = false;
+ }
+
+ return;
+ }
+
+ if (!currentBlendingEnabled) {
+ enable(3042);
+ currentBlendingEnabled = true;
+ }
+
+ if (blending !== CustomBlending) {
+ if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {
+ if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {
+ gl.blendEquation(32774);
+ currentBlendEquation = AddEquation;
+ currentBlendEquationAlpha = AddEquation;
+ }
+
+ if (premultipliedAlpha) {
+ switch (blending) {
+ case NormalBlending:
+ gl.blendFuncSeparate(1, 771, 1, 771);
+ break;
+
+ case AdditiveBlending:
+ gl.blendFunc(1, 1);
+ break;
+
+ case SubtractiveBlending:
+ gl.blendFuncSeparate(0, 0, 769, 771);
+ break;
+
+ case MultiplyBlending:
+ gl.blendFuncSeparate(0, 768, 0, 770);
+ break;
+
+ default:
+ console.error('THREE.WebGLState: Invalid blending: ', blending);
+ break;
+ }
+ } else {
+ switch (blending) {
+ case NormalBlending:
+ gl.blendFuncSeparate(770, 771, 1, 771);
+ break;
+
+ case AdditiveBlending:
+ gl.blendFunc(770, 1);
+ break;
+
+ case SubtractiveBlending:
+ gl.blendFunc(0, 769);
+ break;
+
+ case MultiplyBlending:
+ gl.blendFunc(0, 768);
+ break;
+
+ default:
+ console.error('THREE.WebGLState: Invalid blending: ', blending);
+ break;
+ }
+ }
+
+ currentBlendSrc = null;
+ currentBlendDst = null;
+ currentBlendSrcAlpha = null;
+ currentBlendDstAlpha = null;
+ currentBlending = blending;
+ currentPremultipledAlpha = premultipliedAlpha;
+ }
+
+ return;
+ } // custom blending
+
+
+ blendEquationAlpha = blendEquationAlpha || blendEquation;
+ blendSrcAlpha = blendSrcAlpha || blendSrc;
+ blendDstAlpha = blendDstAlpha || blendDst;
+
+ if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {
+ gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);
+ currentBlendEquation = blendEquation;
+ currentBlendEquationAlpha = blendEquationAlpha;
+ }
+
+ if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {
+ gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);
+ currentBlendSrc = blendSrc;
+ currentBlendDst = blendDst;
+ currentBlendSrcAlpha = blendSrcAlpha;
+ currentBlendDstAlpha = blendDstAlpha;
+ }
+
+ currentBlending = blending;
+ currentPremultipledAlpha = null;
+ }
+
+ function setMaterial(material, frontFaceCW) {
+ material.side === DoubleSide ? disable(2884) : enable(2884);
+ var flipSided = material.side === BackSide;
+ if (frontFaceCW) flipSided = !flipSided;
+ setFlipSided(flipSided);
+ material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);
+ depthBuffer.setFunc(material.depthFunc);
+ depthBuffer.setTest(material.depthTest);
+ depthBuffer.setMask(material.depthWrite);
+ colorBuffer.setMask(material.colorWrite);
+ var stencilWrite = material.stencilWrite;
+ stencilBuffer.setTest(stencilWrite);
+
+ if (stencilWrite) {
+ stencilBuffer.setMask(material.stencilWriteMask);
+ stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);
+ stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);
+ }
+
+ setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);
+ } //
+
+
+ function setFlipSided(flipSided) {
+ if (currentFlipSided !== flipSided) {
+ if (flipSided) {
+ gl.frontFace(2304);
+ } else {
+ gl.frontFace(2305);
+ }
+
+ currentFlipSided = flipSided;
+ }
+ }
+
+ function setCullFace(cullFace) {
+ if (cullFace !== CullFaceNone) {
+ enable(2884);
+
+ if (cullFace !== currentCullFace) {
+ if (cullFace === CullFaceBack) {
+ gl.cullFace(1029);
+ } else if (cullFace === CullFaceFront) {
+ gl.cullFace(1028);
+ } else {
+ gl.cullFace(1032);
+ }
+ }
+ } else {
+ disable(2884);
+ }
+
+ currentCullFace = cullFace;
+ }
+
+ function setLineWidth(width) {
+ if (width !== currentLineWidth) {
+ if (lineWidthAvailable) gl.lineWidth(width);
+ currentLineWidth = width;
+ }
+ }
+
+ function setPolygonOffset(polygonOffset, factor, units) {
+ if (polygonOffset) {
+ enable(32823);
+
+ if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {
+ gl.polygonOffset(factor, units);
+ currentPolygonOffsetFactor = factor;
+ currentPolygonOffsetUnits = units;
+ }
+ } else {
+ disable(32823);
+ }
+ }
+
+ function setScissorTest(scissorTest) {
+ if (scissorTest) {
+ enable(3089);
+ } else {
+ disable(3089);
+ }
+ } // texture
+
+
+ function activeTexture(webglSlot) {
+ if (webglSlot === undefined) webglSlot = 33984 + maxTextures - 1;
+
+ if (currentTextureSlot !== webglSlot) {
+ gl.activeTexture(webglSlot);
+ currentTextureSlot = webglSlot;
+ }
+ }
+
+ function bindTexture(webglType, webglTexture) {
+ if (currentTextureSlot === null) {
+ activeTexture();
+ }
+
+ var boundTexture = currentBoundTextures[currentTextureSlot];
+
+ if (boundTexture === undefined) {
+ boundTexture = {
+ type: undefined,
+ texture: undefined
+ };
+ currentBoundTextures[currentTextureSlot] = boundTexture;
+ }
+
+ if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {
+ gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);
+ boundTexture.type = webglType;
+ boundTexture.texture = webglTexture;
+ }
+ }
+
+ function unbindTexture() {
+ var boundTexture = currentBoundTextures[currentTextureSlot];
+
+ if (boundTexture !== undefined && boundTexture.type !== undefined) {
+ gl.bindTexture(boundTexture.type, null);
+ boundTexture.type = undefined;
+ boundTexture.texture = undefined;
+ }
+ }
+
+ function compressedTexImage2D() {
+ try {
+ gl.compressedTexImage2D.apply(gl, arguments);
+ } catch (error) {
+ console.error('THREE.WebGLState:', error);
+ }
+ }
+
+ function texImage2D() {
+ try {
+ gl.texImage2D.apply(gl, arguments);
+ } catch (error) {
+ console.error('THREE.WebGLState:', error);
+ }
+ }
+
+ function texImage3D() {
+ try {
+ gl.texImage3D.apply(gl, arguments);
+ } catch (error) {
+ console.error('THREE.WebGLState:', error);
+ }
+ } //
+
+
+ function scissor(scissor) {
+ if (currentScissor.equals(scissor) === false) {
+ gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);
+ currentScissor.copy(scissor);
+ }
+ }
+
+ function viewport(viewport) {
+ if (currentViewport.equals(viewport) === false) {
+ gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);
+ currentViewport.copy(viewport);
+ }
+ } //
+
+
+ function reset() {
+ enabledCapabilities = {};
+ currentTextureSlot = null;
+ currentBoundTextures = {};
+ currentProgram = null;
+ currentBlendingEnabled = null;
+ currentBlending = null;
+ currentBlendEquation = null;
+ currentBlendSrc = null;
+ currentBlendDst = null;
+ currentBlendEquationAlpha = null;
+ currentBlendSrcAlpha = null;
+ currentBlendDstAlpha = null;
+ currentPremultipledAlpha = false;
+ currentFlipSided = null;
+ currentCullFace = null;
+ currentLineWidth = null;
+ currentPolygonOffsetFactor = null;
+ currentPolygonOffsetUnits = null;
+ colorBuffer.reset();
+ depthBuffer.reset();
+ stencilBuffer.reset();
+ }
+
+ return {
+ buffers: {
+ color: colorBuffer,
+ depth: depthBuffer,
+ stencil: stencilBuffer
+ },
+ enable: enable,
+ disable: disable,
+ useProgram: useProgram,
+ setBlending: setBlending,
+ setMaterial: setMaterial,
+ setFlipSided: setFlipSided,
+ setCullFace: setCullFace,
+ setLineWidth: setLineWidth,
+ setPolygonOffset: setPolygonOffset,
+ setScissorTest: setScissorTest,
+ activeTexture: activeTexture,
+ bindTexture: bindTexture,
+ unbindTexture: unbindTexture,
+ compressedTexImage2D: compressedTexImage2D,
+ texImage2D: texImage2D,
+ texImage3D: texImage3D,
+ scissor: scissor,
+ viewport: viewport,
+ reset: reset
+ };
+ }
+
+ function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {
+ var _wrappingToGL, _filterToGL;
+
+ var isWebGL2 = capabilities.isWebGL2;
+ var maxTextures = capabilities.maxTextures;
+ var maxCubemapSize = capabilities.maxCubemapSize;
+ var maxTextureSize = capabilities.maxTextureSize;
+ var maxSamples = capabilities.maxSamples;
+
+ var _videoTextures = new WeakMap();
+
+ var _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
+ // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
+ // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
+
+
+ var useOffscreenCanvas = false;
+
+ try {
+ useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;
+ } catch (err) {// Ignore any errors
+ }
+
+ function createCanvas(width, height) {
+ // Use OffscreenCanvas when available. Specially needed in web workers
+ return useOffscreenCanvas ? new OffscreenCanvas(width, height) : document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
+ }
+
+ function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {
+ var scale = 1; // handle case if texture exceeds max size
+
+ if (image.width > maxSize || image.height > maxSize) {
+ scale = maxSize / Math.max(image.width, image.height);
+ } // only perform resize if necessary
+
+
+ if (scale < 1 || needsPowerOfTwo === true) {
+ // only perform resize for certain image types
+ if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
+ var floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor;
+ var width = floor(scale * image.width);
+ var height = floor(scale * image.height);
+ if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas
+
+ var canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;
+ canvas.width = width;
+ canvas.height = height;
+ var context = canvas.getContext('2d');
+ context.drawImage(image, 0, 0, width, height);
+ console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');
+ return canvas;
+ } else {
+ if ('data' in image) {
+ console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');
+ }
+
+ return image;
+ }
+ }
+
+ return image;
+ }
+
+ function isPowerOfTwo(image) {
+ return MathUtils.isPowerOfTwo(image.width) && MathUtils.isPowerOfTwo(image.height);
+ }
+
+ function textureNeedsPowerOfTwo(texture) {
+ if (isWebGL2) return false;
+ return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
+ }
+
+ function textureNeedsGenerateMipmaps(texture, supportsMips) {
+ return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
+ }
+
+ function generateMipmap(target, texture, width, height) {
+ _gl.generateMipmap(target);
+
+ var textureProperties = properties.get(texture); // Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11
+
+ textureProperties.__maxMipLevel = Math.log(Math.max(width, height)) * Math.LOG2E;
+ }
+
+ function getInternalFormat(internalFormatName, glFormat, glType) {
+ if (isWebGL2 === false) return glFormat;
+
+ if (internalFormatName !== null) {
+ if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];
+ console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');
+ }
+
+ var internalFormat = glFormat;
+
+ if (glFormat === 6403) {
+ if (glType === 5126) internalFormat = 33326;
+ if (glType === 5131) internalFormat = 33325;
+ if (glType === 5121) internalFormat = 33321;
+ }
+
+ if (glFormat === 6407) {
+ if (glType === 5126) internalFormat = 34837;
+ if (glType === 5131) internalFormat = 34843;
+ if (glType === 5121) internalFormat = 32849;
+ }
+
+ if (glFormat === 6408) {
+ if (glType === 5126) internalFormat = 34836;
+ if (glType === 5131) internalFormat = 34842;
+ if (glType === 5121) internalFormat = 32856;
+ }
+
+ if (internalFormat === 33325 || internalFormat === 33326 || internalFormat === 34842 || internalFormat === 34836) {
+ extensions.get('EXT_color_buffer_float');
+ }
+
+ return internalFormat;
+ } // Fallback filters for non-power-of-2 textures
+
+
+ function filterFallback(f) {
+ if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {
+ return 9728;
+ }
+
+ return 9729;
+ } //
+
+
+ function onTextureDispose(event) {
+ var texture = event.target;
+ texture.removeEventListener('dispose', onTextureDispose);
+ deallocateTexture(texture);
+
+ if (texture.isVideoTexture) {
+ _videoTextures.delete(texture);
+ }
+
+ info.memory.textures--;
+ }
+
+ function onRenderTargetDispose(event) {
+ var renderTarget = event.target;
+ renderTarget.removeEventListener('dispose', onRenderTargetDispose);
+ deallocateRenderTarget(renderTarget);
+ info.memory.textures--;
+ } //
+
+
+ function deallocateTexture(texture) {
+ var textureProperties = properties.get(texture);
+ if (textureProperties.__webglInit === undefined) return;
+
+ _gl.deleteTexture(textureProperties.__webglTexture);
+
+ properties.remove(texture);
+ }
+
+ function deallocateRenderTarget(renderTarget) {
+ var renderTargetProperties = properties.get(renderTarget);
+ var textureProperties = properties.get(renderTarget.texture);
+ if (!renderTarget) return;
+
+ if (textureProperties.__webglTexture !== undefined) {
+ _gl.deleteTexture(textureProperties.__webglTexture);
+ }
+
+ if (renderTarget.depthTexture) {
+ renderTarget.depthTexture.dispose();
+ }
+
+ if (renderTarget.isWebGLCubeRenderTarget) {
+ for (var i = 0; i < 6; i++) {
+ _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);
+
+ if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);
+ }
+ } else {
+ _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);
+
+ if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);
+ if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);
+ if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);
+ if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);
+ }
+
+ properties.remove(renderTarget.texture);
+ properties.remove(renderTarget);
+ } //
+
+
+ var textureUnits = 0;
+
+ function resetTextureUnits() {
+ textureUnits = 0;
+ }
+
+ function allocateTextureUnit() {
+ var textureUnit = textureUnits;
+
+ if (textureUnit >= maxTextures) {
+ console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);
+ }
+
+ textureUnits += 1;
+ return textureUnit;
+ } //
+
+
+ function setTexture2D(texture, slot) {
+ var textureProperties = properties.get(texture);
+ if (texture.isVideoTexture) updateVideoTexture(texture);
+
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ var image = texture.image;
+
+ if (image === undefined) {
+ console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');
+ } else if (image.complete === false) {
+ console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');
+ } else {
+ uploadTexture(textureProperties, texture, slot);
+ return;
+ }
+ }
+
+ state.activeTexture(33984 + slot);
+ state.bindTexture(3553, textureProperties.__webglTexture);
+ }
+
+ function setTexture2DArray(texture, slot) {
+ var textureProperties = properties.get(texture);
+
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ uploadTexture(textureProperties, texture, slot);
+ return;
+ }
+
+ state.activeTexture(33984 + slot);
+ state.bindTexture(35866, textureProperties.__webglTexture);
+ }
+
+ function setTexture3D(texture, slot) {
+ var textureProperties = properties.get(texture);
+
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ uploadTexture(textureProperties, texture, slot);
+ return;
+ }
+
+ state.activeTexture(33984 + slot);
+ state.bindTexture(32879, textureProperties.__webglTexture);
+ }
+
+ function setTextureCube(texture, slot) {
+ var textureProperties = properties.get(texture);
+
+ if (texture.version > 0 && textureProperties.__version !== texture.version) {
+ uploadCubeTexture(textureProperties, texture, slot);
+ return;
+ }
+
+ state.activeTexture(33984 + slot);
+ state.bindTexture(34067, textureProperties.__webglTexture);
+ }
+
+ var wrappingToGL = (_wrappingToGL = {}, _wrappingToGL[RepeatWrapping] = 10497, _wrappingToGL[ClampToEdgeWrapping] = 33071, _wrappingToGL[MirroredRepeatWrapping] = 33648, _wrappingToGL);
+ var filterToGL = (_filterToGL = {}, _filterToGL[NearestFilter] = 9728, _filterToGL[NearestMipmapNearestFilter] = 9984, _filterToGL[NearestMipmapLinearFilter] = 9986, _filterToGL[LinearFilter] = 9729, _filterToGL[LinearMipmapNearestFilter] = 9985, _filterToGL[LinearMipmapLinearFilter] = 9987, _filterToGL);
+
+ function setTextureParameters(textureType, texture, supportsMips) {
+ if (supportsMips) {
+ _gl.texParameteri(textureType, 10242, wrappingToGL[texture.wrapS]);
+
+ _gl.texParameteri(textureType, 10243, wrappingToGL[texture.wrapT]);
+
+ if (textureType === 32879 || textureType === 35866) {
+ _gl.texParameteri(textureType, 32882, wrappingToGL[texture.wrapR]);
+ }
+
+ _gl.texParameteri(textureType, 10240, filterToGL[texture.magFilter]);
+
+ _gl.texParameteri(textureType, 10241, filterToGL[texture.minFilter]);
+ } else {
+ _gl.texParameteri(textureType, 10242, 33071);
+
+ _gl.texParameteri(textureType, 10243, 33071);
+
+ if (textureType === 32879 || textureType === 35866) {
+ _gl.texParameteri(textureType, 32882, 33071);
+ }
+
+ if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {
+ console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');
+ }
+
+ _gl.texParameteri(textureType, 10240, filterFallback(texture.magFilter));
+
+ _gl.texParameteri(textureType, 10241, filterFallback(texture.minFilter));
+
+ if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {
+ console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');
+ }
+ }
+
+ var extension = extensions.get('EXT_texture_filter_anisotropic');
+
+ if (extension) {
+ if (texture.type === FloatType && extensions.get('OES_texture_float_linear') === null) return;
+ if (texture.type === HalfFloatType && (isWebGL2 || extensions.get('OES_texture_half_float_linear')) === null) return;
+
+ if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {
+ _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));
+
+ properties.get(texture).__currentAnisotropy = texture.anisotropy;
+ }
+ }
+ }
+
+ function initTexture(textureProperties, texture) {
+ if (textureProperties.__webglInit === undefined) {
+ textureProperties.__webglInit = true;
+ texture.addEventListener('dispose', onTextureDispose);
+ textureProperties.__webglTexture = _gl.createTexture();
+ info.memory.textures++;
+ }
+ }
+
+ function uploadTexture(textureProperties, texture, slot) {
+ var textureType = 3553;
+ if (texture.isDataTexture2DArray) textureType = 35866;
+ if (texture.isDataTexture3D) textureType = 32879;
+ initTexture(textureProperties, texture);
+ state.activeTexture(33984 + slot);
+ state.bindTexture(textureType, textureProperties.__webglTexture);
+
+ _gl.pixelStorei(37440, texture.flipY);
+
+ _gl.pixelStorei(37441, texture.premultiplyAlpha);
+
+ _gl.pixelStorei(3317, texture.unpackAlignment);
+
+ var needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo(texture.image) === false;
+ var image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);
+ var supportsMips = isPowerOfTwo(image) || isWebGL2,
+ glFormat = utils.convert(texture.format);
+ var glType = utils.convert(texture.type),
+ glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+ setTextureParameters(textureType, texture, supportsMips);
+ var mipmap;
+ var mipmaps = texture.mipmaps;
+
+ if (texture.isDepthTexture) {
+ // populate depth texture with dummy data
+ glInternalFormat = 6402;
+
+ if (isWebGL2) {
+ if (texture.type === FloatType) {
+ glInternalFormat = 36012;
+ } else if (texture.type === UnsignedIntType) {
+ glInternalFormat = 33190;
+ } else if (texture.type === UnsignedInt248Type) {
+ glInternalFormat = 35056;
+ } else {
+ glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D
+ }
+ } else {
+ if (texture.type === FloatType) {
+ console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');
+ }
+ } // validation checks for WebGL 1
+
+
+ if (texture.format === DepthFormat && glInternalFormat === 6402) {
+ // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
+ // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
+ // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+ if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {
+ console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');
+ texture.type = UnsignedShortType;
+ glType = utils.convert(texture.type);
+ }
+ }
+
+ if (texture.format === DepthStencilFormat && glInternalFormat === 6402) {
+ // Depth stencil textures need the DEPTH_STENCIL internal format
+ // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+ glInternalFormat = 34041; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
+ // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
+ // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
+
+ if (texture.type !== UnsignedInt248Type) {
+ console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');
+ texture.type = UnsignedInt248Type;
+ glType = utils.convert(texture.type);
+ }
+ } //
+
+
+ state.texImage2D(3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);
+ } else if (texture.isDataTexture) {
+ // use manually created mipmaps if available
+ // if there are no manual mipmaps
+ // set 0 level mipmap and then use GL to generate other mipmap levels
+ if (mipmaps.length > 0 && supportsMips) {
+ for (var i = 0, il = mipmaps.length; i < il; i++) {
+ mipmap = mipmaps[i];
+ state.texImage2D(3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
+ }
+
+ texture.generateMipmaps = false;
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else {
+ state.texImage2D(3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);
+ textureProperties.__maxMipLevel = 0;
+ }
+ } else if (texture.isCompressedTexture) {
+ for (var _i = 0, _il = mipmaps.length; _i < _il; _i++) {
+ mipmap = mipmaps[_i];
+
+ if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
+ if (glFormat !== null) {
+ state.compressedTexImage2D(3553, _i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
+ } else {
+ console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');
+ }
+ } else {
+ state.texImage2D(3553, _i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
+ }
+ }
+
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else if (texture.isDataTexture2DArray) {
+ state.texImage3D(35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
+ textureProperties.__maxMipLevel = 0;
+ } else if (texture.isDataTexture3D) {
+ state.texImage3D(32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
+ textureProperties.__maxMipLevel = 0;
+ } else {
+ // regular Texture (image, video, canvas)
+ // use manually created mipmaps if available
+ // if there are no manual mipmaps
+ // set 0 level mipmap and then use GL to generate other mipmap levels
+ if (mipmaps.length > 0 && supportsMips) {
+ for (var _i2 = 0, _il2 = mipmaps.length; _i2 < _il2; _i2++) {
+ mipmap = mipmaps[_i2];
+ state.texImage2D(3553, _i2, glInternalFormat, glFormat, glType, mipmap);
+ }
+
+ texture.generateMipmaps = false;
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else {
+ state.texImage2D(3553, 0, glInternalFormat, glFormat, glType, image);
+ textureProperties.__maxMipLevel = 0;
+ }
+ }
+
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ generateMipmap(textureType, texture, image.width, image.height);
+ }
+
+ textureProperties.__version = texture.version;
+ if (texture.onUpdate) texture.onUpdate(texture);
+ }
+
+ function uploadCubeTexture(textureProperties, texture, slot) {
+ if (texture.image.length !== 6) return;
+ initTexture(textureProperties, texture);
+ state.activeTexture(33984 + slot);
+ state.bindTexture(34067, textureProperties.__webglTexture);
+
+ _gl.pixelStorei(37440, texture.flipY);
+
+ _gl.pixelStorei(37441, texture.premultiplyAlpha);
+
+ _gl.pixelStorei(3317, texture.unpackAlignment);
+
+ var isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);
+ var isDataTexture = texture.image[0] && texture.image[0].isDataTexture;
+ var cubeImage = [];
+
+ for (var i = 0; i < 6; i++) {
+ if (!isCompressed && !isDataTexture) {
+ cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);
+ } else {
+ cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];
+ }
+ }
+
+ var image = cubeImage[0],
+ supportsMips = isPowerOfTwo(image) || isWebGL2,
+ glFormat = utils.convert(texture.format),
+ glType = utils.convert(texture.type),
+ glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType);
+ setTextureParameters(34067, texture, supportsMips);
+ var mipmaps;
+
+ if (isCompressed) {
+ for (var _i3 = 0; _i3 < 6; _i3++) {
+ mipmaps = cubeImage[_i3].mipmaps;
+
+ for (var j = 0; j < mipmaps.length; j++) {
+ var mipmap = mipmaps[j];
+
+ if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
+ if (glFormat !== null) {
+ state.compressedTexImage2D(34069 + _i3, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
+ } else {
+ console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');
+ }
+ } else {
+ state.texImage2D(34069 + _i3, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
+ }
+ }
+ }
+
+ textureProperties.__maxMipLevel = mipmaps.length - 1;
+ } else {
+ mipmaps = texture.mipmaps;
+
+ for (var _i4 = 0; _i4 < 6; _i4++) {
+ if (isDataTexture) {
+ state.texImage2D(34069 + _i4, 0, glInternalFormat, cubeImage[_i4].width, cubeImage[_i4].height, 0, glFormat, glType, cubeImage[_i4].data);
+
+ for (var _j = 0; _j < mipmaps.length; _j++) {
+ var _mipmap = mipmaps[_j];
+ var mipmapImage = _mipmap.image[_i4].image;
+ state.texImage2D(34069 + _i4, _j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);
+ }
+ } else {
+ state.texImage2D(34069 + _i4, 0, glInternalFormat, glFormat, glType, cubeImage[_i4]);
+
+ for (var _j2 = 0; _j2 < mipmaps.length; _j2++) {
+ var _mipmap2 = mipmaps[_j2];
+ state.texImage2D(34069 + _i4, _j2 + 1, glInternalFormat, glFormat, glType, _mipmap2.image[_i4]);
+ }
+ }
+ }
+
+ textureProperties.__maxMipLevel = mipmaps.length;
+ }
+
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ // We assume images for cube map have the same size.
+ generateMipmap(34067, texture, image.width, image.height);
+ }
+
+ textureProperties.__version = texture.version;
+ if (texture.onUpdate) texture.onUpdate(texture);
+ } // Render targets
+ // Setup storage for target texture and bind it to correct framebuffer
+
+
+ function setupFrameBufferTexture(framebuffer, renderTarget, attachment, textureTarget) {
+ var glFormat = utils.convert(renderTarget.texture.format);
+ var glType = utils.convert(renderTarget.texture.type);
+ var glInternalFormat = getInternalFormat(renderTarget.texture.internalFormat, glFormat, glType);
+ state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);
+
+ _gl.bindFramebuffer(36160, framebuffer);
+
+ _gl.framebufferTexture2D(36160, attachment, textureTarget, properties.get(renderTarget.texture).__webglTexture, 0);
+
+ _gl.bindFramebuffer(36160, null);
+ } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
+
+
+ function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {
+ _gl.bindRenderbuffer(36161, renderbuffer);
+
+ if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {
+ var glInternalFormat = 33189;
+
+ if (isMultisample) {
+ var depthTexture = renderTarget.depthTexture;
+
+ if (depthTexture && depthTexture.isDepthTexture) {
+ if (depthTexture.type === FloatType) {
+ glInternalFormat = 36012;
+ } else if (depthTexture.type === UnsignedIntType) {
+ glInternalFormat = 33190;
+ }
+ }
+
+ var samples = getRenderTargetSamples(renderTarget);
+
+ _gl.renderbufferStorageMultisample(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height);
+ } else {
+ _gl.renderbufferStorage(36161, glInternalFormat, renderTarget.width, renderTarget.height);
+ }
+
+ _gl.framebufferRenderbuffer(36160, 36096, 36161, renderbuffer);
+ } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {
+ if (isMultisample) {
+ var _samples = getRenderTargetSamples(renderTarget);
+
+ _gl.renderbufferStorageMultisample(36161, _samples, 35056, renderTarget.width, renderTarget.height);
+ } else {
+ _gl.renderbufferStorage(36161, 34041, renderTarget.width, renderTarget.height);
+ }
+
+ _gl.framebufferRenderbuffer(36160, 33306, 36161, renderbuffer);
+ } else {
+ var glFormat = utils.convert(renderTarget.texture.format);
+ var glType = utils.convert(renderTarget.texture.type);
+
+ var _glInternalFormat = getInternalFormat(renderTarget.texture.internalFormat, glFormat, glType);
+
+ if (isMultisample) {
+ var _samples2 = getRenderTargetSamples(renderTarget);
+
+ _gl.renderbufferStorageMultisample(36161, _samples2, _glInternalFormat, renderTarget.width, renderTarget.height);
+ } else {
+ _gl.renderbufferStorage(36161, _glInternalFormat, renderTarget.width, renderTarget.height);
+ }
+ }
+
+ _gl.bindRenderbuffer(36161, null);
+ } // Setup resources for a Depth Texture for a FBO (needs an extension)
+
+
+ function setupDepthTexture(framebuffer, renderTarget) {
+ var isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;
+ if (isCube) throw new Error('Depth Texture with cube render targets is not supported');
+
+ _gl.bindFramebuffer(36160, framebuffer);
+
+ if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {
+ throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
+ } // upload an empty depth texture with framebuffer size
+
+
+ if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {
+ renderTarget.depthTexture.image.width = renderTarget.width;
+ renderTarget.depthTexture.image.height = renderTarget.height;
+ renderTarget.depthTexture.needsUpdate = true;
+ }
+
+ setTexture2D(renderTarget.depthTexture, 0);
+
+ var webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;
+
+ if (renderTarget.depthTexture.format === DepthFormat) {
+ _gl.framebufferTexture2D(36160, 36096, 3553, webglDepthTexture, 0);
+ } else if (renderTarget.depthTexture.format === DepthStencilFormat) {
+ _gl.framebufferTexture2D(36160, 33306, 3553, webglDepthTexture, 0);
+ } else {
+ throw new Error('Unknown depthTexture format');
+ }
+ } // Setup GL resources for a non-texture depth buffer
+
+
+ function setupDepthRenderbuffer(renderTarget) {
+ var renderTargetProperties = properties.get(renderTarget);
+ var isCube = renderTarget.isWebGLCubeRenderTarget === true;
+
+ if (renderTarget.depthTexture) {
+ if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');
+ setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);
+ } else {
+ if (isCube) {
+ renderTargetProperties.__webglDepthbuffer = [];
+
+ for (var i = 0; i < 6; i++) {
+ _gl.bindFramebuffer(36160, renderTargetProperties.__webglFramebuffer[i]);
+
+ renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();
+ setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);
+ }
+ } else {
+ _gl.bindFramebuffer(36160, renderTargetProperties.__webglFramebuffer);
+
+ renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
+ setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);
+ }
+ }
+
+ _gl.bindFramebuffer(36160, null);
+ } // Set up GL resources for the render target
+
+
+ function setupRenderTarget(renderTarget) {
+ var renderTargetProperties = properties.get(renderTarget);
+ var textureProperties = properties.get(renderTarget.texture);
+ renderTarget.addEventListener('dispose', onRenderTargetDispose);
+ textureProperties.__webglTexture = _gl.createTexture();
+ info.memory.textures++;
+ var isCube = renderTarget.isWebGLCubeRenderTarget === true;
+ var isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true;
+ var supportsMips = isPowerOfTwo(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858
+
+ if (isWebGL2 && renderTarget.texture.format === RGBFormat && (renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType)) {
+ renderTarget.texture.format = RGBAFormat;
+ console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');
+ } // Setup framebuffer
+
+
+ if (isCube) {
+ renderTargetProperties.__webglFramebuffer = [];
+
+ for (var i = 0; i < 6; i++) {
+ renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();
+ }
+ } else {
+ renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
+
+ if (isMultisample) {
+ if (isWebGL2) {
+ renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
+ renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
+
+ _gl.bindRenderbuffer(36161, renderTargetProperties.__webglColorRenderbuffer);
+
+ var glFormat = utils.convert(renderTarget.texture.format);
+ var glType = utils.convert(renderTarget.texture.type);
+ var glInternalFormat = getInternalFormat(renderTarget.texture.internalFormat, glFormat, glType);
+ var samples = getRenderTargetSamples(renderTarget);
+
+ _gl.renderbufferStorageMultisample(36161, samples, glInternalFormat, renderTarget.width, renderTarget.height);
+
+ _gl.bindFramebuffer(36160, renderTargetProperties.__webglMultisampledFramebuffer);
+
+ _gl.framebufferRenderbuffer(36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer);
+
+ _gl.bindRenderbuffer(36161, null);
+
+ if (renderTarget.depthBuffer) {
+ renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
+ setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);
+ }
+
+ _gl.bindFramebuffer(36160, null);
+ } else {
+ console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
+ }
+ }
+ } // Setup color buffer
+
+
+ if (isCube) {
+ state.bindTexture(34067, textureProperties.__webglTexture);
+ setTextureParameters(34067, renderTarget.texture, supportsMips);
+
+ for (var _i5 = 0; _i5 < 6; _i5++) {
+ setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[_i5], renderTarget, 36064, 34069 + _i5);
+ }
+
+ if (textureNeedsGenerateMipmaps(renderTarget.texture, supportsMips)) {
+ generateMipmap(34067, renderTarget.texture, renderTarget.width, renderTarget.height);
+ }
+
+ state.bindTexture(34067, null);
+ } else {
+ state.bindTexture(3553, textureProperties.__webglTexture);
+ setTextureParameters(3553, renderTarget.texture, supportsMips);
+ setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553);
+
+ if (textureNeedsGenerateMipmaps(renderTarget.texture, supportsMips)) {
+ generateMipmap(3553, renderTarget.texture, renderTarget.width, renderTarget.height);
+ }
+
+ state.bindTexture(3553, null);
+ } // Setup depth and stencil buffers
+
+
+ if (renderTarget.depthBuffer) {
+ setupDepthRenderbuffer(renderTarget);
+ }
+ }
+
+ function updateRenderTargetMipmap(renderTarget) {
+ var texture = renderTarget.texture;
+ var supportsMips = isPowerOfTwo(renderTarget) || isWebGL2;
+
+ if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
+ var target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553;
+
+ var webglTexture = properties.get(texture).__webglTexture;
+
+ state.bindTexture(target, webglTexture);
+ generateMipmap(target, texture, renderTarget.width, renderTarget.height);
+ state.bindTexture(target, null);
+ }
+ }
+
+ function updateMultisampleRenderTarget(renderTarget) {
+ if (renderTarget.isWebGLMultisampleRenderTarget) {
+ if (isWebGL2) {
+ var renderTargetProperties = properties.get(renderTarget);
+
+ _gl.bindFramebuffer(36008, renderTargetProperties.__webglMultisampledFramebuffer);
+
+ _gl.bindFramebuffer(36009, renderTargetProperties.__webglFramebuffer);
+
+ var width = renderTarget.width;
+ var height = renderTarget.height;
+ var mask = 16384;
+ if (renderTarget.depthBuffer) mask |= 256;
+ if (renderTarget.stencilBuffer) mask |= 1024;
+
+ _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, 9728);
+
+ _gl.bindFramebuffer(36160, renderTargetProperties.__webglMultisampledFramebuffer); // see #18905
+
+ } else {
+ console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
+ }
+ }
+ }
+
+ function getRenderTargetSamples(renderTarget) {
+ return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0;
+ }
+
+ function updateVideoTexture(texture) {
+ var frame = info.render.frame; // Check the last frame we updated the VideoTexture
+
+ if (_videoTextures.get(texture) !== frame) {
+ _videoTextures.set(texture, frame);
+
+ texture.update();
+ }
+ } // backwards compatibility
+
+
+ var warnedTexture2D = false;
+ var warnedTextureCube = false;
+
+ function safeSetTexture2D(texture, slot) {
+ if (texture && texture.isWebGLRenderTarget) {
+ if (warnedTexture2D === false) {
+ console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');
+ warnedTexture2D = true;
+ }
+
+ texture = texture.texture;
+ }
+
+ setTexture2D(texture, slot);
+ }
+
+ function safeSetTextureCube(texture, slot) {
+ if (texture && texture.isWebGLCubeRenderTarget) {
+ if (warnedTextureCube === false) {
+ console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');
+ warnedTextureCube = true;
+ }
+
+ texture = texture.texture;
+ }
+
+ setTextureCube(texture, slot);
+ } //
+
+
+ this.allocateTextureUnit = allocateTextureUnit;
+ this.resetTextureUnits = resetTextureUnits;
+ this.setTexture2D = setTexture2D;
+ this.setTexture2DArray = setTexture2DArray;
+ this.setTexture3D = setTexture3D;
+ this.setTextureCube = setTextureCube;
+ this.setupRenderTarget = setupRenderTarget;
+ this.updateRenderTargetMipmap = updateRenderTargetMipmap;
+ this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
+ this.safeSetTexture2D = safeSetTexture2D;
+ this.safeSetTextureCube = safeSetTextureCube;
+ }
+
+ function WebGLUtils(gl, extensions, capabilities) {
+ var isWebGL2 = capabilities.isWebGL2;
+
+ function convert(p) {
+ var extension;
+ if (p === UnsignedByteType) return 5121;
+ if (p === UnsignedShort4444Type) return 32819;
+ if (p === UnsignedShort5551Type) return 32820;
+ if (p === UnsignedShort565Type) return 33635;
+ if (p === ByteType) return 5120;
+ if (p === ShortType) return 5122;
+ if (p === UnsignedShortType) return 5123;
+ if (p === IntType) return 5124;
+ if (p === UnsignedIntType) return 5125;
+ if (p === FloatType) return 5126;
+
+ if (p === HalfFloatType) {
+ if (isWebGL2) return 5131;
+ extension = extensions.get('OES_texture_half_float');
+
+ if (extension !== null) {
+ return extension.HALF_FLOAT_OES;
+ } else {
+ return null;
+ }
+ }
+
+ if (p === AlphaFormat) return 6406;
+ if (p === RGBFormat) return 6407;
+ if (p === RGBAFormat) return 6408;
+ if (p === LuminanceFormat) return 6409;
+ if (p === LuminanceAlphaFormat) return 6410;
+ if (p === DepthFormat) return 6402;
+ if (p === DepthStencilFormat) return 34041;
+ if (p === RedFormat) return 6403; // WebGL2 formats.
+
+ if (p === RedIntegerFormat) return 36244;
+ if (p === RGFormat) return 33319;
+ if (p === RGIntegerFormat) return 33320;
+ if (p === RGBIntegerFormat) return 36248;
+ if (p === RGBAIntegerFormat) return 36249;
+
+ if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_s3tc');
+
+ if (extension !== null) {
+ if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
+ if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
+ if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
+ if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
+ } else {
+ return null;
+ }
+ }
+
+ if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_pvrtc');
+
+ if (extension !== null) {
+ if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
+ if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
+ if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
+ if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
+ } else {
+ return null;
+ }
+ }
+
+ if (p === RGB_ETC1_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_etc1');
+
+ if (extension !== null) {
+ return extension.COMPRESSED_RGB_ETC1_WEBGL;
+ } else {
+ return null;
+ }
+ }
+
+ if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_etc');
+
+ if (extension !== null) {
+ if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;
+ if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;
+ }
+ }
+
+ if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {
+ extension = extensions.get('WEBGL_compressed_texture_astc');
+
+ if (extension !== null) {
+ // TODO Complete?
+ return p;
+ } else {
+ return null;
+ }
+ }
+
+ if (p === RGBA_BPTC_Format) {
+ extension = extensions.get('EXT_texture_compression_bptc');
+
+ if (extension !== null) {
+ // TODO Complete?
+ return p;
+ } else {
+ return null;
+ }
+ }
+
+ if (p === UnsignedInt248Type) {
+ if (isWebGL2) return 34042;
+ extension = extensions.get('WEBGL_depth_texture');
+
+ if (extension !== null) {
+ return extension.UNSIGNED_INT_24_8_WEBGL;
+ } else {
+ return null;
+ }
+ }
+ }
+
+ return {
+ convert: convert
+ };
+ }
+
+ function ArrayCamera(array) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ PerspectiveCamera.call(this);
+ this.cameras = array;
+ }
+
+ ArrayCamera.prototype = Object.assign(Object.create(PerspectiveCamera.prototype), {
+ constructor: ArrayCamera,
+ isArrayCamera: true
+ });
+
+ function Group() {
+ Object3D.call(this);
+ this.type = 'Group';
+ }
+
+ Group.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Group,
+ isGroup: true
+ });
+
+ function WebXRController() {
+ this._targetRay = null;
+ this._grip = null;
+ this._hand = null;
+ }
+
+ Object.assign(WebXRController.prototype, {
+ constructor: WebXRController,
+ getHandSpace: function getHandSpace() {
+ if (this._hand === null) {
+ this._hand = new Group();
+ this._hand.matrixAutoUpdate = false;
+ this._hand.visible = false;
+ this._hand.joints = {};
+ this._hand.inputState = {
+ pinching: false
+ };
+ }
+
+ return this._hand;
+ },
+ getTargetRaySpace: function getTargetRaySpace() {
+ if (this._targetRay === null) {
+ this._targetRay = new Group();
+ this._targetRay.matrixAutoUpdate = false;
+ this._targetRay.visible = false;
+ }
+
+ return this._targetRay;
+ },
+ getGripSpace: function getGripSpace() {
+ if (this._grip === null) {
+ this._grip = new Group();
+ this._grip.matrixAutoUpdate = false;
+ this._grip.visible = false;
+ }
+
+ return this._grip;
+ },
+ dispatchEvent: function dispatchEvent(event) {
+ if (this._targetRay !== null) {
+ this._targetRay.dispatchEvent(event);
+ }
+
+ if (this._grip !== null) {
+ this._grip.dispatchEvent(event);
+ }
+
+ if (this._hand !== null) {
+ this._hand.dispatchEvent(event);
+ }
+
+ return this;
+ },
+ disconnect: function disconnect(inputSource) {
+ this.dispatchEvent({
+ type: 'disconnected',
+ data: inputSource
+ });
+
+ if (this._targetRay !== null) {
+ this._targetRay.visible = false;
+ }
+
+ if (this._grip !== null) {
+ this._grip.visible = false;
+ }
+
+ if (this._hand !== null) {
+ this._hand.visible = false;
+ }
+
+ return this;
+ },
+ update: function update(inputSource, frame, referenceSpace) {
+ var inputPose = null;
+ var gripPose = null;
+ var handPose = null;
+ var targetRay = this._targetRay;
+ var grip = this._grip;
+ var hand = this._hand;
+
+ if (inputSource && frame.session.visibilityState !== 'visible-blurred') {
+ if (hand && inputSource.hand) {
+ handPose = true;
+
+ for (var _iterator = _createForOfIteratorHelperLoose(inputSource.hand.values()), _step; !(_step = _iterator()).done;) {
+ var inputjoint = _step.value;
+ // Update the joints groups with the XRJoint poses
+ var jointPose = frame.getJointPose(inputjoint, referenceSpace);
+
+ if (hand.joints[inputjoint.jointName] === undefined) {
+ // The transform of this joint will be updated with the joint pose on each frame
+ var _joint = new Group();
+
+ _joint.matrixAutoUpdate = false;
+ _joint.visible = false;
+ hand.joints[inputjoint.jointName] = _joint; // ??
+
+ hand.add(_joint);
+ }
+
+ var joint = hand.joints[inputjoint.jointName];
+
+ if (jointPose !== null) {
+ joint.matrix.fromArray(jointPose.transform.matrix);
+ joint.matrix.decompose(joint.position, joint.rotation, joint.scale);
+ joint.jointRadius = jointPose.radius;
+ }
+
+ joint.visible = jointPose !== null;
+ } // Custom events
+ // Check pinchz
+
+
+ var indexTip = hand.joints['index-finger-tip'];
+ var thumbTip = hand.joints['thumb-tip'];
+ var distance = indexTip.position.distanceTo(thumbTip.position);
+ var distanceToPinch = 0.02;
+ var threshold = 0.005;
+
+ if (hand.inputState.pinching && distance > distanceToPinch + threshold) {
+ hand.inputState.pinching = false;
+ this.dispatchEvent({
+ type: 'pinchend',
+ handedness: inputSource.handedness,
+ target: this
+ });
+ } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {
+ hand.inputState.pinching = true;
+ this.dispatchEvent({
+ type: 'pinchstart',
+ handedness: inputSource.handedness,
+ target: this
+ });
+ }
+ } else {
+ if (targetRay !== null) {
+ inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);
+
+ if (inputPose !== null) {
+ targetRay.matrix.fromArray(inputPose.transform.matrix);
+ targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);
+ }
+ }
+
+ if (grip !== null && inputSource.gripSpace) {
+ gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);
+
+ if (gripPose !== null) {
+ grip.matrix.fromArray(gripPose.transform.matrix);
+ grip.matrix.decompose(grip.position, grip.rotation, grip.scale);
+ }
+ }
+ }
+ }
+
+ if (targetRay !== null) {
+ targetRay.visible = inputPose !== null;
+ }
+
+ if (grip !== null) {
+ grip.visible = gripPose !== null;
+ }
+
+ if (hand !== null) {
+ hand.visible = handPose !== null;
+ }
+
+ return this;
+ }
+ });
+
+ function WebXRManager(renderer, gl) {
+ var scope = this;
+ var session = null;
+ var framebufferScaleFactor = 1.0;
+ var referenceSpace = null;
+ var referenceSpaceType = 'local-floor';
+ var pose = null;
+ var controllers = [];
+ var inputSourcesMap = new Map(); //
+
+ var cameraL = new PerspectiveCamera();
+ cameraL.layers.enable(1);
+ cameraL.viewport = new Vector4();
+ var cameraR = new PerspectiveCamera();
+ cameraR.layers.enable(2);
+ cameraR.viewport = new Vector4();
+ var cameras = [cameraL, cameraR];
+ var cameraVR = new ArrayCamera();
+ cameraVR.layers.enable(1);
+ cameraVR.layers.enable(2);
+ var _currentDepthNear = null;
+ var _currentDepthFar = null; //
+
+ this.enabled = false;
+ this.isPresenting = false;
+
+ this.getController = function (index) {
+ var controller = controllers[index];
+
+ if (controller === undefined) {
+ controller = new WebXRController();
+ controllers[index] = controller;
+ }
+
+ return controller.getTargetRaySpace();
+ };
+
+ this.getControllerGrip = function (index) {
+ var controller = controllers[index];
+
+ if (controller === undefined) {
+ controller = new WebXRController();
+ controllers[index] = controller;
+ }
+
+ return controller.getGripSpace();
+ };
+
+ this.getHand = function (index) {
+ var controller = controllers[index];
+
+ if (controller === undefined) {
+ controller = new WebXRController();
+ controllers[index] = controller;
+ }
+
+ return controller.getHandSpace();
+ }; //
+
+
+ function onSessionEvent(event) {
+ var controller = inputSourcesMap.get(event.inputSource);
+
+ if (controller) {
+ controller.dispatchEvent({
+ type: event.type,
+ data: event.inputSource
+ });
+ }
+ }
+
+ function onSessionEnd() {
+ inputSourcesMap.forEach(function (controller, inputSource) {
+ controller.disconnect(inputSource);
+ });
+ inputSourcesMap.clear();
+ _currentDepthNear = null;
+ _currentDepthFar = null; //
+
+ renderer.setFramebuffer(null);
+ renderer.setRenderTarget(renderer.getRenderTarget()); // Hack #15830
+
+ animation.stop();
+ scope.isPresenting = false;
+ scope.dispatchEvent({
+ type: 'sessionend'
+ });
+ }
+
+ this.setFramebufferScaleFactor = function (value) {
+ framebufferScaleFactor = value;
+
+ if (scope.isPresenting === true) {
+ console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');
+ }
+ };
+
+ this.setReferenceSpaceType = function (value) {
+ referenceSpaceType = value;
+
+ if (scope.isPresenting === true) {
+ console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');
+ }
+ };
+
+ this.getReferenceSpace = function () {
+ return referenceSpace;
+ };
+
+ this.getSession = function () {
+ return session;
+ };
+
+ this.setSession = /*#__PURE__*/function () {
+ var _ref = _asyncToGenerator( /*#__PURE__*/regeneratorRuntime.mark(function _callee(value) {
+ var attributes, layerInit, baseLayer;
+ return regeneratorRuntime.wrap(function _callee$(_context) {
+ while (1) {
+ switch (_context.prev = _context.next) {
+ case 0:
+ session = value;
+
+ if (!(session !== null)) {
+ _context.next = 24;
+ break;
+ }
+
+ session.addEventListener('select', onSessionEvent);
+ session.addEventListener('selectstart', onSessionEvent);
+ session.addEventListener('selectend', onSessionEvent);
+ session.addEventListener('squeeze', onSessionEvent);
+ session.addEventListener('squeezestart', onSessionEvent);
+ session.addEventListener('squeezeend', onSessionEvent);
+ session.addEventListener('end', onSessionEnd);
+ session.addEventListener('inputsourceschange', onInputSourcesChange);
+ attributes = gl.getContextAttributes();
+
+ if (!(attributes.xrCompatible !== true)) {
+ _context.next = 14;
+ break;
+ }
+
+ _context.next = 14;
+ return gl.makeXRCompatible();
+
+ case 14:
+ layerInit = {
+ antialias: attributes.antialias,
+ alpha: attributes.alpha,
+ depth: attributes.depth,
+ stencil: attributes.stencil,
+ framebufferScaleFactor: framebufferScaleFactor
+ }; // eslint-disable-next-line no-undef
+
+ baseLayer = new XRWebGLLayer(session, gl, layerInit);
+ session.updateRenderState({
+ baseLayer: baseLayer
+ });
+ _context.next = 19;
+ return session.requestReferenceSpace(referenceSpaceType);
+
+ case 19:
+ referenceSpace = _context.sent;
+ animation.setContext(session);
+ animation.start();
+ scope.isPresenting = true;
+ scope.dispatchEvent({
+ type: 'sessionstart'
+ });
+
+ case 24:
+ case "end":
+ return _context.stop();
+ }
+ }
+ }, _callee);
+ }));
+
+ return function (_x) {
+ return _ref.apply(this, arguments);
+ };
+ }();
+
+ function onInputSourcesChange(event) {
+ var inputSources = session.inputSources; // Assign inputSources to available controllers
+
+ for (var i = 0; i < controllers.length; i++) {
+ inputSourcesMap.set(inputSources[i], controllers[i]);
+ } // Notify disconnected
+
+
+ for (var _i = 0; _i < event.removed.length; _i++) {
+ var inputSource = event.removed[_i];
+ var controller = inputSourcesMap.get(inputSource);
+
+ if (controller) {
+ controller.dispatchEvent({
+ type: 'disconnected',
+ data: inputSource
+ });
+ inputSourcesMap.delete(inputSource);
+ }
+ } // Notify connected
+
+
+ for (var _i2 = 0; _i2 < event.added.length; _i2++) {
+ var _inputSource = event.added[_i2];
+
+ var _controller = inputSourcesMap.get(_inputSource);
+
+ if (_controller) {
+ _controller.dispatchEvent({
+ type: 'connected',
+ data: _inputSource
+ });
+ }
+ }
+ } //
+
+
+ var cameraLPos = new Vector3();
+ var cameraRPos = new Vector3();
+ /**
+ * Assumes 2 cameras that are parallel and share an X-axis, and that
+ * the cameras' projection and world matrices have already been set.
+ * And that near and far planes are identical for both cameras.
+ * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
+ */
+
+ function setProjectionFromUnion(camera, cameraL, cameraR) {
+ cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);
+ cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);
+ var ipd = cameraLPos.distanceTo(cameraRPos);
+ var projL = cameraL.projectionMatrix.elements;
+ var projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and
+ // most likely identical top and bottom frustum extents.
+ // Use the left camera for these values.
+
+ var near = projL[14] / (projL[10] - 1);
+ var far = projL[14] / (projL[10] + 1);
+ var topFov = (projL[9] + 1) / projL[5];
+ var bottomFov = (projL[9] - 1) / projL[5];
+ var leftFov = (projL[8] - 1) / projL[0];
+ var rightFov = (projR[8] + 1) / projR[0];
+ var left = near * leftFov;
+ var right = near * rightFov; // Calculate the new camera's position offset from the
+ // left camera. xOffset should be roughly half `ipd`.
+
+ var zOffset = ipd / (-leftFov + rightFov);
+ var xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?
+
+ cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);
+ camera.translateX(xOffset);
+ camera.translateZ(zOffset);
+ camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);
+ camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale
+ // the values so that the near plane's position does not change in world space,
+ // although must now be relative to the new union camera.
+
+ var near2 = near + zOffset;
+ var far2 = far + zOffset;
+ var left2 = left - xOffset;
+ var right2 = right + (ipd - xOffset);
+ var top2 = topFov * far / far2 * near2;
+ var bottom2 = bottomFov * far / far2 * near2;
+ camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);
+ }
+
+ function updateCamera(camera, parent) {
+ if (parent === null) {
+ camera.matrixWorld.copy(camera.matrix);
+ } else {
+ camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);
+ }
+
+ camera.matrixWorldInverse.copy(camera.matrixWorld).invert();
+ }
+
+ this.getCamera = function (camera) {
+ cameraVR.near = cameraR.near = cameraL.near = camera.near;
+ cameraVR.far = cameraR.far = cameraL.far = camera.far;
+
+ if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {
+ // Note that the new renderState won't apply until the next frame. See #18320
+ session.updateRenderState({
+ depthNear: cameraVR.near,
+ depthFar: cameraVR.far
+ });
+ _currentDepthNear = cameraVR.near;
+ _currentDepthFar = cameraVR.far;
+ }
+
+ var parent = camera.parent;
+ var cameras = cameraVR.cameras;
+ updateCamera(cameraVR, parent);
+
+ for (var i = 0; i < cameras.length; i++) {
+ updateCamera(cameras[i], parent);
+ } // update camera and its children
+
+
+ camera.matrixWorld.copy(cameraVR.matrixWorld);
+ camera.matrix.copy(cameraVR.matrix);
+ camera.matrix.decompose(camera.position, camera.quaternion, camera.scale);
+ var children = camera.children;
+
+ for (var _i3 = 0, l = children.length; _i3 < l; _i3++) {
+ children[_i3].updateMatrixWorld(true);
+ } // update projection matrix for proper view frustum culling
+
+
+ if (cameras.length === 2) {
+ setProjectionFromUnion(cameraVR, cameraL, cameraR);
+ } else {
+ // assume single camera setup (AR)
+ cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);
+ }
+
+ return cameraVR;
+ }; // Animation Loop
+
+
+ var onAnimationFrameCallback = null;
+
+ function onAnimationFrame(time, frame) {
+ pose = frame.getViewerPose(referenceSpace);
+
+ if (pose !== null) {
+ var views = pose.views;
+ var baseLayer = session.renderState.baseLayer;
+ renderer.setFramebuffer(baseLayer.framebuffer);
+ var cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list
+
+ if (views.length !== cameraVR.cameras.length) {
+ cameraVR.cameras.length = 0;
+ cameraVRNeedsUpdate = true;
+ }
+
+ for (var i = 0; i < views.length; i++) {
+ var view = views[i];
+ var viewport = baseLayer.getViewport(view);
+ var camera = cameras[i];
+ camera.matrix.fromArray(view.transform.matrix);
+ camera.projectionMatrix.fromArray(view.projectionMatrix);
+ camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);
+
+ if (i === 0) {
+ cameraVR.matrix.copy(camera.matrix);
+ }
+
+ if (cameraVRNeedsUpdate === true) {
+ cameraVR.cameras.push(camera);
+ }
+ }
+ } //
+
+
+ var inputSources = session.inputSources;
+
+ for (var _i4 = 0; _i4 < controllers.length; _i4++) {
+ var controller = controllers[_i4];
+ var inputSource = inputSources[_i4];
+ controller.update(inputSource, frame, referenceSpace);
+ }
+
+ if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);
+ }
+
+ var animation = new WebGLAnimation();
+ animation.setAnimationLoop(onAnimationFrame);
+
+ this.setAnimationLoop = function (callback) {
+ onAnimationFrameCallback = callback;
+ };
+
+ this.dispose = function () {};
+ }
+
+ Object.assign(WebXRManager.prototype, EventDispatcher.prototype);
+
+ function WebGLMaterials(properties) {
+ function refreshFogUniforms(uniforms, fog) {
+ uniforms.fogColor.value.copy(fog.color);
+
+ if (fog.isFog) {
+ uniforms.fogNear.value = fog.near;
+ uniforms.fogFar.value = fog.far;
+ } else if (fog.isFogExp2) {
+ uniforms.fogDensity.value = fog.density;
+ }
+ }
+
+ function refreshMaterialUniforms(uniforms, material, pixelRatio, height) {
+ if (material.isMeshBasicMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ } else if (material.isMeshLambertMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsLambert(uniforms, material);
+ } else if (material.isMeshToonMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsToon(uniforms, material);
+ } else if (material.isMeshPhongMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsPhong(uniforms, material);
+ } else if (material.isMeshStandardMaterial) {
+ refreshUniformsCommon(uniforms, material);
+
+ if (material.isMeshPhysicalMaterial) {
+ refreshUniformsPhysical(uniforms, material);
+ } else {
+ refreshUniformsStandard(uniforms, material);
+ }
+ } else if (material.isMeshMatcapMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsMatcap(uniforms, material);
+ } else if (material.isMeshDepthMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsDepth(uniforms, material);
+ } else if (material.isMeshDistanceMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsDistance(uniforms, material);
+ } else if (material.isMeshNormalMaterial) {
+ refreshUniformsCommon(uniforms, material);
+ refreshUniformsNormal(uniforms, material);
+ } else if (material.isLineBasicMaterial) {
+ refreshUniformsLine(uniforms, material);
+
+ if (material.isLineDashedMaterial) {
+ refreshUniformsDash(uniforms, material);
+ }
+ } else if (material.isPointsMaterial) {
+ refreshUniformsPoints(uniforms, material, pixelRatio, height);
+ } else if (material.isSpriteMaterial) {
+ refreshUniformsSprites(uniforms, material);
+ } else if (material.isShadowMaterial) {
+ uniforms.color.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ } else if (material.isShaderMaterial) {
+ material.uniformsNeedUpdate = false; // #15581
+ }
+ }
+
+ function refreshUniformsCommon(uniforms, material) {
+ uniforms.opacity.value = material.opacity;
+
+ if (material.color) {
+ uniforms.diffuse.value.copy(material.color);
+ }
+
+ if (material.emissive) {
+ uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
+ }
+
+ if (material.map) {
+ uniforms.map.value = material.map;
+ }
+
+ if (material.alphaMap) {
+ uniforms.alphaMap.value = material.alphaMap;
+ }
+
+ if (material.specularMap) {
+ uniforms.specularMap.value = material.specularMap;
+ }
+
+ var envMap = properties.get(material).envMap;
+
+ if (envMap) {
+ uniforms.envMap.value = envMap;
+ uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap._needsFlipEnvMap ? -1 : 1;
+ uniforms.reflectivity.value = material.reflectivity;
+ uniforms.refractionRatio.value = material.refractionRatio;
+
+ var maxMipLevel = properties.get(envMap).__maxMipLevel;
+
+ if (maxMipLevel !== undefined) {
+ uniforms.maxMipLevel.value = maxMipLevel;
+ }
+ }
+
+ if (material.lightMap) {
+ uniforms.lightMap.value = material.lightMap;
+ uniforms.lightMapIntensity.value = material.lightMapIntensity;
+ }
+
+ if (material.aoMap) {
+ uniforms.aoMap.value = material.aoMap;
+ uniforms.aoMapIntensity.value = material.aoMapIntensity;
+ } // uv repeat and offset setting priorities
+ // 1. color map
+ // 2. specular map
+ // 3. displacementMap map
+ // 4. normal map
+ // 5. bump map
+ // 6. roughnessMap map
+ // 7. metalnessMap map
+ // 8. alphaMap map
+ // 9. emissiveMap map
+ // 10. clearcoat map
+ // 11. clearcoat normal map
+ // 12. clearcoat roughnessMap map
+
+
+ var uvScaleMap;
+
+ if (material.map) {
+ uvScaleMap = material.map;
+ } else if (material.specularMap) {
+ uvScaleMap = material.specularMap;
+ } else if (material.displacementMap) {
+ uvScaleMap = material.displacementMap;
+ } else if (material.normalMap) {
+ uvScaleMap = material.normalMap;
+ } else if (material.bumpMap) {
+ uvScaleMap = material.bumpMap;
+ } else if (material.roughnessMap) {
+ uvScaleMap = material.roughnessMap;
+ } else if (material.metalnessMap) {
+ uvScaleMap = material.metalnessMap;
+ } else if (material.alphaMap) {
+ uvScaleMap = material.alphaMap;
+ } else if (material.emissiveMap) {
+ uvScaleMap = material.emissiveMap;
+ } else if (material.clearcoatMap) {
+ uvScaleMap = material.clearcoatMap;
+ } else if (material.clearcoatNormalMap) {
+ uvScaleMap = material.clearcoatNormalMap;
+ } else if (material.clearcoatRoughnessMap) {
+ uvScaleMap = material.clearcoatRoughnessMap;
+ }
+
+ if (uvScaleMap !== undefined) {
+ // backwards compatibility
+ if (uvScaleMap.isWebGLRenderTarget) {
+ uvScaleMap = uvScaleMap.texture;
+ }
+
+ if (uvScaleMap.matrixAutoUpdate === true) {
+ uvScaleMap.updateMatrix();
+ }
+
+ uniforms.uvTransform.value.copy(uvScaleMap.matrix);
+ } // uv repeat and offset setting priorities for uv2
+ // 1. ao map
+ // 2. light map
+
+
+ var uv2ScaleMap;
+
+ if (material.aoMap) {
+ uv2ScaleMap = material.aoMap;
+ } else if (material.lightMap) {
+ uv2ScaleMap = material.lightMap;
+ }
+
+ if (uv2ScaleMap !== undefined) {
+ // backwards compatibility
+ if (uv2ScaleMap.isWebGLRenderTarget) {
+ uv2ScaleMap = uv2ScaleMap.texture;
+ }
+
+ if (uv2ScaleMap.matrixAutoUpdate === true) {
+ uv2ScaleMap.updateMatrix();
+ }
+
+ uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);
+ }
+ }
+
+ function refreshUniformsLine(uniforms, material) {
+ uniforms.diffuse.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ }
+
+ function refreshUniformsDash(uniforms, material) {
+ uniforms.dashSize.value = material.dashSize;
+ uniforms.totalSize.value = material.dashSize + material.gapSize;
+ uniforms.scale.value = material.scale;
+ }
+
+ function refreshUniformsPoints(uniforms, material, pixelRatio, height) {
+ uniforms.diffuse.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ uniforms.size.value = material.size * pixelRatio;
+ uniforms.scale.value = height * 0.5;
+
+ if (material.map) {
+ uniforms.map.value = material.map;
+ }
+
+ if (material.alphaMap) {
+ uniforms.alphaMap.value = material.alphaMap;
+ } // uv repeat and offset setting priorities
+ // 1. color map
+ // 2. alpha map
+
+
+ var uvScaleMap;
+
+ if (material.map) {
+ uvScaleMap = material.map;
+ } else if (material.alphaMap) {
+ uvScaleMap = material.alphaMap;
+ }
+
+ if (uvScaleMap !== undefined) {
+ if (uvScaleMap.matrixAutoUpdate === true) {
+ uvScaleMap.updateMatrix();
+ }
+
+ uniforms.uvTransform.value.copy(uvScaleMap.matrix);
+ }
+ }
+
+ function refreshUniformsSprites(uniforms, material) {
+ uniforms.diffuse.value.copy(material.color);
+ uniforms.opacity.value = material.opacity;
+ uniforms.rotation.value = material.rotation;
+
+ if (material.map) {
+ uniforms.map.value = material.map;
+ }
+
+ if (material.alphaMap) {
+ uniforms.alphaMap.value = material.alphaMap;
+ } // uv repeat and offset setting priorities
+ // 1. color map
+ // 2. alpha map
+
+
+ var uvScaleMap;
+
+ if (material.map) {
+ uvScaleMap = material.map;
+ } else if (material.alphaMap) {
+ uvScaleMap = material.alphaMap;
+ }
+
+ if (uvScaleMap !== undefined) {
+ if (uvScaleMap.matrixAutoUpdate === true) {
+ uvScaleMap.updateMatrix();
+ }
+
+ uniforms.uvTransform.value.copy(uvScaleMap.matrix);
+ }
+ }
+
+ function refreshUniformsLambert(uniforms, material) {
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
+ }
+
+ function refreshUniformsPhong(uniforms, material) {
+ uniforms.specular.value.copy(material.specular);
+ uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )
+
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
+
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
+
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
+
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
+
+ function refreshUniformsToon(uniforms, material) {
+ if (material.gradientMap) {
+ uniforms.gradientMap.value = material.gradientMap;
+ }
+
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
+
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
+
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
+
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
+
+ function refreshUniformsStandard(uniforms, material) {
+ uniforms.roughness.value = material.roughness;
+ uniforms.metalness.value = material.metalness;
+
+ if (material.roughnessMap) {
+ uniforms.roughnessMap.value = material.roughnessMap;
+ }
+
+ if (material.metalnessMap) {
+ uniforms.metalnessMap.value = material.metalnessMap;
+ }
+
+ if (material.emissiveMap) {
+ uniforms.emissiveMap.value = material.emissiveMap;
+ }
+
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
+
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
+
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+
+ var envMap = properties.get(material).envMap;
+
+ if (envMap) {
+ //uniforms.envMap.value = material.envMap; // part of uniforms common
+ uniforms.envMapIntensity.value = material.envMapIntensity;
+ }
+ }
+
+ function refreshUniformsPhysical(uniforms, material) {
+ refreshUniformsStandard(uniforms, material);
+ uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common
+
+ uniforms.clearcoat.value = material.clearcoat;
+ uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
+ if (material.sheen) uniforms.sheen.value.copy(material.sheen);
+
+ if (material.clearcoatMap) {
+ uniforms.clearcoatMap.value = material.clearcoatMap;
+ }
+
+ if (material.clearcoatRoughnessMap) {
+ uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
+ }
+
+ if (material.clearcoatNormalMap) {
+ uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);
+ uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
+
+ if (material.side === BackSide) {
+ uniforms.clearcoatNormalScale.value.negate();
+ }
+ }
+
+ uniforms.transmission.value = material.transmission;
+
+ if (material.transmissionMap) {
+ uniforms.transmissionMap.value = material.transmissionMap;
+ }
+ }
+
+ function refreshUniformsMatcap(uniforms, material) {
+ if (material.matcap) {
+ uniforms.matcap.value = material.matcap;
+ }
+
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
+
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
+
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
+
+ function refreshUniformsDepth(uniforms, material) {
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
+
+ function refreshUniformsDistance(uniforms, material) {
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+
+ uniforms.referencePosition.value.copy(material.referencePosition);
+ uniforms.nearDistance.value = material.nearDistance;
+ uniforms.farDistance.value = material.farDistance;
+ }
+
+ function refreshUniformsNormal(uniforms, material) {
+ if (material.bumpMap) {
+ uniforms.bumpMap.value = material.bumpMap;
+ uniforms.bumpScale.value = material.bumpScale;
+ if (material.side === BackSide) uniforms.bumpScale.value *= -1;
+ }
+
+ if (material.normalMap) {
+ uniforms.normalMap.value = material.normalMap;
+ uniforms.normalScale.value.copy(material.normalScale);
+ if (material.side === BackSide) uniforms.normalScale.value.negate();
+ }
+
+ if (material.displacementMap) {
+ uniforms.displacementMap.value = material.displacementMap;
+ uniforms.displacementScale.value = material.displacementScale;
+ uniforms.displacementBias.value = material.displacementBias;
+ }
+ }
+
+ return {
+ refreshFogUniforms: refreshFogUniforms,
+ refreshMaterialUniforms: refreshMaterialUniforms
+ };
+ }
+
+ function createCanvasElement() {
+ var canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas');
+ canvas.style.display = 'block';
+ return canvas;
+ }
+
+ function WebGLRenderer(parameters) {
+ parameters = parameters || {};
+
+ var _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),
+ _context = parameters.context !== undefined ? parameters.context : null,
+ _alpha = parameters.alpha !== undefined ? parameters.alpha : false,
+ _depth = parameters.depth !== undefined ? parameters.depth : true,
+ _stencil = parameters.stencil !== undefined ? parameters.stencil : true,
+ _antialias = parameters.antialias !== undefined ? parameters.antialias : false,
+ _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
+ _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
+ _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
+ _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
+
+ var currentRenderList = null;
+ var currentRenderState = null; // render() can be called from within a callback triggered by another render.
+ // We track this so that the nested render call gets its state isolated from the parent render call.
+
+ var renderStateStack = []; // public properties
+
+ this.domElement = _canvas; // Debug configuration container
+
+ this.debug = {
+ /**
+ * Enables error checking and reporting when shader programs are being compiled
+ * @type {boolean}
+ */
+ checkShaderErrors: true
+ }; // clearing
+
+ this.autoClear = true;
+ this.autoClearColor = true;
+ this.autoClearDepth = true;
+ this.autoClearStencil = true; // scene graph
+
+ this.sortObjects = true; // user-defined clipping
+
+ this.clippingPlanes = [];
+ this.localClippingEnabled = false; // physically based shading
+
+ this.gammaFactor = 2.0; // for backwards compatibility
+
+ this.outputEncoding = LinearEncoding; // physical lights
+
+ this.physicallyCorrectLights = false; // tone mapping
+
+ this.toneMapping = NoToneMapping;
+ this.toneMappingExposure = 1.0; // morphs
+
+ this.maxMorphTargets = 8;
+ this.maxMorphNormals = 4; // internal properties
+
+ var _this = this;
+
+ var _isContextLost = false; // internal state cache
+
+ var _framebuffer = null;
+ var _currentActiveCubeFace = 0;
+ var _currentActiveMipmapLevel = 0;
+ var _currentRenderTarget = null;
+ var _currentFramebuffer = null;
+
+ var _currentMaterialId = -1;
+
+ var _currentCamera = null;
+
+ var _currentViewport = new Vector4();
+
+ var _currentScissor = new Vector4();
+
+ var _currentScissorTest = null; //
+
+ var _width = _canvas.width;
+ var _height = _canvas.height;
+ var _pixelRatio = 1;
+ var _opaqueSort = null;
+ var _transparentSort = null;
+
+ var _viewport = new Vector4(0, 0, _width, _height);
+
+ var _scissor = new Vector4(0, 0, _width, _height);
+
+ var _scissorTest = false; // frustum
+
+ var _frustum = new Frustum(); // clipping
+
+
+ var _clippingEnabled = false;
+ var _localClippingEnabled = false; // camera matrices cache
+
+ var _projScreenMatrix = new Matrix4();
+
+ var _vector3 = new Vector3();
+
+ var _emptyScene = {
+ background: null,
+ fog: null,
+ environment: null,
+ overrideMaterial: null,
+ isScene: true
+ };
+
+ function getTargetPixelRatio() {
+ return _currentRenderTarget === null ? _pixelRatio : 1;
+ } // initialize
+
+
+ var _gl = _context;
+
+ function getContext(contextNames, contextAttributes) {
+ for (var i = 0; i < contextNames.length; i++) {
+ var contextName = contextNames[i];
+
+ var context = _canvas.getContext(contextName, contextAttributes);
+
+ if (context !== null) return context;
+ }
+
+ return null;
+ }
+
+ try {
+ var contextAttributes = {
+ alpha: _alpha,
+ depth: _depth,
+ stencil: _stencil,
+ antialias: _antialias,
+ premultipliedAlpha: _premultipliedAlpha,
+ preserveDrawingBuffer: _preserveDrawingBuffer,
+ powerPreference: _powerPreference,
+ failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
+ }; // event listeners must be registered before WebGL context is created, see #12753
+
+ _canvas.addEventListener('webglcontextlost', onContextLost, false);
+
+ _canvas.addEventListener('webglcontextrestored', onContextRestore, false);
+
+ if (_gl === null) {
+ var contextNames = ['webgl2', 'webgl', 'experimental-webgl'];
+
+ if (_this.isWebGL1Renderer === true) {
+ contextNames.shift();
+ }
+
+ _gl = getContext(contextNames, contextAttributes);
+
+ if (_gl === null) {
+ if (getContext(contextNames)) {
+ throw new Error('Error creating WebGL context with your selected attributes.');
+ } else {
+ throw new Error('Error creating WebGL context.');
+ }
+ }
+ } // Some experimental-webgl implementations do not have getShaderPrecisionFormat
+
+
+ if (_gl.getShaderPrecisionFormat === undefined) {
+ _gl.getShaderPrecisionFormat = function () {
+ return {
+ 'rangeMin': 1,
+ 'rangeMax': 1,
+ 'precision': 1
+ };
+ };
+ }
+ } catch (error) {
+ console.error('THREE.WebGLRenderer: ' + error.message);
+ throw error;
+ }
+
+ var extensions, capabilities, state, info;
+ var properties, textures, cubemaps, attributes, geometries, objects;
+ var programCache, materials, renderLists, renderStates, clipping;
+ var background, morphtargets, bufferRenderer, indexedBufferRenderer;
+ var utils, bindingStates;
+
+ function initGLContext() {
+ extensions = new WebGLExtensions(_gl);
+ capabilities = new WebGLCapabilities(_gl, extensions, parameters);
+ extensions.init(capabilities);
+ utils = new WebGLUtils(_gl, extensions, capabilities);
+ state = new WebGLState(_gl, extensions, capabilities);
+ state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
+ state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
+ info = new WebGLInfo(_gl);
+ properties = new WebGLProperties();
+ textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);
+ cubemaps = new WebGLCubeMaps(_this);
+ attributes = new WebGLAttributes(_gl, capabilities);
+ bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);
+ geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);
+ objects = new WebGLObjects(_gl, geometries, attributes, info);
+ morphtargets = new WebGLMorphtargets(_gl);
+ clipping = new WebGLClipping(properties);
+ programCache = new WebGLPrograms(_this, cubemaps, extensions, capabilities, bindingStates, clipping);
+ materials = new WebGLMaterials(properties);
+ renderLists = new WebGLRenderLists(properties);
+ renderStates = new WebGLRenderStates(extensions, capabilities);
+ background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);
+ bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);
+ indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);
+ info.programs = programCache.programs;
+ _this.capabilities = capabilities;
+ _this.extensions = extensions;
+ _this.properties = properties;
+ _this.renderLists = renderLists;
+ _this.state = state;
+ _this.info = info;
+ }
+
+ initGLContext(); // xr
+
+ var xr = new WebXRManager(_this, _gl);
+ this.xr = xr; // shadow map
+
+ var shadowMap = new WebGLShadowMap(_this, objects, capabilities.maxTextureSize);
+ this.shadowMap = shadowMap; // API
+
+ this.getContext = function () {
+ return _gl;
+ };
+
+ this.getContextAttributes = function () {
+ return _gl.getContextAttributes();
+ };
+
+ this.forceContextLoss = function () {
+ var extension = extensions.get('WEBGL_lose_context');
+ if (extension) extension.loseContext();
+ };
+
+ this.forceContextRestore = function () {
+ var extension = extensions.get('WEBGL_lose_context');
+ if (extension) extension.restoreContext();
+ };
+
+ this.getPixelRatio = function () {
+ return _pixelRatio;
+ };
+
+ this.setPixelRatio = function (value) {
+ if (value === undefined) return;
+ _pixelRatio = value;
+ this.setSize(_width, _height, false);
+ };
+
+ this.getSize = function (target) {
+ if (target === undefined) {
+ console.warn('WebGLRenderer: .getsize() now requires a Vector2 as an argument');
+ target = new Vector2();
+ }
+
+ return target.set(_width, _height);
+ };
+
+ this.setSize = function (width, height, updateStyle) {
+ if (xr.isPresenting) {
+ console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');
+ return;
+ }
+
+ _width = width;
+ _height = height;
+ _canvas.width = Math.floor(width * _pixelRatio);
+ _canvas.height = Math.floor(height * _pixelRatio);
+
+ if (updateStyle !== false) {
+ _canvas.style.width = width + 'px';
+ _canvas.style.height = height + 'px';
+ }
+
+ this.setViewport(0, 0, width, height);
+ };
+
+ this.getDrawingBufferSize = function (target) {
+ if (target === undefined) {
+ console.warn('WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument');
+ target = new Vector2();
+ }
+
+ return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();
+ };
+
+ this.setDrawingBufferSize = function (width, height, pixelRatio) {
+ _width = width;
+ _height = height;
+ _pixelRatio = pixelRatio;
+ _canvas.width = Math.floor(width * pixelRatio);
+ _canvas.height = Math.floor(height * pixelRatio);
+ this.setViewport(0, 0, width, height);
+ };
+
+ this.getCurrentViewport = function (target) {
+ if (target === undefined) {
+ console.warn('WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument');
+ target = new Vector4();
+ }
+
+ return target.copy(_currentViewport);
+ };
+
+ this.getViewport = function (target) {
+ return target.copy(_viewport);
+ };
+
+ this.setViewport = function (x, y, width, height) {
+ if (x.isVector4) {
+ _viewport.set(x.x, x.y, x.z, x.w);
+ } else {
+ _viewport.set(x, y, width, height);
+ }
+
+ state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
+ };
+
+ this.getScissor = function (target) {
+ return target.copy(_scissor);
+ };
+
+ this.setScissor = function (x, y, width, height) {
+ if (x.isVector4) {
+ _scissor.set(x.x, x.y, x.z, x.w);
+ } else {
+ _scissor.set(x, y, width, height);
+ }
+
+ state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
+ };
+
+ this.getScissorTest = function () {
+ return _scissorTest;
+ };
+
+ this.setScissorTest = function (boolean) {
+ state.setScissorTest(_scissorTest = boolean);
+ };
+
+ this.setOpaqueSort = function (method) {
+ _opaqueSort = method;
+ };
+
+ this.setTransparentSort = function (method) {
+ _transparentSort = method;
+ }; // Clearing
+
+
+ this.getClearColor = function (target) {
+ if (target === undefined) {
+ console.warn('WebGLRenderer: .getClearColor() now requires a Color as an argument');
+ target = new Color();
+ }
+
+ return target.copy(background.getClearColor());
+ };
+
+ this.setClearColor = function () {
+ background.setClearColor.apply(background, arguments);
+ };
+
+ this.getClearAlpha = function () {
+ return background.getClearAlpha();
+ };
+
+ this.setClearAlpha = function () {
+ background.setClearAlpha.apply(background, arguments);
+ };
+
+ this.clear = function (color, depth, stencil) {
+ var bits = 0;
+ if (color === undefined || color) bits |= 16384;
+ if (depth === undefined || depth) bits |= 256;
+ if (stencil === undefined || stencil) bits |= 1024;
+
+ _gl.clear(bits);
+ };
+
+ this.clearColor = function () {
+ this.clear(true, false, false);
+ };
+
+ this.clearDepth = function () {
+ this.clear(false, true, false);
+ };
+
+ this.clearStencil = function () {
+ this.clear(false, false, true);
+ }; //
+
+
+ this.dispose = function () {
+ _canvas.removeEventListener('webglcontextlost', onContextLost, false);
+
+ _canvas.removeEventListener('webglcontextrestored', onContextRestore, false);
+
+ renderLists.dispose();
+ renderStates.dispose();
+ properties.dispose();
+ cubemaps.dispose();
+ objects.dispose();
+ bindingStates.dispose();
+ xr.dispose();
+ animation.stop();
+ }; // Events
+
+
+ function onContextLost(event) {
+ event.preventDefault();
+ console.log('THREE.WebGLRenderer: Context Lost.');
+ _isContextLost = true;
+ }
+
+ function onContextRestore()
+ /* event */
+ {
+ console.log('THREE.WebGLRenderer: Context Restored.');
+ _isContextLost = false;
+ initGLContext();
+ }
+
+ function onMaterialDispose(event) {
+ var material = event.target;
+ material.removeEventListener('dispose', onMaterialDispose);
+ deallocateMaterial(material);
+ } // Buffer deallocation
+
+
+ function deallocateMaterial(material) {
+ releaseMaterialProgramReference(material);
+ properties.remove(material);
+ }
+
+ function releaseMaterialProgramReference(material) {
+ var programInfo = properties.get(material).program;
+
+ if (programInfo !== undefined) {
+ programCache.releaseProgram(programInfo);
+ }
+ } // Buffer rendering
+
+
+ function renderObjectImmediate(object, program) {
+ object.render(function (object) {
+ _this.renderBufferImmediate(object, program);
+ });
+ }
+
+ this.renderBufferImmediate = function (object, program) {
+ bindingStates.initAttributes();
+ var buffers = properties.get(object);
+ if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer();
+ if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer();
+ if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer();
+ if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer();
+ var programAttributes = program.getAttributes();
+
+ if (object.hasPositions) {
+ _gl.bindBuffer(34962, buffers.position);
+
+ _gl.bufferData(34962, object.positionArray, 35048);
+
+ bindingStates.enableAttribute(programAttributes.position);
+
+ _gl.vertexAttribPointer(programAttributes.position, 3, 5126, false, 0, 0);
+ }
+
+ if (object.hasNormals) {
+ _gl.bindBuffer(34962, buffers.normal);
+
+ _gl.bufferData(34962, object.normalArray, 35048);
+
+ bindingStates.enableAttribute(programAttributes.normal);
+
+ _gl.vertexAttribPointer(programAttributes.normal, 3, 5126, false, 0, 0);
+ }
+
+ if (object.hasUvs) {
+ _gl.bindBuffer(34962, buffers.uv);
+
+ _gl.bufferData(34962, object.uvArray, 35048);
+
+ bindingStates.enableAttribute(programAttributes.uv);
+
+ _gl.vertexAttribPointer(programAttributes.uv, 2, 5126, false, 0, 0);
+ }
+
+ if (object.hasColors) {
+ _gl.bindBuffer(34962, buffers.color);
+
+ _gl.bufferData(34962, object.colorArray, 35048);
+
+ bindingStates.enableAttribute(programAttributes.color);
+
+ _gl.vertexAttribPointer(programAttributes.color, 3, 5126, false, 0, 0);
+ }
+
+ bindingStates.disableUnusedAttributes();
+
+ _gl.drawArrays(4, 0, object.count);
+
+ object.count = 0;
+ };
+
+ this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {
+ if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
+
+ var frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;
+ var program = setProgram(camera, scene, material, object);
+ state.setMaterial(material, frontFaceCW); //
+
+ var index = geometry.index;
+ var position = geometry.attributes.position; //
+
+ if (index === null) {
+ if (position === undefined || position.count === 0) return;
+ } else if (index.count === 0) {
+ return;
+ } //
+
+
+ var rangeFactor = 1;
+
+ if (material.wireframe === true) {
+ index = geometries.getWireframeAttribute(geometry);
+ rangeFactor = 2;
+ }
+
+ if (material.morphTargets || material.morphNormals) {
+ morphtargets.update(object, geometry, material, program);
+ }
+
+ bindingStates.setup(object, material, program, geometry, index);
+ var attribute;
+ var renderer = bufferRenderer;
+
+ if (index !== null) {
+ attribute = attributes.get(index);
+ renderer = indexedBufferRenderer;
+ renderer.setIndex(attribute);
+ } //
+
+
+ var dataCount = index !== null ? index.count : position.count;
+ var rangeStart = geometry.drawRange.start * rangeFactor;
+ var rangeCount = geometry.drawRange.count * rangeFactor;
+ var groupStart = group !== null ? group.start * rangeFactor : 0;
+ var groupCount = group !== null ? group.count * rangeFactor : Infinity;
+ var drawStart = Math.max(rangeStart, groupStart);
+ var drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;
+ var drawCount = Math.max(0, drawEnd - drawStart + 1);
+ if (drawCount === 0) return; //
+
+ if (object.isMesh) {
+ if (material.wireframe === true) {
+ state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());
+ renderer.setMode(1);
+ } else {
+ renderer.setMode(4);
+ }
+ } else if (object.isLine) {
+ var lineWidth = material.linewidth;
+ if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material
+
+ state.setLineWidth(lineWidth * getTargetPixelRatio());
+
+ if (object.isLineSegments) {
+ renderer.setMode(1);
+ } else if (object.isLineLoop) {
+ renderer.setMode(2);
+ } else {
+ renderer.setMode(3);
+ }
+ } else if (object.isPoints) {
+ renderer.setMode(0);
+ } else if (object.isSprite) {
+ renderer.setMode(4);
+ }
+
+ if (object.isInstancedMesh) {
+ renderer.renderInstances(drawStart, drawCount, object.count);
+ } else if (geometry.isInstancedBufferGeometry) {
+ var instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);
+ renderer.renderInstances(drawStart, drawCount, instanceCount);
+ } else {
+ renderer.render(drawStart, drawCount);
+ }
+ }; // Compile
+
+
+ this.compile = function (scene, camera) {
+ currentRenderState = renderStates.get(scene);
+ currentRenderState.init();
+ scene.traverseVisible(function (object) {
+ if (object.isLight && object.layers.test(camera.layers)) {
+ currentRenderState.pushLight(object);
+
+ if (object.castShadow) {
+ currentRenderState.pushShadow(object);
+ }
+ }
+ });
+ currentRenderState.setupLights();
+ var compiled = new WeakMap();
+ scene.traverse(function (object) {
+ var material = object.material;
+
+ if (material) {
+ if (Array.isArray(material)) {
+ for (var i = 0; i < material.length; i++) {
+ var material2 = material[i];
+
+ if (compiled.has(material2) === false) {
+ initMaterial(material2, scene, object);
+ compiled.set(material2);
+ }
+ }
+ } else if (compiled.has(material) === false) {
+ initMaterial(material, scene, object);
+ compiled.set(material);
+ }
+ }
+ });
+ }; // Animation Loop
+
+
+ var onAnimationFrameCallback = null;
+
+ function onAnimationFrame(time) {
+ if (xr.isPresenting) return;
+ if (onAnimationFrameCallback) onAnimationFrameCallback(time);
+ }
+
+ var animation = new WebGLAnimation();
+ animation.setAnimationLoop(onAnimationFrame);
+ if (typeof window !== 'undefined') animation.setContext(window);
+
+ this.setAnimationLoop = function (callback) {
+ onAnimationFrameCallback = callback;
+ xr.setAnimationLoop(callback);
+ callback === null ? animation.stop() : animation.start();
+ }; // Rendering
+
+
+ this.render = function (scene, camera) {
+ var renderTarget, forceClear;
+
+ if (arguments[2] !== undefined) {
+ console.warn('THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.');
+ renderTarget = arguments[2];
+ }
+
+ if (arguments[3] !== undefined) {
+ console.warn('THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.');
+ forceClear = arguments[3];
+ }
+
+ if (camera !== undefined && camera.isCamera !== true) {
+ console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');
+ return;
+ }
+
+ if (_isContextLost === true) return; // reset caching for this frame
+
+ bindingStates.resetDefaultState();
+ _currentMaterialId = -1;
+ _currentCamera = null; // update scene graph
+
+ if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum
+
+ if (camera.parent === null) camera.updateMatrixWorld();
+
+ if (xr.enabled === true && xr.isPresenting === true) {
+ camera = xr.getCamera(camera);
+ } //
+
+
+ if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, renderTarget || _currentRenderTarget);
+ currentRenderState = renderStates.get(scene, renderStateStack.length);
+ currentRenderState.init();
+ renderStateStack.push(currentRenderState);
+
+ _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
+
+ _frustum.setFromProjectionMatrix(_projScreenMatrix);
+
+ _localClippingEnabled = this.localClippingEnabled;
+ _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);
+ currentRenderList = renderLists.get(scene, camera);
+ currentRenderList.init();
+ projectObject(scene, camera, 0, _this.sortObjects);
+ currentRenderList.finish();
+
+ if (_this.sortObjects === true) {
+ currentRenderList.sort(_opaqueSort, _transparentSort);
+ } //
+
+
+ if (_clippingEnabled === true) clipping.beginShadows();
+ var shadowsArray = currentRenderState.state.shadowsArray;
+ shadowMap.render(shadowsArray, scene, camera);
+ currentRenderState.setupLights();
+ currentRenderState.setupLightsView(camera);
+ if (_clippingEnabled === true) clipping.endShadows(); //
+
+ if (this.info.autoReset === true) this.info.reset();
+
+ if (renderTarget !== undefined) {
+ this.setRenderTarget(renderTarget);
+ } //
+
+
+ background.render(currentRenderList, scene, camera, forceClear); // render scene
+
+ var opaqueObjects = currentRenderList.opaque;
+ var transparentObjects = currentRenderList.transparent;
+ if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);
+ if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera); //
+
+ if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); //
+
+ if (_currentRenderTarget !== null) {
+ // Generate mipmap if we're using any kind of mipmap filtering
+ textures.updateRenderTargetMipmap(_currentRenderTarget); // resolve multisample renderbuffers to a single-sample texture if necessary
+
+ textures.updateMultisampleRenderTarget(_currentRenderTarget);
+ } // Ensure depth buffer writing is enabled so it can be cleared on next render
+
+
+ state.buffers.depth.setTest(true);
+ state.buffers.depth.setMask(true);
+ state.buffers.color.setMask(true);
+ state.setPolygonOffset(false); // _gl.finish();
+
+ renderStateStack.pop();
+
+ if (renderStateStack.length > 0) {
+ currentRenderState = renderStateStack[renderStateStack.length - 1];
+ } else {
+ currentRenderState = null;
+ }
+
+ currentRenderList = null;
+ };
+
+ function projectObject(object, camera, groupOrder, sortObjects) {
+ if (object.visible === false) return;
+ var visible = object.layers.test(camera.layers);
+
+ if (visible) {
+ if (object.isGroup) {
+ groupOrder = object.renderOrder;
+ } else if (object.isLOD) {
+ if (object.autoUpdate === true) object.update(camera);
+ } else if (object.isLight) {
+ currentRenderState.pushLight(object);
+
+ if (object.castShadow) {
+ currentRenderState.pushShadow(object);
+ }
+ } else if (object.isSprite) {
+ if (!object.frustumCulled || _frustum.intersectsSprite(object)) {
+ if (sortObjects) {
+ _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ }
+
+ var geometry = objects.update(object);
+ var material = object.material;
+
+ if (material.visible) {
+ currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
+ }
+ }
+ } else if (object.isImmediateRenderObject) {
+ if (sortObjects) {
+ _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ }
+
+ currentRenderList.push(object, null, object.material, groupOrder, _vector3.z, null);
+ } else if (object.isMesh || object.isLine || object.isPoints) {
+ if (object.isSkinnedMesh) {
+ // update skeleton only once in a frame
+ if (object.skeleton.frame !== info.render.frame) {
+ object.skeleton.update();
+ object.skeleton.frame = info.render.frame;
+ }
+ }
+
+ if (!object.frustumCulled || _frustum.intersectsObject(object)) {
+ if (sortObjects) {
+ _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
+ }
+
+ var _geometry = objects.update(object);
+
+ var _material = object.material;
+
+ if (Array.isArray(_material)) {
+ var groups = _geometry.groups;
+
+ for (var i = 0, l = groups.length; i < l; i++) {
+ var group = groups[i];
+ var groupMaterial = _material[group.materialIndex];
+
+ if (groupMaterial && groupMaterial.visible) {
+ currentRenderList.push(object, _geometry, groupMaterial, groupOrder, _vector3.z, group);
+ }
+ }
+ } else if (_material.visible) {
+ currentRenderList.push(object, _geometry, _material, groupOrder, _vector3.z, null);
+ }
+ }
+ }
+ }
+
+ var children = object.children;
+
+ for (var _i = 0, _l = children.length; _i < _l; _i++) {
+ projectObject(children[_i], camera, groupOrder, sortObjects);
+ }
+ }
+
+ function renderObjects(renderList, scene, camera) {
+ var overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
+
+ for (var i = 0, l = renderList.length; i < l; i++) {
+ var renderItem = renderList[i];
+ var object = renderItem.object;
+ var geometry = renderItem.geometry;
+ var material = overrideMaterial === null ? renderItem.material : overrideMaterial;
+ var group = renderItem.group;
+
+ if (camera.isArrayCamera) {
+ var cameras = camera.cameras;
+
+ for (var j = 0, jl = cameras.length; j < jl; j++) {
+ var camera2 = cameras[j];
+
+ if (object.layers.test(camera2.layers)) {
+ state.viewport(_currentViewport.copy(camera2.viewport));
+ currentRenderState.setupLightsView(camera2);
+ renderObject(object, scene, camera2, geometry, material, group);
+ }
+ }
+ } else {
+ renderObject(object, scene, camera, geometry, material, group);
+ }
+ }
+ }
+
+ function renderObject(object, scene, camera, geometry, material, group) {
+ object.onBeforeRender(_this, scene, camera, geometry, material, group);
+ object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);
+ object.normalMatrix.getNormalMatrix(object.modelViewMatrix);
+
+ if (object.isImmediateRenderObject) {
+ var program = setProgram(camera, scene, material, object);
+ state.setMaterial(material);
+ bindingStates.reset();
+ renderObjectImmediate(object, program);
+ } else {
+ _this.renderBufferDirect(camera, scene, geometry, material, object, group);
+ }
+
+ object.onAfterRender(_this, scene, camera, geometry, material, group);
+ }
+
+ function initMaterial(material, scene, object) {
+ if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
+
+ var materialProperties = properties.get(material);
+ var lights = currentRenderState.state.lights;
+ var shadowsArray = currentRenderState.state.shadowsArray;
+ var lightsStateVersion = lights.state.version;
+ var parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);
+ var programCacheKey = programCache.getProgramCacheKey(parameters);
+ var program = materialProperties.program;
+ var programChange = true; // always update environment and fog - changing these trigger an initMaterial call, but it's possible that the program doesn't change
+
+ materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
+ materialProperties.fog = scene.fog;
+ materialProperties.envMap = cubemaps.get(material.envMap || materialProperties.environment);
+
+ if (program === undefined) {
+ // new material
+ material.addEventListener('dispose', onMaterialDispose);
+ } else if (program.cacheKey !== programCacheKey) {
+ // changed glsl or parameters
+ releaseMaterialProgramReference(material);
+ } else if (materialProperties.lightsStateVersion !== lightsStateVersion) {
+ programChange = false;
+ } else if (parameters.shaderID !== undefined) {
+ // same glsl and uniform list
+ return;
+ } else {
+ // only rebuild uniform list
+ programChange = false;
+ }
+
+ if (programChange) {
+ parameters.uniforms = programCache.getUniforms(material);
+ material.onBeforeCompile(parameters, _this);
+ program = programCache.acquireProgram(parameters, programCacheKey);
+ materialProperties.program = program;
+ materialProperties.uniforms = parameters.uniforms;
+ materialProperties.outputEncoding = parameters.outputEncoding;
+ }
+
+ var uniforms = materialProperties.uniforms;
+
+ if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {
+ materialProperties.numClippingPlanes = clipping.numPlanes;
+ materialProperties.numIntersection = clipping.numIntersection;
+ uniforms.clippingPlanes = clipping.uniform;
+ } // store the light setup it was created for
+
+
+ materialProperties.needsLights = materialNeedsLights(material);
+ materialProperties.lightsStateVersion = lightsStateVersion;
+
+ if (materialProperties.needsLights) {
+ // wire up the material to this renderer's lighting state
+ uniforms.ambientLightColor.value = lights.state.ambient;
+ uniforms.lightProbe.value = lights.state.probe;
+ uniforms.directionalLights.value = lights.state.directional;
+ uniforms.directionalLightShadows.value = lights.state.directionalShadow;
+ uniforms.spotLights.value = lights.state.spot;
+ uniforms.spotLightShadows.value = lights.state.spotShadow;
+ uniforms.rectAreaLights.value = lights.state.rectArea;
+ uniforms.ltc_1.value = lights.state.rectAreaLTC1;
+ uniforms.ltc_2.value = lights.state.rectAreaLTC2;
+ uniforms.pointLights.value = lights.state.point;
+ uniforms.pointLightShadows.value = lights.state.pointShadow;
+ uniforms.hemisphereLights.value = lights.state.hemi;
+ uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
+ uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
+ uniforms.spotShadowMap.value = lights.state.spotShadowMap;
+ uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
+ uniforms.pointShadowMap.value = lights.state.pointShadowMap;
+ uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms
+ }
+
+ var progUniforms = materialProperties.program.getUniforms();
+ var uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);
+ materialProperties.uniformsList = uniformsList;
+ }
+
+ function setProgram(camera, scene, material, object) {
+ if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
+
+ textures.resetTextureUnits();
+ var fog = scene.fog;
+ var environment = material.isMeshStandardMaterial ? scene.environment : null;
+ var encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
+ var envMap = cubemaps.get(material.envMap || environment);
+ var materialProperties = properties.get(material);
+ var lights = currentRenderState.state.lights;
+
+ if (_clippingEnabled === true) {
+ if (_localClippingEnabled === true || camera !== _currentCamera) {
+ var useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup
+ // object instead of the material, once it becomes feasible
+ // (#8465, #8379)
+
+ clipping.setState(material, camera, useCache);
+ }
+ }
+
+ if (material.version === materialProperties.__version) {
+ if (material.fog && materialProperties.fog !== fog) {
+ initMaterial(material, scene, object);
+ } else if (materialProperties.environment !== environment) {
+ initMaterial(material, scene, object);
+ } else if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {
+ initMaterial(material, scene, object);
+ } else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {
+ initMaterial(material, scene, object);
+ } else if (materialProperties.outputEncoding !== encoding) {
+ initMaterial(material, scene, object);
+ } else if (materialProperties.envMap !== envMap) {
+ initMaterial(material, scene, object);
+ }
+ } else {
+ initMaterial(material, scene, object);
+ materialProperties.__version = material.version;
+ }
+
+ var refreshProgram = false;
+ var refreshMaterial = false;
+ var refreshLights = false;
+ var program = materialProperties.program,
+ p_uniforms = program.getUniforms(),
+ m_uniforms = materialProperties.uniforms;
+
+ if (state.useProgram(program.program)) {
+ refreshProgram = true;
+ refreshMaterial = true;
+ refreshLights = true;
+ }
+
+ if (material.id !== _currentMaterialId) {
+ _currentMaterialId = material.id;
+ refreshMaterial = true;
+ }
+
+ if (refreshProgram || _currentCamera !== camera) {
+ p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);
+
+ if (capabilities.logarithmicDepthBuffer) {
+ p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));
+ }
+
+ if (_currentCamera !== camera) {
+ _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update
+ // now, in case this material supports lights - or later, when
+ // the next material that does gets activated:
+
+ refreshMaterial = true; // set to true on material change
+
+ refreshLights = true; // remains set until update done
+ } // load material specific uniforms
+ // (shader material also gets them for the sake of genericity)
+
+
+ if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {
+ var uCamPos = p_uniforms.map.cameraPosition;
+
+ if (uCamPos !== undefined) {
+ uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));
+ }
+ }
+
+ if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {
+ p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);
+ }
+
+ if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || material.skinning) {
+ p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);
+ }
+ } // skinning uniforms must be set even if material didn't change
+ // auto-setting of texture unit for bone texture must go before other textures
+ // otherwise textures used for skinning can take over texture units reserved for other material textures
+
+
+ if (material.skinning) {
+ p_uniforms.setOptional(_gl, object, 'bindMatrix');
+ p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');
+ var skeleton = object.skeleton;
+
+ if (skeleton) {
+ var bones = skeleton.bones;
+
+ if (capabilities.floatVertexTextures) {
+ if (skeleton.boneTexture === null) {
+ // layout (1 matrix = 4 pixels)
+ // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
+ // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
+ // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
+ // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
+ // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
+ var size = Math.sqrt(bones.length * 4); // 4 pixels needed for 1 matrix
+
+ size = MathUtils.ceilPowerOfTwo(size);
+ size = Math.max(size, 4);
+ var boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel
+
+ boneMatrices.set(skeleton.boneMatrices); // copy current values
+
+ var boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);
+ skeleton.boneMatrices = boneMatrices;
+ skeleton.boneTexture = boneTexture;
+ skeleton.boneTextureSize = size;
+ }
+
+ p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);
+ p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);
+ } else {
+ p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');
+ }
+ }
+ }
+
+ if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {
+ materialProperties.receiveShadow = object.receiveShadow;
+ p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);
+ }
+
+ if (refreshMaterial) {
+ p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);
+
+ if (materialProperties.needsLights) {
+ // the current material requires lighting info
+ // note: all lighting uniforms are always set correctly
+ // they simply reference the renderer's state for their
+ // values
+ //
+ // use the current material's .needsUpdate flags to set
+ // the GL state when required
+ markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);
+ } // refresh uniforms common to several materials
+
+
+ if (fog && material.fog) {
+ materials.refreshFogUniforms(m_uniforms, fog);
+ }
+
+ materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height);
+ WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
+ }
+
+ if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {
+ WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
+ material.uniformsNeedUpdate = false;
+ }
+
+ if (material.isSpriteMaterial) {
+ p_uniforms.setValue(_gl, 'center', object.center);
+ } // common matrices
+
+
+ p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);
+ p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);
+ p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);
+ return program;
+ } // If uniforms are marked as clean, they don't need to be loaded to the GPU.
+
+
+ function markUniformsLightsNeedsUpdate(uniforms, value) {
+ uniforms.ambientLightColor.needsUpdate = value;
+ uniforms.lightProbe.needsUpdate = value;
+ uniforms.directionalLights.needsUpdate = value;
+ uniforms.directionalLightShadows.needsUpdate = value;
+ uniforms.pointLights.needsUpdate = value;
+ uniforms.pointLightShadows.needsUpdate = value;
+ uniforms.spotLights.needsUpdate = value;
+ uniforms.spotLightShadows.needsUpdate = value;
+ uniforms.rectAreaLights.needsUpdate = value;
+ uniforms.hemisphereLights.needsUpdate = value;
+ }
+
+ function materialNeedsLights(material) {
+ return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;
+ } //
+
+
+ this.setFramebuffer = function (value) {
+ if (_framebuffer !== value && _currentRenderTarget === null) _gl.bindFramebuffer(36160, value);
+ _framebuffer = value;
+ };
+
+ this.getActiveCubeFace = function () {
+ return _currentActiveCubeFace;
+ };
+
+ this.getActiveMipmapLevel = function () {
+ return _currentActiveMipmapLevel;
+ };
+
+ this.getRenderList = function () {
+ return currentRenderList;
+ };
+
+ this.setRenderList = function (renderList) {
+ currentRenderList = renderList;
+ };
+
+ this.getRenderTarget = function () {
+ return _currentRenderTarget;
+ };
+
+ this.setRenderTarget = function (renderTarget, activeCubeFace, activeMipmapLevel) {
+ if (activeCubeFace === void 0) {
+ activeCubeFace = 0;
+ }
+
+ if (activeMipmapLevel === void 0) {
+ activeMipmapLevel = 0;
+ }
+
+ _currentRenderTarget = renderTarget;
+ _currentActiveCubeFace = activeCubeFace;
+ _currentActiveMipmapLevel = activeMipmapLevel;
+
+ if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) {
+ textures.setupRenderTarget(renderTarget);
+ }
+
+ var framebuffer = _framebuffer;
+ var isCube = false;
+
+ if (renderTarget) {
+ var __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;
+
+ if (renderTarget.isWebGLCubeRenderTarget) {
+ framebuffer = __webglFramebuffer[activeCubeFace];
+ isCube = true;
+ } else if (renderTarget.isWebGLMultisampleRenderTarget) {
+ framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;
+ } else {
+ framebuffer = __webglFramebuffer;
+ }
+
+ _currentViewport.copy(renderTarget.viewport);
+
+ _currentScissor.copy(renderTarget.scissor);
+
+ _currentScissorTest = renderTarget.scissorTest;
+ } else {
+ _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();
+
+ _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();
+
+ _currentScissorTest = _scissorTest;
+ }
+
+ if (_currentFramebuffer !== framebuffer) {
+ _gl.bindFramebuffer(36160, framebuffer);
+
+ _currentFramebuffer = framebuffer;
+ }
+
+ state.viewport(_currentViewport);
+ state.scissor(_currentScissor);
+ state.setScissorTest(_currentScissorTest);
+
+ if (isCube) {
+ var textureProperties = properties.get(renderTarget.texture);
+
+ _gl.framebufferTexture2D(36160, 36064, 34069 + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);
+ }
+ };
+
+ this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {
+ if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');
+ return;
+ }
+
+ var framebuffer = properties.get(renderTarget).__webglFramebuffer;
+
+ if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {
+ framebuffer = framebuffer[activeCubeFaceIndex];
+ }
+
+ if (framebuffer) {
+ var restore = false;
+
+ if (framebuffer !== _currentFramebuffer) {
+ _gl.bindFramebuffer(36160, framebuffer);
+
+ restore = true;
+ }
+
+ try {
+ var texture = renderTarget.texture;
+ var textureFormat = texture.format;
+ var textureType = texture.type;
+
+ if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(35739)) {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');
+ return;
+ }
+
+ var halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));
+
+ if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(35738) && // IE11, Edge and Chrome Mac < 52 (#9513)
+ !(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox
+ !halfFloatSupportedByExt) {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');
+ return;
+ }
+
+ if (_gl.checkFramebufferStatus(36160) === 36053) {
+ // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
+ if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {
+ _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);
+ }
+ } else {
+ console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');
+ }
+ } finally {
+ if (restore) {
+ _gl.bindFramebuffer(36160, _currentFramebuffer);
+ }
+ }
+ }
+ };
+
+ this.copyFramebufferToTexture = function (position, texture, level) {
+ if (level === void 0) {
+ level = 0;
+ }
+
+ var levelScale = Math.pow(2, -level);
+ var width = Math.floor(texture.image.width * levelScale);
+ var height = Math.floor(texture.image.height * levelScale);
+ var glFormat = utils.convert(texture.format);
+ textures.setTexture2D(texture, 0);
+
+ _gl.copyTexImage2D(3553, level, glFormat, position.x, position.y, width, height, 0);
+
+ state.unbindTexture();
+ };
+
+ this.copyTextureToTexture = function (position, srcTexture, dstTexture, level) {
+ if (level === void 0) {
+ level = 0;
+ }
+
+ var width = srcTexture.image.width;
+ var height = srcTexture.image.height;
+ var glFormat = utils.convert(dstTexture.format);
+ var glType = utils.convert(dstTexture.type);
+ textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei
+ // parameters, make sure they are correct for the dstTexture
+
+ _gl.pixelStorei(37440, dstTexture.flipY);
+
+ _gl.pixelStorei(37441, dstTexture.premultiplyAlpha);
+
+ _gl.pixelStorei(3317, dstTexture.unpackAlignment);
+
+ if (srcTexture.isDataTexture) {
+ _gl.texSubImage2D(3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);
+ } else {
+ if (srcTexture.isCompressedTexture) {
+ _gl.compressedTexSubImage2D(3553, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);
+ } else {
+ _gl.texSubImage2D(3553, level, position.x, position.y, glFormat, glType, srcTexture.image);
+ }
+ } // Generate mipmaps only when copying level 0
+
+
+ if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(3553);
+ state.unbindTexture();
+ };
+
+ this.initTexture = function (texture) {
+ textures.setTexture2D(texture, 0);
+ state.unbindTexture();
+ };
+
+ this.resetState = function () {
+ state.reset();
+ bindingStates.reset();
+ };
+
+ if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
+ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
+ detail: this
+ })); // eslint-disable-line no-undef
+
+ }
+ }
+
+ function WebGL1Renderer(parameters) {
+ WebGLRenderer.call(this, parameters);
+ }
+
+ WebGL1Renderer.prototype = Object.assign(Object.create(WebGLRenderer.prototype), {
+ constructor: WebGL1Renderer,
+ isWebGL1Renderer: true
+ });
+
+ var FogExp2 = /*#__PURE__*/function () {
+ function FogExp2(color, density) {
+ Object.defineProperty(this, 'isFogExp2', {
+ value: true
+ });
+ this.name = '';
+ this.color = new Color(color);
+ this.density = density !== undefined ? density : 0.00025;
+ }
+
+ var _proto = FogExp2.prototype;
+
+ _proto.clone = function clone() {
+ return new FogExp2(this.color, this.density);
+ };
+
+ _proto.toJSON = function toJSON()
+ /* meta */
+ {
+ return {
+ type: 'FogExp2',
+ color: this.color.getHex(),
+ density: this.density
+ };
+ };
+
+ return FogExp2;
+ }();
+
+ var Fog = /*#__PURE__*/function () {
+ function Fog(color, near, far) {
+ Object.defineProperty(this, 'isFog', {
+ value: true
+ });
+ this.name = '';
+ this.color = new Color(color);
+ this.near = near !== undefined ? near : 1;
+ this.far = far !== undefined ? far : 1000;
+ }
+
+ var _proto = Fog.prototype;
+
+ _proto.clone = function clone() {
+ return new Fog(this.color, this.near, this.far);
+ };
+
+ _proto.toJSON = function toJSON()
+ /* meta */
+ {
+ return {
+ type: 'Fog',
+ color: this.color.getHex(),
+ near: this.near,
+ far: this.far
+ };
+ };
+
+ return Fog;
+ }();
+
+ var Scene = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(Scene, _Object3D);
+
+ function Scene() {
+ var _this;
+
+ _this = _Object3D.call(this) || this;
+ Object.defineProperty(_assertThisInitialized(_this), 'isScene', {
+ value: true
+ });
+ _this.type = 'Scene';
+ _this.background = null;
+ _this.environment = null;
+ _this.fog = null;
+ _this.overrideMaterial = null;
+ _this.autoUpdate = true; // checked by the renderer
+
+ if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
+ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
+ detail: _assertThisInitialized(_this)
+ })); // eslint-disable-line no-undef
+
+ }
+
+ return _this;
+ }
+
+ var _proto = Scene.prototype;
+
+ _proto.copy = function copy(source, recursive) {
+ _Object3D.prototype.copy.call(this, source, recursive);
+
+ if (source.background !== null) this.background = source.background.clone();
+ if (source.environment !== null) this.environment = source.environment.clone();
+ if (source.fog !== null) this.fog = source.fog.clone();
+ if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();
+ this.autoUpdate = source.autoUpdate;
+ this.matrixAutoUpdate = source.matrixAutoUpdate;
+ return this;
+ };
+
+ _proto.toJSON = function toJSON(meta) {
+ var data = _Object3D.prototype.toJSON.call(this, meta);
+
+ if (this.background !== null) data.object.background = this.background.toJSON(meta);
+ if (this.environment !== null) data.object.environment = this.environment.toJSON(meta);
+ if (this.fog !== null) data.object.fog = this.fog.toJSON();
+ return data;
+ };
+
+ return Scene;
+ }(Object3D);
+
+ function InterleavedBuffer(array, stride) {
+ this.array = array;
+ this.stride = stride;
+ this.count = array !== undefined ? array.length / stride : 0;
+ this.usage = StaticDrawUsage;
+ this.updateRange = {
+ offset: 0,
+ count: -1
+ };
+ this.version = 0;
+ this.uuid = MathUtils.generateUUID();
+ }
+
+ Object.defineProperty(InterleavedBuffer.prototype, 'needsUpdate', {
+ set: function set(value) {
+ if (value === true) this.version++;
+ }
+ });
+ Object.assign(InterleavedBuffer.prototype, {
+ isInterleavedBuffer: true,
+ onUploadCallback: function onUploadCallback() {},
+ setUsage: function setUsage(value) {
+ this.usage = value;
+ return this;
+ },
+ copy: function copy(source) {
+ this.array = new source.array.constructor(source.array);
+ this.count = source.count;
+ this.stride = source.stride;
+ this.usage = source.usage;
+ return this;
+ },
+ copyAt: function copyAt(index1, attribute, index2) {
+ index1 *= this.stride;
+ index2 *= attribute.stride;
+
+ for (var i = 0, l = this.stride; i < l; i++) {
+ this.array[index1 + i] = attribute.array[index2 + i];
+ }
+
+ return this;
+ },
+ set: function set(value, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ this.array.set(value, offset);
+ return this;
+ },
+ clone: function clone(data) {
+ if (data.arrayBuffers === undefined) {
+ data.arrayBuffers = {};
+ }
+
+ if (this.array.buffer._uuid === undefined) {
+ this.array.buffer._uuid = MathUtils.generateUUID();
+ }
+
+ if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
+ data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;
+ }
+
+ var array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);
+ var ib = new InterleavedBuffer(array, this.stride);
+ ib.setUsage(this.usage);
+ return ib;
+ },
+ onUpload: function onUpload(callback) {
+ this.onUploadCallback = callback;
+ return this;
+ },
+ toJSON: function toJSON(data) {
+ if (data.arrayBuffers === undefined) {
+ data.arrayBuffers = {};
+ } // generate UUID for array buffer if necessary
+
+
+ if (this.array.buffer._uuid === undefined) {
+ this.array.buffer._uuid = MathUtils.generateUUID();
+ }
+
+ if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
+ data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));
+ } //
+
+
+ return {
+ uuid: this.uuid,
+ buffer: this.array.buffer._uuid,
+ type: this.array.constructor.name,
+ stride: this.stride
+ };
+ }
+ });
+
+ var _vector$6 = new Vector3();
+
+ function InterleavedBufferAttribute(interleavedBuffer, itemSize, offset, normalized) {
+ this.name = '';
+ this.data = interleavedBuffer;
+ this.itemSize = itemSize;
+ this.offset = offset;
+ this.normalized = normalized === true;
+ }
+
+ Object.defineProperties(InterleavedBufferAttribute.prototype, {
+ count: {
+ get: function get() {
+ return this.data.count;
+ }
+ },
+ array: {
+ get: function get() {
+ return this.data.array;
+ }
+ },
+ needsUpdate: {
+ set: function set(value) {
+ this.data.needsUpdate = value;
+ }
+ }
+ });
+ Object.assign(InterleavedBufferAttribute.prototype, {
+ isInterleavedBufferAttribute: true,
+ applyMatrix4: function applyMatrix4(m) {
+ for (var i = 0, l = this.data.count; i < l; i++) {
+ _vector$6.x = this.getX(i);
+ _vector$6.y = this.getY(i);
+ _vector$6.z = this.getZ(i);
+
+ _vector$6.applyMatrix4(m);
+
+ this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
+ }
+
+ return this;
+ },
+ setX: function setX(index, x) {
+ this.data.array[index * this.data.stride + this.offset] = x;
+ return this;
+ },
+ setY: function setY(index, y) {
+ this.data.array[index * this.data.stride + this.offset + 1] = y;
+ return this;
+ },
+ setZ: function setZ(index, z) {
+ this.data.array[index * this.data.stride + this.offset + 2] = z;
+ return this;
+ },
+ setW: function setW(index, w) {
+ this.data.array[index * this.data.stride + this.offset + 3] = w;
+ return this;
+ },
+ getX: function getX(index) {
+ return this.data.array[index * this.data.stride + this.offset];
+ },
+ getY: function getY(index) {
+ return this.data.array[index * this.data.stride + this.offset + 1];
+ },
+ getZ: function getZ(index) {
+ return this.data.array[index * this.data.stride + this.offset + 2];
+ },
+ getW: function getW(index) {
+ return this.data.array[index * this.data.stride + this.offset + 3];
+ },
+ setXY: function setXY(index, x, y) {
+ index = index * this.data.stride + this.offset;
+ this.data.array[index + 0] = x;
+ this.data.array[index + 1] = y;
+ return this;
+ },
+ setXYZ: function setXYZ(index, x, y, z) {
+ index = index * this.data.stride + this.offset;
+ this.data.array[index + 0] = x;
+ this.data.array[index + 1] = y;
+ this.data.array[index + 2] = z;
+ return this;
+ },
+ setXYZW: function setXYZW(index, x, y, z, w) {
+ index = index * this.data.stride + this.offset;
+ this.data.array[index + 0] = x;
+ this.data.array[index + 1] = y;
+ this.data.array[index + 2] = z;
+ this.data.array[index + 3] = w;
+ return this;
+ },
+ clone: function clone(data) {
+ if (data === undefined) {
+ console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');
+ var array = [];
+
+ for (var i = 0; i < this.count; i++) {
+ var index = i * this.data.stride + this.offset;
+
+ for (var j = 0; j < this.itemSize; j++) {
+ array.push(this.data.array[index + j]);
+ }
+ }
+
+ return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);
+ } else {
+ if (data.interleavedBuffers === undefined) {
+ data.interleavedBuffers = {};
+ }
+
+ if (data.interleavedBuffers[this.data.uuid] === undefined) {
+ data.interleavedBuffers[this.data.uuid] = this.data.clone(data);
+ }
+
+ return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);
+ }
+ },
+ toJSON: function toJSON(data) {
+ if (data === undefined) {
+ console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');
+ var array = [];
+
+ for (var i = 0; i < this.count; i++) {
+ var index = i * this.data.stride + this.offset;
+
+ for (var j = 0; j < this.itemSize; j++) {
+ array.push(this.data.array[index + j]);
+ }
+ } // deinterleave data and save it as an ordinary buffer attribute for now
+
+
+ return {
+ itemSize: this.itemSize,
+ type: this.array.constructor.name,
+ array: array,
+ normalized: this.normalized
+ };
+ } else {
+ // save as true interlaved attribtue
+ if (data.interleavedBuffers === undefined) {
+ data.interleavedBuffers = {};
+ }
+
+ if (data.interleavedBuffers[this.data.uuid] === undefined) {
+ data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);
+ }
+
+ return {
+ isInterleavedBufferAttribute: true,
+ itemSize: this.itemSize,
+ data: this.data.uuid,
+ offset: this.offset,
+ normalized: this.normalized
+ };
+ }
+ }
+ });
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * map: new THREE.Texture( <Image> ),
+ * alphaMap: new THREE.Texture( <Image> ),
+ * rotation: <float>,
+ * sizeAttenuation: <bool>
+ * }
+ */
+
+ function SpriteMaterial(parameters) {
+ Material.call(this);
+ this.type = 'SpriteMaterial';
+ this.color = new Color(0xffffff);
+ this.map = null;
+ this.alphaMap = null;
+ this.rotation = 0;
+ this.sizeAttenuation = true;
+ this.transparent = true;
+ this.setValues(parameters);
+ }
+
+ SpriteMaterial.prototype = Object.create(Material.prototype);
+ SpriteMaterial.prototype.constructor = SpriteMaterial;
+ SpriteMaterial.prototype.isSpriteMaterial = true;
+
+ SpriteMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.rotation = source.rotation;
+ this.sizeAttenuation = source.sizeAttenuation;
+ return this;
+ };
+
+ var _geometry;
+
+ var _intersectPoint = new Vector3();
+
+ var _worldScale = new Vector3();
+
+ var _mvPosition = new Vector3();
+
+ var _alignedPosition = new Vector2();
+
+ var _rotatedPosition = new Vector2();
+
+ var _viewWorldMatrix = new Matrix4();
+
+ var _vA$1 = new Vector3();
+
+ var _vB$1 = new Vector3();
+
+ var _vC$1 = new Vector3();
+
+ var _uvA$1 = new Vector2();
+
+ var _uvB$1 = new Vector2();
+
+ var _uvC$1 = new Vector2();
+
+ function Sprite(material) {
+ Object3D.call(this);
+ this.type = 'Sprite';
+
+ if (_geometry === undefined) {
+ _geometry = new BufferGeometry();
+ var float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);
+ var interleavedBuffer = new InterleavedBuffer(float32Array, 5);
+
+ _geometry.setIndex([0, 1, 2, 0, 2, 3]);
+
+ _geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));
+
+ _geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));
+ }
+
+ this.geometry = _geometry;
+ this.material = material !== undefined ? material : new SpriteMaterial();
+ this.center = new Vector2(0.5, 0.5);
+ }
+
+ Sprite.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Sprite,
+ isSprite: true,
+ raycast: function raycast(raycaster, intersects) {
+ if (raycaster.camera === null) {
+ console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');
+ }
+
+ _worldScale.setFromMatrixScale(this.matrixWorld);
+
+ _viewWorldMatrix.copy(raycaster.camera.matrixWorld);
+
+ this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);
+
+ _mvPosition.setFromMatrixPosition(this.modelViewMatrix);
+
+ if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {
+ _worldScale.multiplyScalar(-_mvPosition.z);
+ }
+
+ var rotation = this.material.rotation;
+ var sin, cos;
+
+ if (rotation !== 0) {
+ cos = Math.cos(rotation);
+ sin = Math.sin(rotation);
+ }
+
+ var center = this.center;
+ transformVertex(_vA$1.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+ transformVertex(_vB$1.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+ transformVertex(_vC$1.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+
+ _uvA$1.set(0, 0);
+
+ _uvB$1.set(1, 0);
+
+ _uvC$1.set(1, 1); // check first triangle
+
+
+ var intersect = raycaster.ray.intersectTriangle(_vA$1, _vB$1, _vC$1, false, _intersectPoint);
+
+ if (intersect === null) {
+ // check second triangle
+ transformVertex(_vB$1.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
+
+ _uvB$1.set(0, 1);
+
+ intersect = raycaster.ray.intersectTriangle(_vA$1, _vC$1, _vB$1, false, _intersectPoint);
+
+ if (intersect === null) {
+ return;
+ }
+ }
+
+ var distance = raycaster.ray.origin.distanceTo(_intersectPoint);
+ if (distance < raycaster.near || distance > raycaster.far) return;
+ intersects.push({
+ distance: distance,
+ point: _intersectPoint.clone(),
+ uv: Triangle.getUV(_intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2()),
+ face: null,
+ object: this
+ });
+ },
+ copy: function copy(source) {
+ Object3D.prototype.copy.call(this, source);
+ if (source.center !== undefined) this.center.copy(source.center);
+ this.material = source.material;
+ return this;
+ }
+ });
+
+ function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {
+ // compute position in camera space
+ _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero
+
+
+ if (sin !== undefined) {
+ _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;
+ _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;
+ } else {
+ _rotatedPosition.copy(_alignedPosition);
+ }
+
+ vertexPosition.copy(mvPosition);
+ vertexPosition.x += _rotatedPosition.x;
+ vertexPosition.y += _rotatedPosition.y; // transform to world space
+
+ vertexPosition.applyMatrix4(_viewWorldMatrix);
+ }
+
+ var _v1$4 = new Vector3();
+
+ var _v2$2 = new Vector3();
+
+ function LOD() {
+ Object3D.call(this);
+ this._currentLevel = 0;
+ this.type = 'LOD';
+ Object.defineProperties(this, {
+ levels: {
+ enumerable: true,
+ value: []
+ }
+ });
+ this.autoUpdate = true;
+ }
+
+ LOD.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: LOD,
+ isLOD: true,
+ copy: function copy(source) {
+ Object3D.prototype.copy.call(this, source, false);
+ var levels = source.levels;
+
+ for (var i = 0, l = levels.length; i < l; i++) {
+ var level = levels[i];
+ this.addLevel(level.object.clone(), level.distance);
+ }
+
+ this.autoUpdate = source.autoUpdate;
+ return this;
+ },
+ addLevel: function addLevel(object, distance) {
+ if (distance === void 0) {
+ distance = 0;
+ }
+
+ distance = Math.abs(distance);
+ var levels = this.levels;
+ var l;
+
+ for (l = 0; l < levels.length; l++) {
+ if (distance < levels[l].distance) {
+ break;
+ }
+ }
+
+ levels.splice(l, 0, {
+ distance: distance,
+ object: object
+ });
+ this.add(object);
+ return this;
+ },
+ getCurrentLevel: function getCurrentLevel() {
+ return this._currentLevel;
+ },
+ getObjectForDistance: function getObjectForDistance(distance) {
+ var levels = this.levels;
+
+ if (levels.length > 0) {
+ var i, l;
+
+ for (i = 1, l = levels.length; i < l; i++) {
+ if (distance < levels[i].distance) {
+ break;
+ }
+ }
+
+ return levels[i - 1].object;
+ }
+
+ return null;
+ },
+ raycast: function raycast(raycaster, intersects) {
+ var levels = this.levels;
+
+ if (levels.length > 0) {
+ _v1$4.setFromMatrixPosition(this.matrixWorld);
+
+ var distance = raycaster.ray.origin.distanceTo(_v1$4);
+ this.getObjectForDistance(distance).raycast(raycaster, intersects);
+ }
+ },
+ update: function update(camera) {
+ var levels = this.levels;
+
+ if (levels.length > 1) {
+ _v1$4.setFromMatrixPosition(camera.matrixWorld);
+
+ _v2$2.setFromMatrixPosition(this.matrixWorld);
+
+ var distance = _v1$4.distanceTo(_v2$2) / camera.zoom;
+ levels[0].object.visible = true;
+ var i, l;
+
+ for (i = 1, l = levels.length; i < l; i++) {
+ if (distance >= levels[i].distance) {
+ levels[i - 1].object.visible = false;
+ levels[i].object.visible = true;
+ } else {
+ break;
+ }
+ }
+
+ this._currentLevel = i - 1;
+
+ for (; i < l; i++) {
+ levels[i].object.visible = false;
+ }
+ }
+ },
+ toJSON: function toJSON(meta) {
+ var data = Object3D.prototype.toJSON.call(this, meta);
+ if (this.autoUpdate === false) data.object.autoUpdate = false;
+ data.object.levels = [];
+ var levels = this.levels;
+
+ for (var i = 0, l = levels.length; i < l; i++) {
+ var level = levels[i];
+ data.object.levels.push({
+ object: level.object.uuid,
+ distance: level.distance
+ });
+ }
+
+ return data;
+ }
+ });
+
+ var _basePosition = new Vector3();
+
+ var _skinIndex = new Vector4();
+
+ var _skinWeight = new Vector4();
+
+ var _vector$7 = new Vector3();
+
+ var _matrix$1 = new Matrix4();
+
+ function SkinnedMesh(geometry, material) {
+ if (geometry && geometry.isGeometry) {
+ console.error('THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+
+ Mesh.call(this, geometry, material);
+ this.type = 'SkinnedMesh';
+ this.bindMode = 'attached';
+ this.bindMatrix = new Matrix4();
+ this.bindMatrixInverse = new Matrix4();
+ }
+
+ SkinnedMesh.prototype = Object.assign(Object.create(Mesh.prototype), {
+ constructor: SkinnedMesh,
+ isSkinnedMesh: true,
+ copy: function copy(source) {
+ Mesh.prototype.copy.call(this, source);
+ this.bindMode = source.bindMode;
+ this.bindMatrix.copy(source.bindMatrix);
+ this.bindMatrixInverse.copy(source.bindMatrixInverse);
+ this.skeleton = source.skeleton;
+ return this;
+ },
+ bind: function bind(skeleton, bindMatrix) {
+ this.skeleton = skeleton;
+
+ if (bindMatrix === undefined) {
+ this.updateMatrixWorld(true);
+ this.skeleton.calculateInverses();
+ bindMatrix = this.matrixWorld;
+ }
+
+ this.bindMatrix.copy(bindMatrix);
+ this.bindMatrixInverse.copy(bindMatrix).invert();
+ },
+ pose: function pose() {
+ this.skeleton.pose();
+ },
+ normalizeSkinWeights: function normalizeSkinWeights() {
+ var vector = new Vector4();
+ var skinWeight = this.geometry.attributes.skinWeight;
+
+ for (var i = 0, l = skinWeight.count; i < l; i++) {
+ vector.x = skinWeight.getX(i);
+ vector.y = skinWeight.getY(i);
+ vector.z = skinWeight.getZ(i);
+ vector.w = skinWeight.getW(i);
+ var scale = 1.0 / vector.manhattanLength();
+
+ if (scale !== Infinity) {
+ vector.multiplyScalar(scale);
+ } else {
+ vector.set(1, 0, 0, 0); // do something reasonable
+ }
+
+ skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);
+ }
+ },
+ updateMatrixWorld: function updateMatrixWorld(force) {
+ Mesh.prototype.updateMatrixWorld.call(this, force);
+
+ if (this.bindMode === 'attached') {
+ this.bindMatrixInverse.copy(this.matrixWorld).invert();
+ } else if (this.bindMode === 'detached') {
+ this.bindMatrixInverse.copy(this.bindMatrix).invert();
+ } else {
+ console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);
+ }
+ },
+ boneTransform: function boneTransform(index, target) {
+ var skeleton = this.skeleton;
+ var geometry = this.geometry;
+
+ _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);
+
+ _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);
+
+ _basePosition.fromBufferAttribute(geometry.attributes.position, index).applyMatrix4(this.bindMatrix);
+
+ target.set(0, 0, 0);
+
+ for (var i = 0; i < 4; i++) {
+ var weight = _skinWeight.getComponent(i);
+
+ if (weight !== 0) {
+ var boneIndex = _skinIndex.getComponent(i);
+
+ _matrix$1.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);
+
+ target.addScaledVector(_vector$7.copy(_basePosition).applyMatrix4(_matrix$1), weight);
+ }
+ }
+
+ return target.applyMatrix4(this.bindMatrixInverse);
+ }
+ });
+
+ function Bone() {
+ Object3D.call(this);
+ this.type = 'Bone';
+ }
+
+ Bone.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Bone,
+ isBone: true
+ });
+
+ var _offsetMatrix = new Matrix4();
+
+ var _identityMatrix = new Matrix4();
+
+ function Skeleton(bones, boneInverses) {
+ if (bones === void 0) {
+ bones = [];
+ }
+
+ if (boneInverses === void 0) {
+ boneInverses = [];
+ }
+
+ this.uuid = MathUtils.generateUUID();
+ this.bones = bones.slice(0);
+ this.boneInverses = boneInverses;
+ this.boneMatrices = null;
+ this.boneTexture = null;
+ this.boneTextureSize = 0;
+ this.frame = -1;
+ this.init();
+ }
+
+ Object.assign(Skeleton.prototype, {
+ init: function init() {
+ var bones = this.bones;
+ var boneInverses = this.boneInverses;
+ this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary
+
+ if (boneInverses.length === 0) {
+ this.calculateInverses();
+ } else {
+ // handle special case
+ if (bones.length !== boneInverses.length) {
+ console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');
+ this.boneInverses = [];
+
+ for (var i = 0, il = this.bones.length; i < il; i++) {
+ this.boneInverses.push(new Matrix4());
+ }
+ }
+ }
+ },
+ calculateInverses: function calculateInverses() {
+ this.boneInverses.length = 0;
+
+ for (var i = 0, il = this.bones.length; i < il; i++) {
+ var inverse = new Matrix4();
+
+ if (this.bones[i]) {
+ inverse.copy(this.bones[i].matrixWorld).invert();
+ }
+
+ this.boneInverses.push(inverse);
+ }
+ },
+ pose: function pose() {
+ // recover the bind-time world matrices
+ for (var i = 0, il = this.bones.length; i < il; i++) {
+ var bone = this.bones[i];
+
+ if (bone) {
+ bone.matrixWorld.copy(this.boneInverses[i]).invert();
+ }
+ } // compute the local matrices, positions, rotations and scales
+
+
+ for (var _i = 0, _il = this.bones.length; _i < _il; _i++) {
+ var _bone = this.bones[_i];
+
+ if (_bone) {
+ if (_bone.parent && _bone.parent.isBone) {
+ _bone.matrix.copy(_bone.parent.matrixWorld).invert();
+
+ _bone.matrix.multiply(_bone.matrixWorld);
+ } else {
+ _bone.matrix.copy(_bone.matrixWorld);
+ }
+
+ _bone.matrix.decompose(_bone.position, _bone.quaternion, _bone.scale);
+ }
+ }
+ },
+ update: function update() {
+ var bones = this.bones;
+ var boneInverses = this.boneInverses;
+ var boneMatrices = this.boneMatrices;
+ var boneTexture = this.boneTexture; // flatten bone matrices to array
+
+ for (var i = 0, il = bones.length; i < il; i++) {
+ // compute the offset between the current and the original transform
+ var matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;
+
+ _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);
+
+ _offsetMatrix.toArray(boneMatrices, i * 16);
+ }
+
+ if (boneTexture !== null) {
+ boneTexture.needsUpdate = true;
+ }
+ },
+ clone: function clone() {
+ return new Skeleton(this.bones, this.boneInverses);
+ },
+ getBoneByName: function getBoneByName(name) {
+ for (var i = 0, il = this.bones.length; i < il; i++) {
+ var bone = this.bones[i];
+
+ if (bone.name === name) {
+ return bone;
+ }
+ }
+
+ return undefined;
+ },
+ dispose: function dispose() {
+ if (this.boneTexture !== null) {
+ this.boneTexture.dispose();
+ this.boneTexture = null;
+ }
+ },
+ fromJSON: function fromJSON(json, bones) {
+ this.uuid = json.uuid;
+
+ for (var i = 0, l = json.bones.length; i < l; i++) {
+ var uuid = json.bones[i];
+ var bone = bones[uuid];
+
+ if (bone === undefined) {
+ console.warn('THREE.Skeleton: No bone found with UUID:', uuid);
+ bone = new Bone();
+ }
+
+ this.bones.push(bone);
+ this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));
+ }
+
+ this.init();
+ return this;
+ },
+ toJSON: function toJSON() {
+ var data = {
+ metadata: {
+ version: 4.5,
+ type: 'Skeleton',
+ generator: 'Skeleton.toJSON'
+ },
+ bones: [],
+ boneInverses: []
+ };
+ data.uuid = this.uuid;
+ var bones = this.bones;
+ var boneInverses = this.boneInverses;
+
+ for (var i = 0, l = bones.length; i < l; i++) {
+ var bone = bones[i];
+ data.bones.push(bone.uuid);
+ var boneInverse = boneInverses[i];
+ data.boneInverses.push(boneInverse.toArray());
+ }
+
+ return data;
+ }
+ });
+
+ var _instanceLocalMatrix = new Matrix4();
+
+ var _instanceWorldMatrix = new Matrix4();
+
+ var _instanceIntersects = [];
+
+ var _mesh = new Mesh();
+
+ function InstancedMesh(geometry, material, count) {
+ Mesh.call(this, geometry, material);
+ this.instanceMatrix = new BufferAttribute(new Float32Array(count * 16), 16);
+ this.instanceColor = null;
+ this.count = count;
+ this.frustumCulled = false;
+ }
+
+ InstancedMesh.prototype = Object.assign(Object.create(Mesh.prototype), {
+ constructor: InstancedMesh,
+ isInstancedMesh: true,
+ copy: function copy(source) {
+ Mesh.prototype.copy.call(this, source);
+ this.instanceMatrix.copy(source.instanceMatrix);
+ if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();
+ this.count = source.count;
+ return this;
+ },
+ getColorAt: function getColorAt(index, color) {
+ color.fromArray(this.instanceColor.array, index * 3);
+ },
+ getMatrixAt: function getMatrixAt(index, matrix) {
+ matrix.fromArray(this.instanceMatrix.array, index * 16);
+ },
+ raycast: function raycast(raycaster, intersects) {
+ var matrixWorld = this.matrixWorld;
+ var raycastTimes = this.count;
+ _mesh.geometry = this.geometry;
+ _mesh.material = this.material;
+ if (_mesh.material === undefined) return;
+
+ for (var instanceId = 0; instanceId < raycastTimes; instanceId++) {
+ // calculate the world matrix for each instance
+ this.getMatrixAt(instanceId, _instanceLocalMatrix);
+
+ _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance
+
+
+ _mesh.matrixWorld = _instanceWorldMatrix;
+
+ _mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast
+
+
+ for (var i = 0, l = _instanceIntersects.length; i < l; i++) {
+ var intersect = _instanceIntersects[i];
+ intersect.instanceId = instanceId;
+ intersect.object = this;
+ intersects.push(intersect);
+ }
+
+ _instanceIntersects.length = 0;
+ }
+ },
+ setColorAt: function setColorAt(index, color) {
+ if (this.instanceColor === null) {
+ this.instanceColor = new BufferAttribute(new Float32Array(this.count * 3), 3);
+ }
+
+ color.toArray(this.instanceColor.array, index * 3);
+ },
+ setMatrixAt: function setMatrixAt(index, matrix) {
+ matrix.toArray(this.instanceMatrix.array, index * 16);
+ },
+ updateMorphTargets: function updateMorphTargets() {},
+ dispose: function dispose() {
+ this.dispatchEvent({
+ type: 'dispose'
+ });
+ }
+ });
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * linewidth: <float>,
+ * linecap: "round",
+ * linejoin: "round"
+ * }
+ */
+
+ function LineBasicMaterial(parameters) {
+ Material.call(this);
+ this.type = 'LineBasicMaterial';
+ this.color = new Color(0xffffff);
+ this.linewidth = 1;
+ this.linecap = 'round';
+ this.linejoin = 'round';
+ this.morphTargets = false;
+ this.setValues(parameters);
+ }
+
+ LineBasicMaterial.prototype = Object.create(Material.prototype);
+ LineBasicMaterial.prototype.constructor = LineBasicMaterial;
+ LineBasicMaterial.prototype.isLineBasicMaterial = true;
+
+ LineBasicMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.linewidth = source.linewidth;
+ this.linecap = source.linecap;
+ this.linejoin = source.linejoin;
+ this.morphTargets = source.morphTargets;
+ return this;
+ };
+
+ var _start = new Vector3();
+
+ var _end = new Vector3();
+
+ var _inverseMatrix$1 = new Matrix4();
+
+ var _ray$1 = new Ray();
+
+ var _sphere$2 = new Sphere();
+
+ function Line(geometry, material) {
+ if (geometry === void 0) {
+ geometry = new BufferGeometry();
+ }
+
+ if (material === void 0) {
+ material = new LineBasicMaterial();
+ }
+
+ Object3D.call(this);
+ this.type = 'Line';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
+
+ Line.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Line,
+ isLine: true,
+ copy: function copy(source) {
+ Object3D.prototype.copy.call(this, source);
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ },
+ computeLineDistances: function computeLineDistances() {
+ var geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ // we assume non-indexed geometry
+ if (geometry.index === null) {
+ var positionAttribute = geometry.attributes.position;
+ var lineDistances = [0];
+
+ for (var i = 1, l = positionAttribute.count; i < l; i++) {
+ _start.fromBufferAttribute(positionAttribute, i - 1);
+
+ _end.fromBufferAttribute(positionAttribute, i);
+
+ lineDistances[i] = lineDistances[i - 1];
+ lineDistances[i] += _start.distanceTo(_end);
+ }
+
+ geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
+ } else {
+ console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+
+ return this;
+ },
+ raycast: function raycast(raycaster, intersects) {
+ var geometry = this.geometry;
+ var matrixWorld = this.matrixWorld;
+ var threshold = raycaster.params.Line.threshold; // Checking boundingSphere distance to ray
+
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+
+ _sphere$2.copy(geometry.boundingSphere);
+
+ _sphere$2.applyMatrix4(matrixWorld);
+
+ _sphere$2.radius += threshold;
+ if (raycaster.ray.intersectsSphere(_sphere$2) === false) return; //
+
+ _inverseMatrix$1.copy(matrixWorld).invert();
+
+ _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);
+
+ var localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
+ var localThresholdSq = localThreshold * localThreshold;
+ var vStart = new Vector3();
+ var vEnd = new Vector3();
+ var interSegment = new Vector3();
+ var interRay = new Vector3();
+ var step = this.isLineSegments ? 2 : 1;
+
+ if (geometry.isBufferGeometry) {
+ var index = geometry.index;
+ var attributes = geometry.attributes;
+ var positionAttribute = attributes.position;
+
+ if (index !== null) {
+ var indices = index.array;
+
+ for (var i = 0, l = indices.length - 1; i < l; i += step) {
+ var a = indices[i];
+ var b = indices[i + 1];
+ vStart.fromBufferAttribute(positionAttribute, a);
+ vEnd.fromBufferAttribute(positionAttribute, b);
+
+ var distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
+
+ if (distSq > localThresholdSq) continue;
+ interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
+
+ var distance = raycaster.ray.origin.distanceTo(interRay);
+ if (distance < raycaster.near || distance > raycaster.far) continue;
+ intersects.push({
+ distance: distance,
+ // What do we want? intersection point on the ray or on the segment??
+ // point: raycaster.ray.at( distance ),
+ point: interSegment.clone().applyMatrix4(this.matrixWorld),
+ index: i,
+ face: null,
+ faceIndex: null,
+ object: this
+ });
+ }
+ } else {
+ for (var _i = 0, _l = positionAttribute.count - 1; _i < _l; _i += step) {
+ vStart.fromBufferAttribute(positionAttribute, _i);
+ vEnd.fromBufferAttribute(positionAttribute, _i + 1);
+
+ var _distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
+
+ if (_distSq > localThresholdSq) continue;
+ interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
+
+ var _distance = raycaster.ray.origin.distanceTo(interRay);
+
+ if (_distance < raycaster.near || _distance > raycaster.far) continue;
+ intersects.push({
+ distance: _distance,
+ // What do we want? intersection point on the ray or on the segment??
+ // point: raycaster.ray.at( distance ),
+ point: interSegment.clone().applyMatrix4(this.matrixWorld),
+ index: _i,
+ face: null,
+ faceIndex: null,
+ object: this
+ });
+ }
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ },
+ updateMorphTargets: function updateMorphTargets() {
+ var geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ var morphAttributes = geometry.morphAttributes;
+ var keys = Object.keys(morphAttributes);
+
+ if (keys.length > 0) {
+ var morphAttribute = morphAttributes[keys[0]];
+
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
+
+ for (var m = 0, ml = morphAttribute.length; m < ml; m++) {
+ var name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
+ }
+ } else {
+ var morphTargets = geometry.morphTargets;
+
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
+ }
+ });
+
+ var _start$1 = new Vector3();
+
+ var _end$1 = new Vector3();
+
+ function LineSegments(geometry, material) {
+ Line.call(this, geometry, material);
+ this.type = 'LineSegments';
+ }
+
+ LineSegments.prototype = Object.assign(Object.create(Line.prototype), {
+ constructor: LineSegments,
+ isLineSegments: true,
+ computeLineDistances: function computeLineDistances() {
+ var geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ // we assume non-indexed geometry
+ if (geometry.index === null) {
+ var positionAttribute = geometry.attributes.position;
+ var lineDistances = [];
+
+ for (var i = 0, l = positionAttribute.count; i < l; i += 2) {
+ _start$1.fromBufferAttribute(positionAttribute, i);
+
+ _end$1.fromBufferAttribute(positionAttribute, i + 1);
+
+ lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];
+ lineDistances[i + 1] = lineDistances[i] + _start$1.distanceTo(_end$1);
+ }
+
+ geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
+ } else {
+ console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
+ }
+ } else if (geometry.isGeometry) {
+ console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+
+ return this;
+ }
+ });
+
+ function LineLoop(geometry, material) {
+ Line.call(this, geometry, material);
+ this.type = 'LineLoop';
+ }
+
+ LineLoop.prototype = Object.assign(Object.create(Line.prototype), {
+ constructor: LineLoop,
+ isLineLoop: true
+ });
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ * map: new THREE.Texture( <Image> ),
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * size: <float>,
+ * sizeAttenuation: <bool>
+ *
+ * morphTargets: <bool>
+ * }
+ */
+
+ function PointsMaterial(parameters) {
+ Material.call(this);
+ this.type = 'PointsMaterial';
+ this.color = new Color(0xffffff);
+ this.map = null;
+ this.alphaMap = null;
+ this.size = 1;
+ this.sizeAttenuation = true;
+ this.morphTargets = false;
+ this.setValues(parameters);
+ }
+
+ PointsMaterial.prototype = Object.create(Material.prototype);
+ PointsMaterial.prototype.constructor = PointsMaterial;
+ PointsMaterial.prototype.isPointsMaterial = true;
+
+ PointsMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.alphaMap = source.alphaMap;
+ this.size = source.size;
+ this.sizeAttenuation = source.sizeAttenuation;
+ this.morphTargets = source.morphTargets;
+ return this;
+ };
+
+ var _inverseMatrix$2 = new Matrix4();
+
+ var _ray$2 = new Ray();
+
+ var _sphere$3 = new Sphere();
+
+ var _position$1 = new Vector3();
+
+ function Points(geometry, material) {
+ if (geometry === void 0) {
+ geometry = new BufferGeometry();
+ }
+
+ if (material === void 0) {
+ material = new PointsMaterial();
+ }
+
+ Object3D.call(this);
+ this.type = 'Points';
+ this.geometry = geometry;
+ this.material = material;
+ this.updateMorphTargets();
+ }
+
+ Points.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Points,
+ isPoints: true,
+ copy: function copy(source) {
+ Object3D.prototype.copy.call(this, source);
+ this.material = source.material;
+ this.geometry = source.geometry;
+ return this;
+ },
+ raycast: function raycast(raycaster, intersects) {
+ var geometry = this.geometry;
+ var matrixWorld = this.matrixWorld;
+ var threshold = raycaster.params.Points.threshold; // Checking boundingSphere distance to ray
+
+ if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
+
+ _sphere$3.copy(geometry.boundingSphere);
+
+ _sphere$3.applyMatrix4(matrixWorld);
+
+ _sphere$3.radius += threshold;
+ if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
+
+ _inverseMatrix$2.copy(matrixWorld).invert();
+
+ _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2);
+
+ var localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
+ var localThresholdSq = localThreshold * localThreshold;
+
+ if (geometry.isBufferGeometry) {
+ var index = geometry.index;
+ var attributes = geometry.attributes;
+ var positionAttribute = attributes.position;
+
+ if (index !== null) {
+ var indices = index.array;
+
+ for (var i = 0, il = indices.length; i < il; i++) {
+ var a = indices[i];
+
+ _position$1.fromBufferAttribute(positionAttribute, a);
+
+ testPoint(_position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this);
+ }
+ } else {
+ for (var _i = 0, l = positionAttribute.count; _i < l; _i++) {
+ _position$1.fromBufferAttribute(positionAttribute, _i);
+
+ testPoint(_position$1, _i, localThresholdSq, matrixWorld, raycaster, intersects, this);
+ }
+ }
+ } else {
+ console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ },
+ updateMorphTargets: function updateMorphTargets() {
+ var geometry = this.geometry;
+
+ if (geometry.isBufferGeometry) {
+ var morphAttributes = geometry.morphAttributes;
+ var keys = Object.keys(morphAttributes);
+
+ if (keys.length > 0) {
+ var morphAttribute = morphAttributes[keys[0]];
+
+ if (morphAttribute !== undefined) {
+ this.morphTargetInfluences = [];
+ this.morphTargetDictionary = {};
+
+ for (var m = 0, ml = morphAttribute.length; m < ml; m++) {
+ var name = morphAttribute[m].name || String(m);
+ this.morphTargetInfluences.push(0);
+ this.morphTargetDictionary[name] = m;
+ }
+ }
+ }
+ } else {
+ var morphTargets = geometry.morphTargets;
+
+ if (morphTargets !== undefined && morphTargets.length > 0) {
+ console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
+ }
+ }
+ }
+ });
+
+ function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {
+ var rayPointDistanceSq = _ray$2.distanceSqToPoint(point);
+
+ if (rayPointDistanceSq < localThresholdSq) {
+ var intersectPoint = new Vector3();
+
+ _ray$2.closestPointToPoint(point, intersectPoint);
+
+ intersectPoint.applyMatrix4(matrixWorld);
+ var distance = raycaster.ray.origin.distanceTo(intersectPoint);
+ if (distance < raycaster.near || distance > raycaster.far) return;
+ intersects.push({
+ distance: distance,
+ distanceToRay: Math.sqrt(rayPointDistanceSq),
+ point: intersectPoint,
+ index: index,
+ face: null,
+ object: object
+ });
+ }
+ }
+
+ function VideoTexture(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
+ Texture.call(this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
+ this.format = format !== undefined ? format : RGBFormat;
+ this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
+ this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
+ this.generateMipmaps = false;
+ var scope = this;
+
+ function updateVideo() {
+ scope.needsUpdate = true;
+ video.requestVideoFrameCallback(updateVideo);
+ }
+
+ if ('requestVideoFrameCallback' in video) {
+ video.requestVideoFrameCallback(updateVideo);
+ }
+ }
+
+ VideoTexture.prototype = Object.assign(Object.create(Texture.prototype), {
+ constructor: VideoTexture,
+ clone: function clone() {
+ return new this.constructor(this.image).copy(this);
+ },
+ isVideoTexture: true,
+ update: function update() {
+ var video = this.image;
+ var hasVideoFrameCallback = ('requestVideoFrameCallback' in video);
+
+ if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {
+ this.needsUpdate = true;
+ }
+ }
+ });
+
+ function CompressedTexture(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
+ Texture.call(this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
+ this.image = {
+ width: width,
+ height: height
+ };
+ this.mipmaps = mipmaps; // no flipping for cube textures
+ // (also flipping doesn't work for compressed textures )
+
+ this.flipY = false; // can't generate mipmaps for compressed textures
+ // mips must be embedded in DDS files
+
+ this.generateMipmaps = false;
+ }
+
+ CompressedTexture.prototype = Object.create(Texture.prototype);
+ CompressedTexture.prototype.constructor = CompressedTexture;
+ CompressedTexture.prototype.isCompressedTexture = true;
+
+ function CanvasTexture(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
+ Texture.call(this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
+ this.needsUpdate = true;
+ }
+
+ CanvasTexture.prototype = Object.create(Texture.prototype);
+ CanvasTexture.prototype.constructor = CanvasTexture;
+ CanvasTexture.prototype.isCanvasTexture = true;
+
+ function DepthTexture(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {
+ format = format !== undefined ? format : DepthFormat;
+
+ if (format !== DepthFormat && format !== DepthStencilFormat) {
+ throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');
+ }
+
+ if (type === undefined && format === DepthFormat) type = UnsignedShortType;
+ if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;
+ Texture.call(this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
+ this.image = {
+ width: width,
+ height: height
+ };
+ this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
+ this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
+ this.flipY = false;
+ this.generateMipmaps = false;
+ }
+
+ DepthTexture.prototype = Object.create(Texture.prototype);
+ DepthTexture.prototype.constructor = DepthTexture;
+ DepthTexture.prototype.isDepthTexture = true;
+
+ var CircleGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(CircleGeometry, _BufferGeometry);
+
+ function CircleGeometry(radius, segments, thetaStart, thetaLength) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (segments === void 0) {
+ segments = 8;
+ }
+
+ if (thetaStart === void 0) {
+ thetaStart = 0;
+ }
+
+ if (thetaLength === void 0) {
+ thetaLength = Math.PI * 2;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'CircleGeometry';
+ _this.parameters = {
+ radius: radius,
+ segments: segments,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ segments = Math.max(3, segments); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // helper variables
+
+ var vertex = new Vector3();
+ var uv = new Vector2(); // center point
+
+ vertices.push(0, 0, 0);
+ normals.push(0, 0, 1);
+ uvs.push(0.5, 0.5);
+
+ for (var s = 0, i = 3; s <= segments; s++, i += 3) {
+ var segment = thetaStart + s / segments * thetaLength; // vertex
+
+ vertex.x = radius * Math.cos(segment);
+ vertex.y = radius * Math.sin(segment);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ normals.push(0, 0, 1); // uvs
+
+ uv.x = (vertices[i] / radius + 1) / 2;
+ uv.y = (vertices[i + 1] / radius + 1) / 2;
+ uvs.push(uv.x, uv.y);
+ } // indices
+
+
+ for (var _i = 1; _i <= segments; _i++) {
+ indices.push(_i, _i + 1, 0);
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ return _this;
+ }
+
+ return CircleGeometry;
+ }(BufferGeometry);
+
+ var CylinderGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(CylinderGeometry, _BufferGeometry);
+
+ function CylinderGeometry(radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength) {
+ var _this;
+
+ if (radiusTop === void 0) {
+ radiusTop = 1;
+ }
+
+ if (radiusBottom === void 0) {
+ radiusBottom = 1;
+ }
+
+ if (height === void 0) {
+ height = 1;
+ }
+
+ if (radialSegments === void 0) {
+ radialSegments = 8;
+ }
+
+ if (heightSegments === void 0) {
+ heightSegments = 1;
+ }
+
+ if (openEnded === void 0) {
+ openEnded = false;
+ }
+
+ if (thetaStart === void 0) {
+ thetaStart = 0;
+ }
+
+ if (thetaLength === void 0) {
+ thetaLength = Math.PI * 2;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'CylinderGeometry';
+ _this.parameters = {
+ radiusTop: radiusTop,
+ radiusBottom: radiusBottom,
+ height: height,
+ radialSegments: radialSegments,
+ heightSegments: heightSegments,
+ openEnded: openEnded,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+
+ var scope = _assertThisInitialized(_this);
+
+ radialSegments = Math.floor(radialSegments);
+ heightSegments = Math.floor(heightSegments); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // helper variables
+
+ var index = 0;
+ var indexArray = [];
+ var halfHeight = height / 2;
+ var groupStart = 0; // generate geometry
+
+ generateTorso();
+
+ if (openEnded === false) {
+ if (radiusTop > 0) generateCap(true);
+ if (radiusBottom > 0) generateCap(false);
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ function generateTorso() {
+ var normal = new Vector3();
+ var vertex = new Vector3();
+ var groupCount = 0; // this will be used to calculate the normal
+
+ var slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs
+
+ for (var y = 0; y <= heightSegments; y++) {
+ var indexRow = [];
+ var v = y / heightSegments; // calculate the radius of the current row
+
+ var radius = v * (radiusBottom - radiusTop) + radiusTop;
+
+ for (var x = 0; x <= radialSegments; x++) {
+ var u = x / radialSegments;
+ var theta = u * thetaLength + thetaStart;
+ var sinTheta = Math.sin(theta);
+ var cosTheta = Math.cos(theta); // vertex
+
+ vertex.x = radius * sinTheta;
+ vertex.y = -v * height + halfHeight;
+ vertex.z = radius * cosTheta;
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ normal.set(sinTheta, slope, cosTheta).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(u, 1 - v); // save index of vertex in respective row
+
+ indexRow.push(index++);
+ } // now save vertices of the row in our index array
+
+
+ indexArray.push(indexRow);
+ } // generate indices
+
+
+ for (var _x = 0; _x < radialSegments; _x++) {
+ for (var _y = 0; _y < heightSegments; _y++) {
+ // we use the index array to access the correct indices
+ var a = indexArray[_y][_x];
+ var b = indexArray[_y + 1][_x];
+ var c = indexArray[_y + 1][_x + 1];
+ var d = indexArray[_y][_x + 1]; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d); // update group counter
+
+ groupCount += 6;
+ }
+ } // add a group to the geometry. this will ensure multi material support
+
+
+ scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups
+
+ groupStart += groupCount;
+ }
+
+ function generateCap(top) {
+ // save the index of the first center vertex
+ var centerIndexStart = index;
+ var uv = new Vector2();
+ var vertex = new Vector3();
+ var groupCount = 0;
+ var radius = top === true ? radiusTop : radiusBottom;
+ var sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.
+ // because the geometry needs one set of uvs per face,
+ // we must generate a center vertex per face/segment
+
+ for (var x = 1; x <= radialSegments; x++) {
+ // vertex
+ vertices.push(0, halfHeight * sign, 0); // normal
+
+ normals.push(0, sign, 0); // uv
+
+ uvs.push(0.5, 0.5); // increase index
+
+ index++;
+ } // save the index of the last center vertex
+
+
+ var centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs
+
+ for (var _x2 = 0; _x2 <= radialSegments; _x2++) {
+ var u = _x2 / radialSegments;
+ var theta = u * thetaLength + thetaStart;
+ var cosTheta = Math.cos(theta);
+ var sinTheta = Math.sin(theta); // vertex
+
+ vertex.x = radius * sinTheta;
+ vertex.y = halfHeight * sign;
+ vertex.z = radius * cosTheta;
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ normals.push(0, sign, 0); // uv
+
+ uv.x = cosTheta * 0.5 + 0.5;
+ uv.y = sinTheta * 0.5 * sign + 0.5;
+ uvs.push(uv.x, uv.y); // increase index
+
+ index++;
+ } // generate indices
+
+
+ for (var _x3 = 0; _x3 < radialSegments; _x3++) {
+ var c = centerIndexStart + _x3;
+ var i = centerIndexEnd + _x3;
+
+ if (top === true) {
+ // face top
+ indices.push(i, i + 1, c);
+ } else {
+ // face bottom
+ indices.push(i + 1, i, c);
+ }
+
+ groupCount += 3;
+ } // add a group to the geometry. this will ensure multi material support
+
+
+ scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups
+
+ groupStart += groupCount;
+ }
+
+ return _this;
+ }
+
+ return CylinderGeometry;
+ }(BufferGeometry);
+
+ var ConeGeometry = /*#__PURE__*/function (_CylinderGeometry) {
+ _inheritsLoose(ConeGeometry, _CylinderGeometry);
+
+ function ConeGeometry(radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (height === void 0) {
+ height = 1;
+ }
+
+ if (radialSegments === void 0) {
+ radialSegments = 8;
+ }
+
+ if (heightSegments === void 0) {
+ heightSegments = 1;
+ }
+
+ if (openEnded === void 0) {
+ openEnded = false;
+ }
+
+ if (thetaStart === void 0) {
+ thetaStart = 0;
+ }
+
+ if (thetaLength === void 0) {
+ thetaLength = Math.PI * 2;
+ }
+
+ _this = _CylinderGeometry.call(this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength) || this;
+ _this.type = 'ConeGeometry';
+ _this.parameters = {
+ radius: radius,
+ height: height,
+ radialSegments: radialSegments,
+ heightSegments: heightSegments,
+ openEnded: openEnded,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ return _this;
+ }
+
+ return ConeGeometry;
+ }(CylinderGeometry);
+
+ var PolyhedronGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(PolyhedronGeometry, _BufferGeometry);
+
+ function PolyhedronGeometry(vertices, indices, radius, detail) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (detail === void 0) {
+ detail = 0;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'PolyhedronGeometry';
+ _this.parameters = {
+ vertices: vertices,
+ indices: indices,
+ radius: radius,
+ detail: detail
+ }; // default buffer data
+
+ var vertexBuffer = [];
+ var uvBuffer = []; // the subdivision creates the vertex buffer data
+
+ subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius
+
+ applyRadius(radius); // finally, create the uv data
+
+ generateUVs(); // build non-indexed geometry
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));
+
+ if (detail === 0) {
+ _this.computeVertexNormals(); // flat normals
+
+ } else {
+ _this.normalizeNormals(); // smooth normals
+
+ } // helper functions
+
+
+ function subdivide(detail) {
+ var a = new Vector3();
+ var b = new Vector3();
+ var c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value
+
+ for (var i = 0; i < indices.length; i += 3) {
+ // get the vertices of the face
+ getVertexByIndex(indices[i + 0], a);
+ getVertexByIndex(indices[i + 1], b);
+ getVertexByIndex(indices[i + 2], c); // perform subdivision
+
+ subdivideFace(a, b, c, detail);
+ }
+ }
+
+ function subdivideFace(a, b, c, detail) {
+ var cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision
+
+ var v = []; // construct all of the vertices for this subdivision
+
+ for (var i = 0; i <= cols; i++) {
+ v[i] = [];
+ var aj = a.clone().lerp(c, i / cols);
+ var bj = b.clone().lerp(c, i / cols);
+ var rows = cols - i;
+
+ for (var j = 0; j <= rows; j++) {
+ if (j === 0 && i === cols) {
+ v[i][j] = aj;
+ } else {
+ v[i][j] = aj.clone().lerp(bj, j / rows);
+ }
+ }
+ } // construct all of the faces
+
+
+ for (var _i = 0; _i < cols; _i++) {
+ for (var _j = 0; _j < 2 * (cols - _i) - 1; _j++) {
+ var k = Math.floor(_j / 2);
+
+ if (_j % 2 === 0) {
+ pushVertex(v[_i][k + 1]);
+ pushVertex(v[_i + 1][k]);
+ pushVertex(v[_i][k]);
+ } else {
+ pushVertex(v[_i][k + 1]);
+ pushVertex(v[_i + 1][k + 1]);
+ pushVertex(v[_i + 1][k]);
+ }
+ }
+ }
+ }
+
+ function applyRadius(radius) {
+ var vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex
+
+ for (var i = 0; i < vertexBuffer.length; i += 3) {
+ vertex.x = vertexBuffer[i + 0];
+ vertex.y = vertexBuffer[i + 1];
+ vertex.z = vertexBuffer[i + 2];
+ vertex.normalize().multiplyScalar(radius);
+ vertexBuffer[i + 0] = vertex.x;
+ vertexBuffer[i + 1] = vertex.y;
+ vertexBuffer[i + 2] = vertex.z;
+ }
+ }
+
+ function generateUVs() {
+ var vertex = new Vector3();
+
+ for (var i = 0; i < vertexBuffer.length; i += 3) {
+ vertex.x = vertexBuffer[i + 0];
+ vertex.y = vertexBuffer[i + 1];
+ vertex.z = vertexBuffer[i + 2];
+ var u = azimuth(vertex) / 2 / Math.PI + 0.5;
+ var v = inclination(vertex) / Math.PI + 0.5;
+ uvBuffer.push(u, 1 - v);
+ }
+
+ correctUVs();
+ correctSeam();
+ }
+
+ function correctSeam() {
+ // handle case when face straddles the seam, see #3269
+ for (var i = 0; i < uvBuffer.length; i += 6) {
+ // uv data of a single face
+ var x0 = uvBuffer[i + 0];
+ var x1 = uvBuffer[i + 2];
+ var x2 = uvBuffer[i + 4];
+ var max = Math.max(x0, x1, x2);
+ var min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary
+
+ if (max > 0.9 && min < 0.1) {
+ if (x0 < 0.2) uvBuffer[i + 0] += 1;
+ if (x1 < 0.2) uvBuffer[i + 2] += 1;
+ if (x2 < 0.2) uvBuffer[i + 4] += 1;
+ }
+ }
+ }
+
+ function pushVertex(vertex) {
+ vertexBuffer.push(vertex.x, vertex.y, vertex.z);
+ }
+
+ function getVertexByIndex(index, vertex) {
+ var stride = index * 3;
+ vertex.x = vertices[stride + 0];
+ vertex.y = vertices[stride + 1];
+ vertex.z = vertices[stride + 2];
+ }
+
+ function correctUVs() {
+ var a = new Vector3();
+ var b = new Vector3();
+ var c = new Vector3();
+ var centroid = new Vector3();
+ var uvA = new Vector2();
+ var uvB = new Vector2();
+ var uvC = new Vector2();
+
+ for (var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {
+ a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);
+ b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);
+ c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);
+ uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);
+ uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);
+ uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);
+ centroid.copy(a).add(b).add(c).divideScalar(3);
+ var azi = azimuth(centroid);
+ correctUV(uvA, j + 0, a, azi);
+ correctUV(uvB, j + 2, b, azi);
+ correctUV(uvC, j + 4, c, azi);
+ }
+ }
+
+ function correctUV(uv, stride, vector, azimuth) {
+ if (azimuth < 0 && uv.x === 1) {
+ uvBuffer[stride] = uv.x - 1;
+ }
+
+ if (vector.x === 0 && vector.z === 0) {
+ uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;
+ }
+ } // Angle around the Y axis, counter-clockwise when looking from above.
+
+
+ function azimuth(vector) {
+ return Math.atan2(vector.z, -vector.x);
+ } // Angle above the XZ plane.
+
+
+ function inclination(vector) {
+ return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));
+ }
+
+ return _this;
+ }
+
+ return PolyhedronGeometry;
+ }(BufferGeometry);
+
+ var DodecahedronGeometry = /*#__PURE__*/function (_PolyhedronGeometry) {
+ _inheritsLoose(DodecahedronGeometry, _PolyhedronGeometry);
+
+ function DodecahedronGeometry(radius, detail) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (detail === void 0) {
+ detail = 0;
+ }
+
+ var t = (1 + Math.sqrt(5)) / 2;
+ var r = 1 / t;
+ var vertices = [// (±1, ±1, ±1)
+ -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)
+ 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)
+ -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)
+ -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];
+ var indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];
+ _this = _PolyhedronGeometry.call(this, vertices, indices, radius, detail) || this;
+ _this.type = 'DodecahedronGeometry';
+ _this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ return _this;
+ }
+
+ return DodecahedronGeometry;
+ }(PolyhedronGeometry);
+
+ var _v0$2 = new Vector3();
+
+ var _v1$5 = new Vector3();
+
+ var _normal$1 = new Vector3();
+
+ var _triangle = new Triangle();
+
+ var EdgesGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(EdgesGeometry, _BufferGeometry);
+
+ function EdgesGeometry(geometry, thresholdAngle) {
+ var _this;
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'EdgesGeometry';
+ _this.parameters = {
+ thresholdAngle: thresholdAngle
+ };
+ thresholdAngle = thresholdAngle !== undefined ? thresholdAngle : 1;
+
+ if (geometry.isGeometry === true) {
+ console.error('THREE.EdgesGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ return _assertThisInitialized(_this);
+ }
+
+ var precisionPoints = 4;
+ var precision = Math.pow(10, precisionPoints);
+ var thresholdDot = Math.cos(MathUtils.DEG2RAD * thresholdAngle);
+ var indexAttr = geometry.getIndex();
+ var positionAttr = geometry.getAttribute('position');
+ var indexCount = indexAttr ? indexAttr.count : positionAttr.count;
+ var indexArr = [0, 0, 0];
+ var vertKeys = ['a', 'b', 'c'];
+ var hashes = new Array(3);
+ var edgeData = {};
+ var vertices = [];
+
+ for (var i = 0; i < indexCount; i += 3) {
+ if (indexAttr) {
+ indexArr[0] = indexAttr.getX(i);
+ indexArr[1] = indexAttr.getX(i + 1);
+ indexArr[2] = indexAttr.getX(i + 2);
+ } else {
+ indexArr[0] = i;
+ indexArr[1] = i + 1;
+ indexArr[2] = i + 2;
+ }
+
+ var a = _triangle.a,
+ b = _triangle.b,
+ c = _triangle.c;
+ a.fromBufferAttribute(positionAttr, indexArr[0]);
+ b.fromBufferAttribute(positionAttr, indexArr[1]);
+ c.fromBufferAttribute(positionAttr, indexArr[2]);
+
+ _triangle.getNormal(_normal$1); // create hashes for the edge from the vertices
+
+
+ hashes[0] = Math.round(a.x * precision) + "," + Math.round(a.y * precision) + "," + Math.round(a.z * precision);
+ hashes[1] = Math.round(b.x * precision) + "," + Math.round(b.y * precision) + "," + Math.round(b.z * precision);
+ hashes[2] = Math.round(c.x * precision) + "," + Math.round(c.y * precision) + "," + Math.round(c.z * precision); // skip degenerate triangles
+
+ if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {
+ continue;
+ } // iterate over every edge
+
+
+ for (var j = 0; j < 3; j++) {
+ // get the first and next vertex making up the edge
+ var jNext = (j + 1) % 3;
+ var vecHash0 = hashes[j];
+ var vecHash1 = hashes[jNext];
+ var v0 = _triangle[vertKeys[j]];
+ var v1 = _triangle[vertKeys[jNext]];
+ var hash = vecHash0 + "_" + vecHash1;
+ var reverseHash = vecHash1 + "_" + vecHash0;
+
+ if (reverseHash in edgeData && edgeData[reverseHash]) {
+ // if we found a sibling edge add it into the vertex array if
+ // it meets the angle threshold and delete the edge from the map.
+ if (_normal$1.dot(edgeData[reverseHash].normal) <= thresholdDot) {
+ vertices.push(v0.x, v0.y, v0.z);
+ vertices.push(v1.x, v1.y, v1.z);
+ }
+
+ edgeData[reverseHash] = null;
+ } else if (!(hash in edgeData)) {
+ // if we've already got an edge here then skip adding a new one
+ edgeData[hash] = {
+ index0: indexArr[j],
+ index1: indexArr[jNext],
+ normal: _normal$1.clone()
+ };
+ }
+ }
+ } // iterate over all remaining, unmatched edges and add them to the vertex array
+
+
+ for (var key in edgeData) {
+ if (edgeData[key]) {
+ var _edgeData$key = edgeData[key],
+ index0 = _edgeData$key.index0,
+ index1 = _edgeData$key.index1;
+
+ _v0$2.fromBufferAttribute(positionAttr, index0);
+
+ _v1$5.fromBufferAttribute(positionAttr, index1);
+
+ vertices.push(_v0$2.x, _v0$2.y, _v0$2.z);
+ vertices.push(_v1$5.x, _v1$5.y, _v1$5.z);
+ }
+ }
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ return _this;
+ }
+
+ return EdgesGeometry;
+ }(BufferGeometry);
+
+ /**
+ * Port from https://github.com/mapbox/earcut (v2.2.2)
+ */
+ var Earcut = {
+ triangulate: function triangulate(data, holeIndices, dim) {
+ dim = dim || 2;
+ var hasHoles = holeIndices && holeIndices.length;
+ var outerLen = hasHoles ? holeIndices[0] * dim : data.length;
+ var outerNode = linkedList(data, 0, outerLen, dim, true);
+ var triangles = [];
+ if (!outerNode || outerNode.next === outerNode.prev) return triangles;
+ var minX, minY, maxX, maxY, x, y, invSize;
+ if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
+
+ if (data.length > 80 * dim) {
+ minX = maxX = data[0];
+ minY = maxY = data[1];
+
+ for (var i = dim; i < outerLen; i += dim) {
+ x = data[i];
+ y = data[i + 1];
+ if (x < minX) minX = x;
+ if (y < minY) minY = y;
+ if (x > maxX) maxX = x;
+ if (y > maxY) maxY = y;
+ } // minX, minY and invSize are later used to transform coords into integers for z-order calculation
+
+
+ invSize = Math.max(maxX - minX, maxY - minY);
+ invSize = invSize !== 0 ? 1 / invSize : 0;
+ }
+
+ earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
+ return triangles;
+ }
+ }; // create a circular doubly linked list from polygon points in the specified winding order
+
+ function linkedList(data, start, end, dim, clockwise) {
+ var i, last;
+
+ if (clockwise === signedArea(data, start, end, dim) > 0) {
+ for (i = start; i < end; i += dim) {
+ last = insertNode(i, data[i], data[i + 1], last);
+ }
+ } else {
+ for (i = end - dim; i >= start; i -= dim) {
+ last = insertNode(i, data[i], data[i + 1], last);
+ }
+ }
+
+ if (last && equals(last, last.next)) {
+ removeNode(last);
+ last = last.next;
+ }
+
+ return last;
+ } // eliminate colinear or duplicate points
+
+
+ function filterPoints(start, end) {
+ if (!start) return start;
+ if (!end) end = start;
+ var p = start,
+ again;
+
+ do {
+ again = false;
+
+ if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
+ removeNode(p);
+ p = end = p.prev;
+ if (p === p.next) break;
+ again = true;
+ } else {
+ p = p.next;
+ }
+ } while (again || p !== end);
+
+ return end;
+ } // main ear slicing loop which triangulates a polygon (given as a linked list)
+
+
+ function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
+ if (!ear) return; // interlink polygon nodes in z-order
+
+ if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
+ var stop = ear,
+ prev,
+ next; // iterate through ears, slicing them one by one
+
+ while (ear.prev !== ear.next) {
+ prev = ear.prev;
+ next = ear.next;
+
+ if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
+ // cut off the triangle
+ triangles.push(prev.i / dim);
+ triangles.push(ear.i / dim);
+ triangles.push(next.i / dim);
+ removeNode(ear); // skipping the next vertex leads to less sliver triangles
+
+ ear = next.next;
+ stop = next.next;
+ continue;
+ }
+
+ ear = next; // if we looped through the whole remaining polygon and can't find any more ears
+
+ if (ear === stop) {
+ // try filtering points and slicing again
+ if (!pass) {
+ earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally
+ } else if (pass === 1) {
+ ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
+ earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two
+ } else if (pass === 2) {
+ splitEarcut(ear, triangles, dim, minX, minY, invSize);
+ }
+
+ break;
+ }
+ }
+ } // check whether a polygon node forms a valid ear with adjacent nodes
+
+
+ function isEar(ear) {
+ var a = ear.prev,
+ b = ear,
+ c = ear.next;
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+ // now make sure we don't have other points inside the potential ear
+
+ var p = ear.next.next;
+
+ while (p !== ear.prev) {
+ if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
+ p = p.next;
+ }
+
+ return true;
+ }
+
+ function isEarHashed(ear, minX, minY, invSize) {
+ var a = ear.prev,
+ b = ear,
+ c = ear.next;
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+ // triangle bbox; min & max are calculated like this for speed
+
+ var minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,
+ minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y,
+ maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x,
+ maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox;
+
+ var minZ = zOrder(minTX, minTY, minX, minY, invSize),
+ maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
+ var p = ear.prevZ,
+ n = ear.nextZ; // look for points inside the triangle in both directions
+
+ while (p && p.z >= minZ && n && n.z <= maxZ) {
+ if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
+ p = p.prevZ;
+ if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
+ n = n.nextZ;
+ } // look for remaining points in decreasing z-order
+
+
+ while (p && p.z >= minZ) {
+ if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
+ p = p.prevZ;
+ } // look for remaining points in increasing z-order
+
+
+ while (n && n.z <= maxZ) {
+ if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
+ n = n.nextZ;
+ }
+
+ return true;
+ } // go through all polygon nodes and cure small local self-intersections
+
+
+ function cureLocalIntersections(start, triangles, dim) {
+ var p = start;
+
+ do {
+ var a = p.prev,
+ b = p.next.next;
+
+ if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
+ triangles.push(a.i / dim);
+ triangles.push(p.i / dim);
+ triangles.push(b.i / dim); // remove two nodes involved
+
+ removeNode(p);
+ removeNode(p.next);
+ p = start = b;
+ }
+
+ p = p.next;
+ } while (p !== start);
+
+ return filterPoints(p);
+ } // try splitting polygon into two and triangulate them independently
+
+
+ function splitEarcut(start, triangles, dim, minX, minY, invSize) {
+ // look for a valid diagonal that divides the polygon into two
+ var a = start;
+
+ do {
+ var b = a.next.next;
+
+ while (b !== a.prev) {
+ if (a.i !== b.i && isValidDiagonal(a, b)) {
+ // split the polygon in two by the diagonal
+ var c = splitPolygon(a, b); // filter colinear points around the cuts
+
+ a = filterPoints(a, a.next);
+ c = filterPoints(c, c.next); // run earcut on each half
+
+ earcutLinked(a, triangles, dim, minX, minY, invSize);
+ earcutLinked(c, triangles, dim, minX, minY, invSize);
+ return;
+ }
+
+ b = b.next;
+ }
+
+ a = a.next;
+ } while (a !== start);
+ } // link every hole into the outer loop, producing a single-ring polygon without holes
+
+
+ function eliminateHoles(data, holeIndices, outerNode, dim) {
+ var queue = [];
+ var i, len, start, end, list;
+
+ for (i = 0, len = holeIndices.length; i < len; i++) {
+ start = holeIndices[i] * dim;
+ end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
+ list = linkedList(data, start, end, dim, false);
+ if (list === list.next) list.steiner = true;
+ queue.push(getLeftmost(list));
+ }
+
+ queue.sort(compareX); // process holes from left to right
+
+ for (i = 0; i < queue.length; i++) {
+ eliminateHole(queue[i], outerNode);
+ outerNode = filterPoints(outerNode, outerNode.next);
+ }
+
+ return outerNode;
+ }
+
+ function compareX(a, b) {
+ return a.x - b.x;
+ } // find a bridge between vertices that connects hole with an outer ring and and link it
+
+
+ function eliminateHole(hole, outerNode) {
+ outerNode = findHoleBridge(hole, outerNode);
+
+ if (outerNode) {
+ var b = splitPolygon(outerNode, hole); // filter collinear points around the cuts
+
+ filterPoints(outerNode, outerNode.next);
+ filterPoints(b, b.next);
+ }
+ } // David Eberly's algorithm for finding a bridge between hole and outer polygon
+
+
+ function findHoleBridge(hole, outerNode) {
+ var p = outerNode;
+ var hx = hole.x;
+ var hy = hole.y;
+ var qx = -Infinity,
+ m; // find a segment intersected by a ray from the hole's leftmost point to the left;
+ // segment's endpoint with lesser x will be potential connection point
+
+ do {
+ if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
+ var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
+
+ if (x <= hx && x > qx) {
+ qx = x;
+
+ if (x === hx) {
+ if (hy === p.y) return p;
+ if (hy === p.next.y) return p.next;
+ }
+
+ m = p.x < p.next.x ? p : p.next;
+ }
+ }
+
+ p = p.next;
+ } while (p !== outerNode);
+
+ if (!m) return null;
+ if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
+ // look for points inside the triangle of hole point, segment intersection and endpoint;
+ // if there are no points found, we have a valid connection;
+ // otherwise choose the point of the minimum angle with the ray as connection point
+
+ var stop = m,
+ mx = m.x,
+ my = m.y;
+ var tanMin = Infinity,
+ tan;
+ p = m;
+
+ do {
+ if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
+ tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
+
+ if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {
+ m = p;
+ tanMin = tan;
+ }
+ }
+
+ p = p.next;
+ } while (p !== stop);
+
+ return m;
+ } // whether sector in vertex m contains sector in vertex p in the same coordinates
+
+
+ function sectorContainsSector(m, p) {
+ return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
+ } // interlink polygon nodes in z-order
+
+
+ function indexCurve(start, minX, minY, invSize) {
+ var p = start;
+
+ do {
+ if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
+ p.prevZ = p.prev;
+ p.nextZ = p.next;
+ p = p.next;
+ } while (p !== start);
+
+ p.prevZ.nextZ = null;
+ p.prevZ = null;
+ sortLinked(p);
+ } // Simon Tatham's linked list merge sort algorithm
+ // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+
+
+ function sortLinked(list) {
+ var i,
+ p,
+ q,
+ e,
+ tail,
+ numMerges,
+ pSize,
+ qSize,
+ inSize = 1;
+
+ do {
+ p = list;
+ list = null;
+ tail = null;
+ numMerges = 0;
+
+ while (p) {
+ numMerges++;
+ q = p;
+ pSize = 0;
+
+ for (i = 0; i < inSize; i++) {
+ pSize++;
+ q = q.nextZ;
+ if (!q) break;
+ }
+
+ qSize = inSize;
+
+ while (pSize > 0 || qSize > 0 && q) {
+ if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
+ e = p;
+ p = p.nextZ;
+ pSize--;
+ } else {
+ e = q;
+ q = q.nextZ;
+ qSize--;
+ }
+
+ if (tail) tail.nextZ = e;else list = e;
+ e.prevZ = tail;
+ tail = e;
+ }
+
+ p = q;
+ }
+
+ tail.nextZ = null;
+ inSize *= 2;
+ } while (numMerges > 1);
+
+ return list;
+ } // z-order of a point given coords and inverse of the longer side of data bbox
+
+
+ function zOrder(x, y, minX, minY, invSize) {
+ // coords are transformed into non-negative 15-bit integer range
+ x = 32767 * (x - minX) * invSize;
+ y = 32767 * (y - minY) * invSize;
+ x = (x | x << 8) & 0x00FF00FF;
+ x = (x | x << 4) & 0x0F0F0F0F;
+ x = (x | x << 2) & 0x33333333;
+ x = (x | x << 1) & 0x55555555;
+ y = (y | y << 8) & 0x00FF00FF;
+ y = (y | y << 4) & 0x0F0F0F0F;
+ y = (y | y << 2) & 0x33333333;
+ y = (y | y << 1) & 0x55555555;
+ return x | y << 1;
+ } // find the leftmost node of a polygon ring
+
+
+ function getLeftmost(start) {
+ var p = start,
+ leftmost = start;
+
+ do {
+ if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;
+ p = p.next;
+ } while (p !== start);
+
+ return leftmost;
+ } // check if a point lies within a convex triangle
+
+
+ function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
+ return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
+ } // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
+
+
+ function isValidDiagonal(a, b) {
+ return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && ( // dones't intersect other edges
+ locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && ( // locally visible
+ area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
+ equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
+ } // signed area of a triangle
+
+
+ function area(p, q, r) {
+ return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
+ } // check if two points are equal
+
+
+ function equals(p1, p2) {
+ return p1.x === p2.x && p1.y === p2.y;
+ } // check if two segments intersect
+
+
+ function intersects(p1, q1, p2, q2) {
+ var o1 = sign(area(p1, q1, p2));
+ var o2 = sign(area(p1, q1, q2));
+ var o3 = sign(area(p2, q2, p1));
+ var o4 = sign(area(p2, q2, q1));
+ if (o1 !== o2 && o3 !== o4) return true; // general case
+
+ if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
+
+ if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
+
+ if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
+
+ if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
+
+ return false;
+ } // for collinear points p, q, r, check if point q lies on segment pr
+
+
+ function onSegment(p, q, r) {
+ return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
+ }
+
+ function sign(num) {
+ return num > 0 ? 1 : num < 0 ? -1 : 0;
+ } // check if a polygon diagonal intersects any polygon segments
+
+
+ function intersectsPolygon(a, b) {
+ var p = a;
+
+ do {
+ if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;
+ p = p.next;
+ } while (p !== a);
+
+ return false;
+ } // check if a polygon diagonal is locally inside the polygon
+
+
+ function locallyInside(a, b) {
+ return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
+ } // check if the middle point of a polygon diagonal is inside the polygon
+
+
+ function middleInside(a, b) {
+ var p = a,
+ inside = false;
+ var px = (a.x + b.x) / 2,
+ py = (a.y + b.y) / 2;
+
+ do {
+ if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;
+ p = p.next;
+ } while (p !== a);
+
+ return inside;
+ } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
+ // if one belongs to the outer ring and another to a hole, it merges it into a single ring
+
+
+ function splitPolygon(a, b) {
+ var a2 = new Node(a.i, a.x, a.y),
+ b2 = new Node(b.i, b.x, b.y),
+ an = a.next,
+ bp = b.prev;
+ a.next = b;
+ b.prev = a;
+ a2.next = an;
+ an.prev = a2;
+ b2.next = a2;
+ a2.prev = b2;
+ bp.next = b2;
+ b2.prev = bp;
+ return b2;
+ } // create a node and optionally link it with previous one (in a circular doubly linked list)
+
+
+ function insertNode(i, x, y, last) {
+ var p = new Node(i, x, y);
+
+ if (!last) {
+ p.prev = p;
+ p.next = p;
+ } else {
+ p.next = last.next;
+ p.prev = last;
+ last.next.prev = p;
+ last.next = p;
+ }
+
+ return p;
+ }
+
+ function removeNode(p) {
+ p.next.prev = p.prev;
+ p.prev.next = p.next;
+ if (p.prevZ) p.prevZ.nextZ = p.nextZ;
+ if (p.nextZ) p.nextZ.prevZ = p.prevZ;
+ }
+
+ function Node(i, x, y) {
+ // vertex index in coordinates array
+ this.i = i; // vertex coordinates
+
+ this.x = x;
+ this.y = y; // previous and next vertex nodes in a polygon ring
+
+ this.prev = null;
+ this.next = null; // z-order curve value
+
+ this.z = null; // previous and next nodes in z-order
+
+ this.prevZ = null;
+ this.nextZ = null; // indicates whether this is a steiner point
+
+ this.steiner = false;
+ }
+
+ function signedArea(data, start, end, dim) {
+ var sum = 0;
+
+ for (var i = start, j = end - dim; i < end; i += dim) {
+ sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
+ j = i;
+ }
+
+ return sum;
+ }
+
+ var ShapeUtils = {
+ // calculate area of the contour polygon
+ area: function area(contour) {
+ var n = contour.length;
+ var a = 0.0;
+
+ for (var p = n - 1, q = 0; q < n; p = q++) {
+ a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;
+ }
+
+ return a * 0.5;
+ },
+ isClockWise: function isClockWise(pts) {
+ return ShapeUtils.area(pts) < 0;
+ },
+ triangulateShape: function triangulateShape(contour, holes) {
+ var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
+
+ var holeIndices = []; // array of hole indices
+
+ var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
+
+ removeDupEndPts(contour);
+ addContour(vertices, contour); //
+
+ var holeIndex = contour.length;
+ holes.forEach(removeDupEndPts);
+
+ for (var i = 0; i < holes.length; i++) {
+ holeIndices.push(holeIndex);
+ holeIndex += holes[i].length;
+ addContour(vertices, holes[i]);
+ } //
+
+
+ var triangles = Earcut.triangulate(vertices, holeIndices); //
+
+ for (var _i = 0; _i < triangles.length; _i += 3) {
+ faces.push(triangles.slice(_i, _i + 3));
+ }
+
+ return faces;
+ }
+ };
+
+ function removeDupEndPts(points) {
+ var l = points.length;
+
+ if (l > 2 && points[l - 1].equals(points[0])) {
+ points.pop();
+ }
+ }
+
+ function addContour(vertices, contour) {
+ for (var i = 0; i < contour.length; i++) {
+ vertices.push(contour[i].x);
+ vertices.push(contour[i].y);
+ }
+ }
+
+ var ExtrudeGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(ExtrudeGeometry, _BufferGeometry);
+
+ function ExtrudeGeometry(shapes, options) {
+ var _this;
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'ExtrudeGeometry';
+ _this.parameters = {
+ shapes: shapes,
+ options: options
+ };
+ shapes = Array.isArray(shapes) ? shapes : [shapes];
+
+ var scope = _assertThisInitialized(_this);
+
+ var verticesArray = [];
+ var uvArray = [];
+
+ for (var i = 0, l = shapes.length; i < l; i++) {
+ var shape = shapes[i];
+ addShape(shape);
+ } // build geometry
+
+
+ _this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));
+
+ _this.computeVertexNormals(); // functions
+
+
+ function addShape(shape) {
+ var placeholder = []; // options
+
+ var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
+ var steps = options.steps !== undefined ? options.steps : 1;
+ var depth = options.depth !== undefined ? options.depth : 100;
+ var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
+ var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
+ var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
+ var bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
+ var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
+ var extrudePath = options.extrudePath;
+ var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options
+
+ if (options.amount !== undefined) {
+ console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');
+ depth = options.amount;
+ } //
+
+
+ var extrudePts,
+ extrudeByPath = false;
+ var splineTube, binormal, normal, position2;
+
+ if (extrudePath) {
+ extrudePts = extrudePath.getSpacedPoints(steps);
+ extrudeByPath = true;
+ bevelEnabled = false; // bevels not supported for path extrusion
+ // SETUP TNB variables
+ // TODO1 - have a .isClosed in spline?
+
+ splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
+
+ binormal = new Vector3();
+ normal = new Vector3();
+ position2 = new Vector3();
+ } // Safeguards if bevels are not enabled
+
+
+ if (!bevelEnabled) {
+ bevelSegments = 0;
+ bevelThickness = 0;
+ bevelSize = 0;
+ bevelOffset = 0;
+ } // Variables initialization
+
+
+ var shapePoints = shape.extractPoints(curveSegments);
+ var vertices = shapePoints.shape;
+ var holes = shapePoints.holes;
+ var reverse = !ShapeUtils.isClockWise(vertices);
+
+ if (reverse) {
+ vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...
+
+ for (var h = 0, hl = holes.length; h < hl; h++) {
+ var ahole = holes[h];
+
+ if (ShapeUtils.isClockWise(ahole)) {
+ holes[h] = ahole.reverse();
+ }
+ }
+ }
+
+ var faces = ShapeUtils.triangulateShape(vertices, holes);
+ /* Vertices */
+
+ var contour = vertices; // vertices has all points but contour has only points of circumference
+
+ for (var _h = 0, _hl = holes.length; _h < _hl; _h++) {
+ var _ahole = holes[_h];
+ vertices = vertices.concat(_ahole);
+ }
+
+ function scalePt2(pt, vec, size) {
+ if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');
+ return vec.clone().multiplyScalar(size).add(pt);
+ }
+
+ var vlen = vertices.length,
+ flen = faces.length; // Find directions for point movement
+
+ function getBevelVec(inPt, inPrev, inNext) {
+ // computes for inPt the corresponding point inPt' on a new contour
+ // shifted by 1 unit (length of normalized vector) to the left
+ // if we walk along contour clockwise, this new contour is outside the old one
+ //
+ // inPt' is the intersection of the two lines parallel to the two
+ // adjacent edges of inPt at a distance of 1 unit on the left side.
+ var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
+ // good reading for geometry algorithms (here: line-line intersection)
+ // http://geomalgorithms.com/a05-_intersect-1.html
+
+ var v_prev_x = inPt.x - inPrev.x,
+ v_prev_y = inPt.y - inPrev.y;
+ var v_next_x = inNext.x - inPt.x,
+ v_next_y = inNext.y - inPt.y;
+ var v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges
+
+ var collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;
+
+ if (Math.abs(collinear0) > Number.EPSILON) {
+ // not collinear
+ // length of vectors for normalizing
+ var v_prev_len = Math.sqrt(v_prev_lensq);
+ var v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left
+
+ var ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;
+ var ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;
+ var ptNextShift_x = inNext.x - v_next_y / v_next_len;
+ var ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point
+
+ var sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point
+
+ v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;
+ v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly
+ // but prevent crazy spikes
+
+ var v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;
+
+ if (v_trans_lensq <= 2) {
+ return new Vector2(v_trans_x, v_trans_y);
+ } else {
+ shrink_by = Math.sqrt(v_trans_lensq / 2);
+ }
+ } else {
+ // handle special case of collinear edges
+ var direction_eq = false; // assumes: opposite
+
+ if (v_prev_x > Number.EPSILON) {
+ if (v_next_x > Number.EPSILON) {
+ direction_eq = true;
+ }
+ } else {
+ if (v_prev_x < -Number.EPSILON) {
+ if (v_next_x < -Number.EPSILON) {
+ direction_eq = true;
+ }
+ } else {
+ if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {
+ direction_eq = true;
+ }
+ }
+ }
+
+ if (direction_eq) {
+ // console.log("Warning: lines are a straight sequence");
+ v_trans_x = -v_prev_y;
+ v_trans_y = v_prev_x;
+ shrink_by = Math.sqrt(v_prev_lensq);
+ } else {
+ // console.log("Warning: lines are a straight spike");
+ v_trans_x = v_prev_x;
+ v_trans_y = v_prev_y;
+ shrink_by = Math.sqrt(v_prev_lensq / 2);
+ }
+ }
+
+ return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);
+ }
+
+ var contourMovements = [];
+
+ for (var _i = 0, il = contour.length, j = il - 1, k = _i + 1; _i < il; _i++, j++, k++) {
+ if (j === il) j = 0;
+ if (k === il) k = 0; // (j)---(i)---(k)
+ // console.log('i,j,k', i, j , k)
+
+ contourMovements[_i] = getBevelVec(contour[_i], contour[j], contour[k]);
+ }
+
+ var holesMovements = [];
+ var oneHoleMovements,
+ verticesMovements = contourMovements.concat();
+
+ for (var _h2 = 0, _hl2 = holes.length; _h2 < _hl2; _h2++) {
+ var _ahole2 = holes[_h2];
+ oneHoleMovements = [];
+
+ for (var _i2 = 0, _il = _ahole2.length, _j = _il - 1, _k = _i2 + 1; _i2 < _il; _i2++, _j++, _k++) {
+ if (_j === _il) _j = 0;
+ if (_k === _il) _k = 0; // (j)---(i)---(k)
+
+ oneHoleMovements[_i2] = getBevelVec(_ahole2[_i2], _ahole2[_j], _ahole2[_k]);
+ }
+
+ holesMovements.push(oneHoleMovements);
+ verticesMovements = verticesMovements.concat(oneHoleMovements);
+ } // Loop bevelSegments, 1 for the front, 1 for the back
+
+
+ for (var b = 0; b < bevelSegments; b++) {
+ //for ( b = bevelSegments; b > 0; b -- ) {
+ var t = b / bevelSegments;
+ var z = bevelThickness * Math.cos(t * Math.PI / 2);
+
+ var _bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
+
+
+ for (var _i3 = 0, _il2 = contour.length; _i3 < _il2; _i3++) {
+ var vert = scalePt2(contour[_i3], contourMovements[_i3], _bs);
+ v(vert.x, vert.y, -z);
+ } // expand holes
+
+
+ for (var _h3 = 0, _hl3 = holes.length; _h3 < _hl3; _h3++) {
+ var _ahole3 = holes[_h3];
+ oneHoleMovements = holesMovements[_h3];
+
+ for (var _i4 = 0, _il3 = _ahole3.length; _i4 < _il3; _i4++) {
+ var _vert = scalePt2(_ahole3[_i4], oneHoleMovements[_i4], _bs);
+
+ v(_vert.x, _vert.y, -z);
+ }
+ }
+ }
+
+ var bs = bevelSize + bevelOffset; // Back facing vertices
+
+ for (var _i5 = 0; _i5 < vlen; _i5++) {
+ var _vert2 = bevelEnabled ? scalePt2(vertices[_i5], verticesMovements[_i5], bs) : vertices[_i5];
+
+ if (!extrudeByPath) {
+ v(_vert2.x, _vert2.y, 0);
+ } else {
+ // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
+ normal.copy(splineTube.normals[0]).multiplyScalar(_vert2.x);
+ binormal.copy(splineTube.binormals[0]).multiplyScalar(_vert2.y);
+ position2.copy(extrudePts[0]).add(normal).add(binormal);
+ v(position2.x, position2.y, position2.z);
+ }
+ } // Add stepped vertices...
+ // Including front facing vertices
+
+
+ for (var s = 1; s <= steps; s++) {
+ for (var _i6 = 0; _i6 < vlen; _i6++) {
+ var _vert3 = bevelEnabled ? scalePt2(vertices[_i6], verticesMovements[_i6], bs) : vertices[_i6];
+
+ if (!extrudeByPath) {
+ v(_vert3.x, _vert3.y, depth / steps * s);
+ } else {
+ // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
+ normal.copy(splineTube.normals[s]).multiplyScalar(_vert3.x);
+ binormal.copy(splineTube.binormals[s]).multiplyScalar(_vert3.y);
+ position2.copy(extrudePts[s]).add(normal).add(binormal);
+ v(position2.x, position2.y, position2.z);
+ }
+ }
+ } // Add bevel segments planes
+ //for ( b = 1; b <= bevelSegments; b ++ ) {
+
+
+ for (var _b = bevelSegments - 1; _b >= 0; _b--) {
+ var _t = _b / bevelSegments;
+
+ var _z = bevelThickness * Math.cos(_t * Math.PI / 2);
+
+ var _bs2 = bevelSize * Math.sin(_t * Math.PI / 2) + bevelOffset; // contract shape
+
+
+ for (var _i7 = 0, _il4 = contour.length; _i7 < _il4; _i7++) {
+ var _vert4 = scalePt2(contour[_i7], contourMovements[_i7], _bs2);
+
+ v(_vert4.x, _vert4.y, depth + _z);
+ } // expand holes
+
+
+ for (var _h4 = 0, _hl4 = holes.length; _h4 < _hl4; _h4++) {
+ var _ahole4 = holes[_h4];
+ oneHoleMovements = holesMovements[_h4];
+
+ for (var _i8 = 0, _il5 = _ahole4.length; _i8 < _il5; _i8++) {
+ var _vert5 = scalePt2(_ahole4[_i8], oneHoleMovements[_i8], _bs2);
+
+ if (!extrudeByPath) {
+ v(_vert5.x, _vert5.y, depth + _z);
+ } else {
+ v(_vert5.x, _vert5.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + _z);
+ }
+ }
+ }
+ }
+ /* Faces */
+ // Top and bottom faces
+
+
+ buildLidFaces(); // Sides faces
+
+ buildSideFaces(); ///// Internal functions
+
+ function buildLidFaces() {
+ var start = verticesArray.length / 3;
+
+ if (bevelEnabled) {
+ var layer = 0; // steps + 1
+
+ var offset = vlen * layer; // Bottom faces
+
+ for (var _i9 = 0; _i9 < flen; _i9++) {
+ var face = faces[_i9];
+ f3(face[2] + offset, face[1] + offset, face[0] + offset);
+ }
+
+ layer = steps + bevelSegments * 2;
+ offset = vlen * layer; // Top faces
+
+ for (var _i10 = 0; _i10 < flen; _i10++) {
+ var _face = faces[_i10];
+ f3(_face[0] + offset, _face[1] + offset, _face[2] + offset);
+ }
+ } else {
+ // Bottom faces
+ for (var _i11 = 0; _i11 < flen; _i11++) {
+ var _face2 = faces[_i11];
+ f3(_face2[2], _face2[1], _face2[0]);
+ } // Top faces
+
+
+ for (var _i12 = 0; _i12 < flen; _i12++) {
+ var _face3 = faces[_i12];
+ f3(_face3[0] + vlen * steps, _face3[1] + vlen * steps, _face3[2] + vlen * steps);
+ }
+ }
+
+ scope.addGroup(start, verticesArray.length / 3 - start, 0);
+ } // Create faces for the z-sides of the shape
+
+
+ function buildSideFaces() {
+ var start = verticesArray.length / 3;
+ var layeroffset = 0;
+ sidewalls(contour, layeroffset);
+ layeroffset += contour.length;
+
+ for (var _h5 = 0, _hl5 = holes.length; _h5 < _hl5; _h5++) {
+ var _ahole5 = holes[_h5];
+ sidewalls(_ahole5, layeroffset); //, true
+
+ layeroffset += _ahole5.length;
+ }
+
+ scope.addGroup(start, verticesArray.length / 3 - start, 1);
+ }
+
+ function sidewalls(contour, layeroffset) {
+ var i = contour.length;
+
+ while (--i >= 0) {
+ var _j2 = i;
+
+ var _k2 = i - 1;
+
+ if (_k2 < 0) _k2 = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);
+
+ for (var _s = 0, sl = steps + bevelSegments * 2; _s < sl; _s++) {
+ var slen1 = vlen * _s;
+ var slen2 = vlen * (_s + 1);
+
+ var a = layeroffset + _j2 + slen1,
+ _b2 = layeroffset + _k2 + slen1,
+ c = layeroffset + _k2 + slen2,
+ d = layeroffset + _j2 + slen2;
+
+ f4(a, _b2, c, d);
+ }
+ }
+ }
+
+ function v(x, y, z) {
+ placeholder.push(x);
+ placeholder.push(y);
+ placeholder.push(z);
+ }
+
+ function f3(a, b, c) {
+ addVertex(a);
+ addVertex(b);
+ addVertex(c);
+ var nextIndex = verticesArray.length / 3;
+ var uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);
+ addUV(uvs[0]);
+ addUV(uvs[1]);
+ addUV(uvs[2]);
+ }
+
+ function f4(a, b, c, d) {
+ addVertex(a);
+ addVertex(b);
+ addVertex(d);
+ addVertex(b);
+ addVertex(c);
+ addVertex(d);
+ var nextIndex = verticesArray.length / 3;
+ var uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);
+ addUV(uvs[0]);
+ addUV(uvs[1]);
+ addUV(uvs[3]);
+ addUV(uvs[1]);
+ addUV(uvs[2]);
+ addUV(uvs[3]);
+ }
+
+ function addVertex(index) {
+ verticesArray.push(placeholder[index * 3 + 0]);
+ verticesArray.push(placeholder[index * 3 + 1]);
+ verticesArray.push(placeholder[index * 3 + 2]);
+ }
+
+ function addUV(vector2) {
+ uvArray.push(vector2.x);
+ uvArray.push(vector2.y);
+ }
+ }
+
+ return _this;
+ }
+
+ var _proto = ExtrudeGeometry.prototype;
+
+ _proto.toJSON = function toJSON() {
+ var data = BufferGeometry.prototype.toJSON.call(this);
+ var shapes = this.parameters.shapes;
+ var options = this.parameters.options;
+ return _toJSON(shapes, options, data);
+ };
+
+ return ExtrudeGeometry;
+ }(BufferGeometry);
+
+ var WorldUVGenerator = {
+ generateTopUV: function generateTopUV(geometry, vertices, indexA, indexB, indexC) {
+ var a_x = vertices[indexA * 3];
+ var a_y = vertices[indexA * 3 + 1];
+ var b_x = vertices[indexB * 3];
+ var b_y = vertices[indexB * 3 + 1];
+ var c_x = vertices[indexC * 3];
+ var c_y = vertices[indexC * 3 + 1];
+ return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];
+ },
+ generateSideWallUV: function generateSideWallUV(geometry, vertices, indexA, indexB, indexC, indexD) {
+ var a_x = vertices[indexA * 3];
+ var a_y = vertices[indexA * 3 + 1];
+ var a_z = vertices[indexA * 3 + 2];
+ var b_x = vertices[indexB * 3];
+ var b_y = vertices[indexB * 3 + 1];
+ var b_z = vertices[indexB * 3 + 2];
+ var c_x = vertices[indexC * 3];
+ var c_y = vertices[indexC * 3 + 1];
+ var c_z = vertices[indexC * 3 + 2];
+ var d_x = vertices[indexD * 3];
+ var d_y = vertices[indexD * 3 + 1];
+ var d_z = vertices[indexD * 3 + 2];
+
+ if (Math.abs(a_y - b_y) < 0.01) {
+ return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];
+ } else {
+ return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];
+ }
+ }
+ };
+
+ function _toJSON(shapes, options, data) {
+ data.shapes = [];
+
+ if (Array.isArray(shapes)) {
+ for (var i = 0, l = shapes.length; i < l; i++) {
+ var shape = shapes[i];
+ data.shapes.push(shape.uuid);
+ }
+ } else {
+ data.shapes.push(shapes.uuid);
+ }
+
+ if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();
+ return data;
+ }
+
+ var IcosahedronGeometry = /*#__PURE__*/function (_PolyhedronGeometry) {
+ _inheritsLoose(IcosahedronGeometry, _PolyhedronGeometry);
+
+ function IcosahedronGeometry(radius, detail) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (detail === void 0) {
+ detail = 0;
+ }
+
+ var t = (1 + Math.sqrt(5)) / 2;
+ var vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];
+ var indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];
+ _this = _PolyhedronGeometry.call(this, vertices, indices, radius, detail) || this;
+ _this.type = 'IcosahedronGeometry';
+ _this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ return _this;
+ }
+
+ return IcosahedronGeometry;
+ }(PolyhedronGeometry);
+
+ var LatheGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(LatheGeometry, _BufferGeometry);
+
+ function LatheGeometry(points, segments, phiStart, phiLength) {
+ var _this;
+
+ if (segments === void 0) {
+ segments = 12;
+ }
+
+ if (phiStart === void 0) {
+ phiStart = 0;
+ }
+
+ if (phiLength === void 0) {
+ phiLength = Math.PI * 2;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'LatheGeometry';
+ _this.parameters = {
+ points: points,
+ segments: segments,
+ phiStart: phiStart,
+ phiLength: phiLength
+ };
+ segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]
+
+ phiLength = MathUtils.clamp(phiLength, 0, Math.PI * 2); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var uvs = []; // helper variables
+
+ var inverseSegments = 1.0 / segments;
+ var vertex = new Vector3();
+ var uv = new Vector2(); // generate vertices and uvs
+
+ for (var i = 0; i <= segments; i++) {
+ var phi = phiStart + i * inverseSegments * phiLength;
+ var sin = Math.sin(phi);
+ var cos = Math.cos(phi);
+
+ for (var j = 0; j <= points.length - 1; j++) {
+ // vertex
+ vertex.x = points[j].x * sin;
+ vertex.y = points[j].y;
+ vertex.z = points[j].x * cos;
+ vertices.push(vertex.x, vertex.y, vertex.z); // uv
+
+ uv.x = i / segments;
+ uv.y = j / (points.length - 1);
+ uvs.push(uv.x, uv.y);
+ }
+ } // indices
+
+
+ for (var _i = 0; _i < segments; _i++) {
+ for (var _j = 0; _j < points.length - 1; _j++) {
+ var base = _j + _i * points.length;
+ var a = base;
+ var b = base + points.length;
+ var c = base + points.length + 1;
+ var d = base + 1; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals
+
+
+ _this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.
+ // because the corresponding vertices are identical (but still have different UVs).
+
+
+ if (phiLength === Math.PI * 2) {
+ var normals = _this.attributes.normal.array;
+ var n1 = new Vector3();
+ var n2 = new Vector3();
+ var n = new Vector3(); // this is the buffer offset for the last line of vertices
+
+ var _base = segments * points.length * 3;
+
+ for (var _i2 = 0, _j2 = 0; _i2 < points.length; _i2++, _j2 += 3) {
+ // select the normal of the vertex in the first line
+ n1.x = normals[_j2 + 0];
+ n1.y = normals[_j2 + 1];
+ n1.z = normals[_j2 + 2]; // select the normal of the vertex in the last line
+
+ n2.x = normals[_base + _j2 + 0];
+ n2.y = normals[_base + _j2 + 1];
+ n2.z = normals[_base + _j2 + 2]; // average normals
+
+ n.addVectors(n1, n2).normalize(); // assign the new values to both normals
+
+ normals[_j2 + 0] = normals[_base + _j2 + 0] = n.x;
+ normals[_j2 + 1] = normals[_base + _j2 + 1] = n.y;
+ normals[_j2 + 2] = normals[_base + _j2 + 2] = n.z;
+ }
+ }
+
+ return _this;
+ }
+
+ return LatheGeometry;
+ }(BufferGeometry);
+
+ var OctahedronGeometry = /*#__PURE__*/function (_PolyhedronGeometry) {
+ _inheritsLoose(OctahedronGeometry, _PolyhedronGeometry);
+
+ function OctahedronGeometry(radius, detail) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (detail === void 0) {
+ detail = 0;
+ }
+
+ var vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];
+ var indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];
+ _this = _PolyhedronGeometry.call(this, vertices, indices, radius, detail) || this;
+ _this.type = 'OctahedronGeometry';
+ _this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ return _this;
+ }
+
+ return OctahedronGeometry;
+ }(PolyhedronGeometry);
+
+ /**
+ * Parametric Surfaces Geometry
+ * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html
+ */
+
+ function ParametricGeometry(func, slices, stacks) {
+ BufferGeometry.call(this);
+ this.type = 'ParametricGeometry';
+ this.parameters = {
+ func: func,
+ slices: slices,
+ stacks: stacks
+ }; // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = [];
+ var EPS = 0.00001;
+ var normal = new Vector3();
+ var p0 = new Vector3(),
+ p1 = new Vector3();
+ var pu = new Vector3(),
+ pv = new Vector3();
+
+ if (func.length < 3) {
+ console.error('THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.');
+ } // generate vertices, normals and uvs
+
+
+ var sliceCount = slices + 1;
+
+ for (var i = 0; i <= stacks; i++) {
+ var v = i / stacks;
+
+ for (var j = 0; j <= slices; j++) {
+ var u = j / slices; // vertex
+
+ func(u, v, p0);
+ vertices.push(p0.x, p0.y, p0.z); // normal
+ // approximate tangent vectors via finite differences
+
+ if (u - EPS >= 0) {
+ func(u - EPS, v, p1);
+ pu.subVectors(p0, p1);
+ } else {
+ func(u + EPS, v, p1);
+ pu.subVectors(p1, p0);
+ }
+
+ if (v - EPS >= 0) {
+ func(u, v - EPS, p1);
+ pv.subVectors(p0, p1);
+ } else {
+ func(u, v + EPS, p1);
+ pv.subVectors(p1, p0);
+ } // cross product of tangent vectors returns surface normal
+
+
+ normal.crossVectors(pu, pv).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(u, v);
+ }
+ } // generate indices
+
+
+ for (var _i = 0; _i < stacks; _i++) {
+ for (var _j = 0; _j < slices; _j++) {
+ var a = _i * sliceCount + _j;
+ var b = _i * sliceCount + _j + 1;
+ var c = (_i + 1) * sliceCount + _j + 1;
+ var d = (_i + 1) * sliceCount + _j; // faces one and two
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ this.setIndex(indices);
+ this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+ this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+ }
+
+ ParametricGeometry.prototype = Object.create(BufferGeometry.prototype);
+ ParametricGeometry.prototype.constructor = ParametricGeometry;
+
+ var RingGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(RingGeometry, _BufferGeometry);
+
+ function RingGeometry(innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength) {
+ var _this;
+
+ if (innerRadius === void 0) {
+ innerRadius = 0.5;
+ }
+
+ if (outerRadius === void 0) {
+ outerRadius = 1;
+ }
+
+ if (thetaSegments === void 0) {
+ thetaSegments = 8;
+ }
+
+ if (phiSegments === void 0) {
+ phiSegments = 1;
+ }
+
+ if (thetaStart === void 0) {
+ thetaStart = 0;
+ }
+
+ if (thetaLength === void 0) {
+ thetaLength = Math.PI * 2;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'RingGeometry';
+ _this.parameters = {
+ innerRadius: innerRadius,
+ outerRadius: outerRadius,
+ thetaSegments: thetaSegments,
+ phiSegments: phiSegments,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ thetaSegments = Math.max(3, thetaSegments);
+ phiSegments = Math.max(1, phiSegments); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // some helper variables
+
+ var radius = innerRadius;
+ var radiusStep = (outerRadius - innerRadius) / phiSegments;
+ var vertex = new Vector3();
+ var uv = new Vector2(); // generate vertices, normals and uvs
+
+ for (var j = 0; j <= phiSegments; j++) {
+ for (var i = 0; i <= thetaSegments; i++) {
+ // values are generate from the inside of the ring to the outside
+ var segment = thetaStart + i / thetaSegments * thetaLength; // vertex
+
+ vertex.x = radius * Math.cos(segment);
+ vertex.y = radius * Math.sin(segment);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ normals.push(0, 0, 1); // uv
+
+ uv.x = (vertex.x / outerRadius + 1) / 2;
+ uv.y = (vertex.y / outerRadius + 1) / 2;
+ uvs.push(uv.x, uv.y);
+ } // increase the radius for next row of vertices
+
+
+ radius += radiusStep;
+ } // indices
+
+
+ for (var _j = 0; _j < phiSegments; _j++) {
+ var thetaSegmentLevel = _j * (thetaSegments + 1);
+
+ for (var _i = 0; _i < thetaSegments; _i++) {
+ var _segment = _i + thetaSegmentLevel;
+
+ var a = _segment;
+ var b = _segment + thetaSegments + 1;
+ var c = _segment + thetaSegments + 2;
+ var d = _segment + 1; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ return _this;
+ }
+
+ return RingGeometry;
+ }(BufferGeometry);
+
+ var ShapeGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(ShapeGeometry, _BufferGeometry);
+
+ function ShapeGeometry(shapes, curveSegments) {
+ var _this;
+
+ if (curveSegments === void 0) {
+ curveSegments = 12;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'ShapeGeometry';
+ _this.parameters = {
+ shapes: shapes,
+ curveSegments: curveSegments
+ }; // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // helper variables
+
+ var groupStart = 0;
+ var groupCount = 0; // allow single and array values for "shapes" parameter
+
+ if (Array.isArray(shapes) === false) {
+ addShape(shapes);
+ } else {
+ for (var i = 0; i < shapes.length; i++) {
+ addShape(shapes[i]);
+
+ _this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support
+
+
+ groupStart += groupCount;
+ groupCount = 0;
+ }
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions
+
+
+ function addShape(shape) {
+ var indexOffset = vertices.length / 3;
+ var points = shape.extractPoints(curveSegments);
+ var shapeVertices = points.shape;
+ var shapeHoles = points.holes; // check direction of vertices
+
+ if (ShapeUtils.isClockWise(shapeVertices) === false) {
+ shapeVertices = shapeVertices.reverse();
+ }
+
+ for (var _i = 0, l = shapeHoles.length; _i < l; _i++) {
+ var shapeHole = shapeHoles[_i];
+
+ if (ShapeUtils.isClockWise(shapeHole) === true) {
+ shapeHoles[_i] = shapeHole.reverse();
+ }
+ }
+
+ var faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array
+
+ for (var _i2 = 0, _l = shapeHoles.length; _i2 < _l; _i2++) {
+ var _shapeHole = shapeHoles[_i2];
+ shapeVertices = shapeVertices.concat(_shapeHole);
+ } // vertices, normals, uvs
+
+
+ for (var _i3 = 0, _l2 = shapeVertices.length; _i3 < _l2; _i3++) {
+ var vertex = shapeVertices[_i3];
+ vertices.push(vertex.x, vertex.y, 0);
+ normals.push(0, 0, 1);
+ uvs.push(vertex.x, vertex.y); // world uvs
+ } // incides
+
+
+ for (var _i4 = 0, _l3 = faces.length; _i4 < _l3; _i4++) {
+ var face = faces[_i4];
+ var a = face[0] + indexOffset;
+ var b = face[1] + indexOffset;
+ var c = face[2] + indexOffset;
+ indices.push(a, b, c);
+ groupCount += 3;
+ }
+ }
+
+ return _this;
+ }
+
+ var _proto = ShapeGeometry.prototype;
+
+ _proto.toJSON = function toJSON() {
+ var data = BufferGeometry.prototype.toJSON.call(this);
+ var shapes = this.parameters.shapes;
+ return _toJSON$1(shapes, data);
+ };
+
+ return ShapeGeometry;
+ }(BufferGeometry);
+
+ function _toJSON$1(shapes, data) {
+ data.shapes = [];
+
+ if (Array.isArray(shapes)) {
+ for (var i = 0, l = shapes.length; i < l; i++) {
+ var shape = shapes[i];
+ data.shapes.push(shape.uuid);
+ }
+ } else {
+ data.shapes.push(shapes.uuid);
+ }
+
+ return data;
+ }
+
+ var SphereGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(SphereGeometry, _BufferGeometry);
+
+ function SphereGeometry(radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (widthSegments === void 0) {
+ widthSegments = 8;
+ }
+
+ if (heightSegments === void 0) {
+ heightSegments = 6;
+ }
+
+ if (phiStart === void 0) {
+ phiStart = 0;
+ }
+
+ if (phiLength === void 0) {
+ phiLength = Math.PI * 2;
+ }
+
+ if (thetaStart === void 0) {
+ thetaStart = 0;
+ }
+
+ if (thetaLength === void 0) {
+ thetaLength = Math.PI;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'SphereGeometry';
+ _this.parameters = {
+ radius: radius,
+ widthSegments: widthSegments,
+ heightSegments: heightSegments,
+ phiStart: phiStart,
+ phiLength: phiLength,
+ thetaStart: thetaStart,
+ thetaLength: thetaLength
+ };
+ widthSegments = Math.max(3, Math.floor(widthSegments));
+ heightSegments = Math.max(2, Math.floor(heightSegments));
+ var thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);
+ var index = 0;
+ var grid = [];
+ var vertex = new Vector3();
+ var normal = new Vector3(); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // generate vertices, normals and uvs
+
+ for (var iy = 0; iy <= heightSegments; iy++) {
+ var verticesRow = [];
+ var v = iy / heightSegments; // special case for the poles
+
+ var uOffset = 0;
+
+ if (iy == 0 && thetaStart == 0) {
+ uOffset = 0.5 / widthSegments;
+ } else if (iy == heightSegments && thetaEnd == Math.PI) {
+ uOffset = -0.5 / widthSegments;
+ }
+
+ for (var ix = 0; ix <= widthSegments; ix++) {
+ var u = ix / widthSegments; // vertex
+
+ vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
+ vertex.y = radius * Math.cos(thetaStart + v * thetaLength);
+ vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ normal.copy(vertex).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(u + uOffset, 1 - v);
+ verticesRow.push(index++);
+ }
+
+ grid.push(verticesRow);
+ } // indices
+
+
+ for (var _iy = 0; _iy < heightSegments; _iy++) {
+ for (var _ix = 0; _ix < widthSegments; _ix++) {
+ var a = grid[_iy][_ix + 1];
+ var b = grid[_iy][_ix];
+ var c = grid[_iy + 1][_ix];
+ var d = grid[_iy + 1][_ix + 1];
+ if (_iy !== 0 || thetaStart > 0) indices.push(a, b, d);
+ if (_iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ return _this;
+ }
+
+ return SphereGeometry;
+ }(BufferGeometry);
+
+ var TetrahedronGeometry = /*#__PURE__*/function (_PolyhedronGeometry) {
+ _inheritsLoose(TetrahedronGeometry, _PolyhedronGeometry);
+
+ function TetrahedronGeometry(radius, detail) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (detail === void 0) {
+ detail = 0;
+ }
+
+ var vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];
+ var indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];
+ _this = _PolyhedronGeometry.call(this, vertices, indices, radius, detail) || this;
+ _this.type = 'TetrahedronGeometry';
+ _this.parameters = {
+ radius: radius,
+ detail: detail
+ };
+ return _this;
+ }
+
+ return TetrahedronGeometry;
+ }(PolyhedronGeometry);
+
+ var TextGeometry = /*#__PURE__*/function (_ExtrudeGeometry) {
+ _inheritsLoose(TextGeometry, _ExtrudeGeometry);
+
+ function TextGeometry(text, parameters) {
+ var _this;
+
+ if (parameters === void 0) {
+ parameters = {};
+ }
+
+ var font = parameters.font;
+
+ if (!(font && font.isFont)) {
+ console.error('THREE.TextGeometry: font parameter is not an instance of THREE.Font.');
+ return new BufferGeometry() || _assertThisInitialized(_this);
+ }
+
+ var shapes = font.generateShapes(text, parameters.size); // translate parameters to ExtrudeGeometry API
+
+ parameters.depth = parameters.height !== undefined ? parameters.height : 50; // defaults
+
+ if (parameters.bevelThickness === undefined) parameters.bevelThickness = 10;
+ if (parameters.bevelSize === undefined) parameters.bevelSize = 8;
+ if (parameters.bevelEnabled === undefined) parameters.bevelEnabled = false;
+ _this = _ExtrudeGeometry.call(this, shapes, parameters) || this;
+ _this.type = 'TextGeometry';
+ return _this;
+ }
+
+ return TextGeometry;
+ }(ExtrudeGeometry);
+
+ var TorusGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(TorusGeometry, _BufferGeometry);
+
+ function TorusGeometry(radius, tube, radialSegments, tubularSegments, arc) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (tube === void 0) {
+ tube = 0.4;
+ }
+
+ if (radialSegments === void 0) {
+ radialSegments = 8;
+ }
+
+ if (tubularSegments === void 0) {
+ tubularSegments = 6;
+ }
+
+ if (arc === void 0) {
+ arc = Math.PI * 2;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'TorusGeometry';
+ _this.parameters = {
+ radius: radius,
+ tube: tube,
+ radialSegments: radialSegments,
+ tubularSegments: tubularSegments,
+ arc: arc
+ };
+ radialSegments = Math.floor(radialSegments);
+ tubularSegments = Math.floor(tubularSegments); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // helper variables
+
+ var center = new Vector3();
+ var vertex = new Vector3();
+ var normal = new Vector3(); // generate vertices, normals and uvs
+
+ for (var j = 0; j <= radialSegments; j++) {
+ for (var i = 0; i <= tubularSegments; i++) {
+ var u = i / tubularSegments * arc;
+ var v = j / radialSegments * Math.PI * 2; // vertex
+
+ vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);
+ vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);
+ vertex.z = tube * Math.sin(v);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal
+
+ center.x = radius * Math.cos(u);
+ center.y = radius * Math.sin(u);
+ normal.subVectors(vertex, center).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(i / tubularSegments);
+ uvs.push(j / radialSegments);
+ }
+ } // generate indices
+
+
+ for (var _j = 1; _j <= radialSegments; _j++) {
+ for (var _i = 1; _i <= tubularSegments; _i++) {
+ // indices
+ var a = (tubularSegments + 1) * _j + _i - 1;
+ var b = (tubularSegments + 1) * (_j - 1) + _i - 1;
+ var c = (tubularSegments + 1) * (_j - 1) + _i;
+ var d = (tubularSegments + 1) * _j + _i; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
+
+ return _this;
+ }
+
+ return TorusGeometry;
+ }(BufferGeometry);
+
+ var TorusKnotGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(TorusKnotGeometry, _BufferGeometry);
+
+ function TorusKnotGeometry(radius, tube, tubularSegments, radialSegments, p, q) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (tube === void 0) {
+ tube = 0.4;
+ }
+
+ if (tubularSegments === void 0) {
+ tubularSegments = 64;
+ }
+
+ if (radialSegments === void 0) {
+ radialSegments = 8;
+ }
+
+ if (p === void 0) {
+ p = 2;
+ }
+
+ if (q === void 0) {
+ q = 3;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'TorusKnotGeometry';
+ _this.parameters = {
+ radius: radius,
+ tube: tube,
+ tubularSegments: tubularSegments,
+ radialSegments: radialSegments,
+ p: p,
+ q: q
+ };
+ tubularSegments = Math.floor(tubularSegments);
+ radialSegments = Math.floor(radialSegments); // buffers
+
+ var indices = [];
+ var vertices = [];
+ var normals = [];
+ var uvs = []; // helper variables
+
+ var vertex = new Vector3();
+ var normal = new Vector3();
+ var P1 = new Vector3();
+ var P2 = new Vector3();
+ var B = new Vector3();
+ var T = new Vector3();
+ var N = new Vector3(); // generate vertices, normals and uvs
+
+ for (var i = 0; i <= tubularSegments; ++i) {
+ // the radian "u" is used to calculate the position on the torus curve of the current tubular segement
+ var u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
+ // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
+
+ calculatePositionOnCurve(u, p, q, radius, P1);
+ calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis
+
+ T.subVectors(P2, P1);
+ N.addVectors(P2, P1);
+ B.crossVectors(T, N);
+ N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it
+
+ B.normalize();
+ N.normalize();
+
+ for (var j = 0; j <= radialSegments; ++j) {
+ // now calculate the vertices. they are nothing more than an extrusion of the torus curve.
+ // because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
+ var v = j / radialSegments * Math.PI * 2;
+ var cx = -tube * Math.cos(v);
+ var cy = tube * Math.sin(v); // now calculate the final vertex position.
+ // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
+
+ vertex.x = P1.x + (cx * N.x + cy * B.x);
+ vertex.y = P1.y + (cx * N.y + cy * B.y);
+ vertex.z = P1.z + (cx * N.z + cy * B.z);
+ vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
+
+ normal.subVectors(vertex, P1).normalize();
+ normals.push(normal.x, normal.y, normal.z); // uv
+
+ uvs.push(i / tubularSegments);
+ uvs.push(j / radialSegments);
+ }
+ } // generate indices
+
+
+ for (var _j = 1; _j <= tubularSegments; _j++) {
+ for (var _i = 1; _i <= radialSegments; _i++) {
+ // indices
+ var a = (radialSegments + 1) * (_j - 1) + (_i - 1);
+ var b = (radialSegments + 1) * _j + (_i - 1);
+ var c = (radialSegments + 1) * _j + _i;
+ var d = (radialSegments + 1) * (_j - 1) + _i; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ } // build geometry
+
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve
+
+
+ function calculatePositionOnCurve(u, p, q, radius, position) {
+ var cu = Math.cos(u);
+ var su = Math.sin(u);
+ var quOverP = q / p * u;
+ var cs = Math.cos(quOverP);
+ position.x = radius * (2 + cs) * 0.5 * cu;
+ position.y = radius * (2 + cs) * su * 0.5;
+ position.z = radius * Math.sin(quOverP) * 0.5;
+ }
+
+ return _this;
+ }
+
+ return TorusKnotGeometry;
+ }(BufferGeometry);
+
+ var TubeGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(TubeGeometry, _BufferGeometry);
+
+ function TubeGeometry(path, tubularSegments, radius, radialSegments, closed) {
+ var _this;
+
+ if (tubularSegments === void 0) {
+ tubularSegments = 64;
+ }
+
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (radialSegments === void 0) {
+ radialSegments = 8;
+ }
+
+ if (closed === void 0) {
+ closed = false;
+ }
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'TubeGeometry';
+ _this.parameters = {
+ path: path,
+ tubularSegments: tubularSegments,
+ radius: radius,
+ radialSegments: radialSegments,
+ closed: closed
+ };
+ var frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals
+
+ _this.tangents = frames.tangents;
+ _this.normals = frames.normals;
+ _this.binormals = frames.binormals; // helper variables
+
+ var vertex = new Vector3();
+ var normal = new Vector3();
+ var uv = new Vector2();
+ var P = new Vector3(); // buffer
+
+ var vertices = [];
+ var normals = [];
+ var uvs = [];
+ var indices = []; // create buffer data
+
+ generateBufferData(); // build geometry
+
+ _this.setIndex(indices);
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ _this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
+
+ _this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions
+
+
+ function generateBufferData() {
+ for (var i = 0; i < tubularSegments; i++) {
+ generateSegment(i);
+ } // if the geometry is not closed, generate the last row of vertices and normals
+ // at the regular position on the given path
+ //
+ // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
+
+
+ generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.
+ // this makes it easy compute correct values for closed geometries
+
+ generateUVs(); // finally create faces
+
+ generateIndices();
+ }
+
+ function generateSegment(i) {
+ // we use getPointAt to sample evenly distributed points from the given path
+ P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal
+
+ var N = frames.normals[i];
+ var B = frames.binormals[i]; // generate normals and vertices for the current segment
+
+ for (var j = 0; j <= radialSegments; j++) {
+ var v = j / radialSegments * Math.PI * 2;
+ var sin = Math.sin(v);
+ var cos = -Math.cos(v); // normal
+
+ normal.x = cos * N.x + sin * B.x;
+ normal.y = cos * N.y + sin * B.y;
+ normal.z = cos * N.z + sin * B.z;
+ normal.normalize();
+ normals.push(normal.x, normal.y, normal.z); // vertex
+
+ vertex.x = P.x + radius * normal.x;
+ vertex.y = P.y + radius * normal.y;
+ vertex.z = P.z + radius * normal.z;
+ vertices.push(vertex.x, vertex.y, vertex.z);
+ }
+ }
+
+ function generateIndices() {
+ for (var j = 1; j <= tubularSegments; j++) {
+ for (var i = 1; i <= radialSegments; i++) {
+ var a = (radialSegments + 1) * (j - 1) + (i - 1);
+ var b = (radialSegments + 1) * j + (i - 1);
+ var c = (radialSegments + 1) * j + i;
+ var d = (radialSegments + 1) * (j - 1) + i; // faces
+
+ indices.push(a, b, d);
+ indices.push(b, c, d);
+ }
+ }
+ }
+
+ function generateUVs() {
+ for (var i = 0; i <= tubularSegments; i++) {
+ for (var j = 0; j <= radialSegments; j++) {
+ uv.x = i / tubularSegments;
+ uv.y = j / radialSegments;
+ uvs.push(uv.x, uv.y);
+ }
+ }
+ }
+
+ return _this;
+ }
+
+ var _proto = TubeGeometry.prototype;
+
+ _proto.toJSON = function toJSON() {
+ var data = BufferGeometry.prototype.toJSON.call(this);
+ data.path = this.parameters.path.toJSON();
+ return data;
+ };
+
+ return TubeGeometry;
+ }(BufferGeometry);
+
+ var WireframeGeometry = /*#__PURE__*/function (_BufferGeometry) {
+ _inheritsLoose(WireframeGeometry, _BufferGeometry);
+
+ function WireframeGeometry(geometry) {
+ var _this;
+
+ _this = _BufferGeometry.call(this) || this;
+ _this.type = 'WireframeGeometry';
+
+ if (geometry.isGeometry === true) {
+ console.error('THREE.WireframeGeometry no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
+ return _assertThisInitialized(_this);
+ } // buffer
+
+
+ var vertices = []; // helper variables
+
+ var edge = [0, 0],
+ edges = {};
+ var vertex = new Vector3();
+
+ if (geometry.index !== null) {
+ // indexed BufferGeometry
+ var position = geometry.attributes.position;
+ var indices = geometry.index;
+ var groups = geometry.groups;
+
+ if (groups.length === 0) {
+ groups = [{
+ start: 0,
+ count: indices.count,
+ materialIndex: 0
+ }];
+ } // create a data structure that contains all eges without duplicates
+
+
+ for (var o = 0, ol = groups.length; o < ol; ++o) {
+ var group = groups[o];
+ var start = group.start;
+ var count = group.count;
+
+ for (var i = start, l = start + count; i < l; i += 3) {
+ for (var j = 0; j < 3; j++) {
+ var edge1 = indices.getX(i + j);
+ var edge2 = indices.getX(i + (j + 1) % 3);
+ edge[0] = Math.min(edge1, edge2); // sorting prevents duplicates
+
+ edge[1] = Math.max(edge1, edge2);
+ var key = edge[0] + ',' + edge[1];
+
+ if (edges[key] === undefined) {
+ edges[key] = {
+ index1: edge[0],
+ index2: edge[1]
+ };
+ }
+ }
+ }
+ } // generate vertices
+
+
+ for (var _key in edges) {
+ var e = edges[_key];
+ vertex.fromBufferAttribute(position, e.index1);
+ vertices.push(vertex.x, vertex.y, vertex.z);
+ vertex.fromBufferAttribute(position, e.index2);
+ vertices.push(vertex.x, vertex.y, vertex.z);
+ }
+ } else {
+ // non-indexed BufferGeometry
+ var _position = geometry.attributes.position;
+
+ for (var _i = 0, _l = _position.count / 3; _i < _l; _i++) {
+ for (var _j = 0; _j < 3; _j++) {
+ // three edges per triangle, an edge is represented as (index1, index2)
+ // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
+ var index1 = 3 * _i + _j;
+ vertex.fromBufferAttribute(_position, index1);
+ vertices.push(vertex.x, vertex.y, vertex.z);
+ var index2 = 3 * _i + (_j + 1) % 3;
+ vertex.fromBufferAttribute(_position, index2);
+ vertices.push(vertex.x, vertex.y, vertex.z);
+ }
+ }
+ } // build geometry
+
+
+ _this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+
+ return _this;
+ }
+
+ return WireframeGeometry;
+ }(BufferGeometry);
+
+ var Geometries = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ BoxGeometry: BoxGeometry,
+ BoxBufferGeometry: BoxGeometry,
+ CircleGeometry: CircleGeometry,
+ CircleBufferGeometry: CircleGeometry,
+ ConeGeometry: ConeGeometry,
+ ConeBufferGeometry: ConeGeometry,
+ CylinderGeometry: CylinderGeometry,
+ CylinderBufferGeometry: CylinderGeometry,
+ DodecahedronGeometry: DodecahedronGeometry,
+ DodecahedronBufferGeometry: DodecahedronGeometry,
+ EdgesGeometry: EdgesGeometry,
+ ExtrudeGeometry: ExtrudeGeometry,
+ ExtrudeBufferGeometry: ExtrudeGeometry,
+ IcosahedronGeometry: IcosahedronGeometry,
+ IcosahedronBufferGeometry: IcosahedronGeometry,
+ LatheGeometry: LatheGeometry,
+ LatheBufferGeometry: LatheGeometry,
+ OctahedronGeometry: OctahedronGeometry,
+ OctahedronBufferGeometry: OctahedronGeometry,
+ ParametricGeometry: ParametricGeometry,
+ ParametricBufferGeometry: ParametricGeometry,
+ PlaneGeometry: PlaneGeometry,
+ PlaneBufferGeometry: PlaneGeometry,
+ PolyhedronGeometry: PolyhedronGeometry,
+ PolyhedronBufferGeometry: PolyhedronGeometry,
+ RingGeometry: RingGeometry,
+ RingBufferGeometry: RingGeometry,
+ ShapeGeometry: ShapeGeometry,
+ ShapeBufferGeometry: ShapeGeometry,
+ SphereGeometry: SphereGeometry,
+ SphereBufferGeometry: SphereGeometry,
+ TetrahedronGeometry: TetrahedronGeometry,
+ TetrahedronBufferGeometry: TetrahedronGeometry,
+ TextGeometry: TextGeometry,
+ TextBufferGeometry: TextGeometry,
+ TorusGeometry: TorusGeometry,
+ TorusBufferGeometry: TorusGeometry,
+ TorusKnotGeometry: TorusKnotGeometry,
+ TorusKnotBufferGeometry: TorusKnotGeometry,
+ TubeGeometry: TubeGeometry,
+ TubeBufferGeometry: TubeGeometry,
+ WireframeGeometry: WireframeGeometry
+ });
+
+ /**
+ * parameters = {
+ * color: <THREE.Color>
+ * }
+ */
+
+ function ShadowMaterial(parameters) {
+ Material.call(this);
+ this.type = 'ShadowMaterial';
+ this.color = new Color(0x000000);
+ this.transparent = true;
+ this.setValues(parameters);
+ }
+
+ ShadowMaterial.prototype = Object.create(Material.prototype);
+ ShadowMaterial.prototype.constructor = ShadowMaterial;
+ ShadowMaterial.prototype.isShadowMaterial = true;
+
+ ShadowMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ return this;
+ };
+
+ function RawShaderMaterial(parameters) {
+ ShaderMaterial.call(this, parameters);
+ this.type = 'RawShaderMaterial';
+ }
+
+ RawShaderMaterial.prototype = Object.create(ShaderMaterial.prototype);
+ RawShaderMaterial.prototype.constructor = RawShaderMaterial;
+ RawShaderMaterial.prototype.isRawShaderMaterial = true;
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * roughness: <float>,
+ * metalness: <float>,
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * roughnessMap: new THREE.Texture( <Image> ),
+ *
+ * metalnessMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * envMapIntensity: <float>
+ *
+ * refractionRatio: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function MeshStandardMaterial(parameters) {
+ Material.call(this);
+ this.defines = {
+ 'STANDARD': ''
+ };
+ this.type = 'MeshStandardMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.roughness = 1.0;
+ this.metalness = 0.0;
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.roughnessMap = null;
+ this.metalnessMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.envMapIntensity = 1.0;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.skinning = false;
+ this.morphTargets = false;
+ this.morphNormals = false;
+ this.vertexTangents = false;
+ this.setValues(parameters);
+ }
+
+ MeshStandardMaterial.prototype = Object.create(Material.prototype);
+ MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;
+ MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
+
+ MeshStandardMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.defines = {
+ 'STANDARD': ''
+ };
+ this.color.copy(source.color);
+ this.roughness = source.roughness;
+ this.metalness = source.metalness;
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.roughnessMap = source.roughnessMap;
+ this.metalnessMap = source.metalnessMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.envMapIntensity = source.envMapIntensity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ this.vertexTangents = source.vertexTangents;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * clearcoat: <float>,
+ * clearcoatMap: new THREE.Texture( <Image> ),
+ * clearcoatRoughness: <float>,
+ * clearcoatRoughnessMap: new THREE.Texture( <Image> ),
+ * clearcoatNormalScale: <Vector2>,
+ * clearcoatNormalMap: new THREE.Texture( <Image> ),
+ *
+ * reflectivity: <float>,
+ * ior: <float>,
+ *
+ * sheen: <Color>,
+ *
+ * transmission: <float>,
+ * transmissionMap: new THREE.Texture( <Image> )
+ * }
+ */
+
+ function MeshPhysicalMaterial(parameters) {
+ MeshStandardMaterial.call(this);
+ this.defines = {
+ 'STANDARD': '',
+ 'PHYSICAL': ''
+ };
+ this.type = 'MeshPhysicalMaterial';
+ this.clearcoat = 0.0;
+ this.clearcoatMap = null;
+ this.clearcoatRoughness = 0.0;
+ this.clearcoatRoughnessMap = null;
+ this.clearcoatNormalScale = new Vector2(1, 1);
+ this.clearcoatNormalMap = null;
+ this.reflectivity = 0.5; // maps to F0 = 0.04
+
+ Object.defineProperty(this, 'ior', {
+ get: function get() {
+ return (1 + 0.4 * this.reflectivity) / (1 - 0.4 * this.reflectivity);
+ },
+ set: function set(ior) {
+ this.reflectivity = MathUtils.clamp(2.5 * (ior - 1) / (ior + 1), 0, 1);
+ }
+ });
+ this.sheen = null; // null will disable sheen bsdf
+
+ this.transmission = 0.0;
+ this.transmissionMap = null;
+ this.setValues(parameters);
+ }
+
+ MeshPhysicalMaterial.prototype = Object.create(MeshStandardMaterial.prototype);
+ MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;
+ MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
+
+ MeshPhysicalMaterial.prototype.copy = function (source) {
+ MeshStandardMaterial.prototype.copy.call(this, source);
+ this.defines = {
+ 'STANDARD': '',
+ 'PHYSICAL': ''
+ };
+ this.clearcoat = source.clearcoat;
+ this.clearcoatMap = source.clearcoatMap;
+ this.clearcoatRoughness = source.clearcoatRoughness;
+ this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
+ this.clearcoatNormalMap = source.clearcoatNormalMap;
+ this.clearcoatNormalScale.copy(source.clearcoatNormalScale);
+ this.reflectivity = source.reflectivity;
+
+ if (source.sheen) {
+ this.sheen = (this.sheen || new Color()).copy(source.sheen);
+ } else {
+ this.sheen = null;
+ }
+
+ this.transmission = source.transmission;
+ this.transmissionMap = source.transmissionMap;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * specular: <hex>,
+ * shininess: <float>,
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * specularMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.MultiplyOperation,
+ * reflectivity: <float>,
+ * refractionRatio: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function MeshPhongMaterial(parameters) {
+ Material.call(this);
+ this.type = 'MeshPhongMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.specular = new Color(0x111111);
+ this.shininess = 30;
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.skinning = false;
+ this.morphTargets = false;
+ this.morphNormals = false;
+ this.setValues(parameters);
+ }
+
+ MeshPhongMaterial.prototype = Object.create(Material.prototype);
+ MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;
+ MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
+
+ MeshPhongMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.specular.copy(source.specular);
+ this.shininess = source.shininess;
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ * gradientMap: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function MeshToonMaterial(parameters) {
+ Material.call(this);
+ this.defines = {
+ 'TOON': ''
+ };
+ this.type = 'MeshToonMaterial';
+ this.color = new Color(0xffffff);
+ this.map = null;
+ this.gradientMap = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.alphaMap = null;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.skinning = false;
+ this.morphTargets = false;
+ this.morphNormals = false;
+ this.setValues(parameters);
+ }
+
+ MeshToonMaterial.prototype = Object.create(Material.prototype);
+ MeshToonMaterial.prototype.constructor = MeshToonMaterial;
+ MeshToonMaterial.prototype.isMeshToonMaterial = true;
+
+ MeshToonMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.gradientMap = source.gradientMap;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.alphaMap = source.alphaMap;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * opacity: <float>,
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function MeshNormalMaterial(parameters) {
+ Material.call(this);
+ this.type = 'MeshNormalMaterial';
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.fog = false;
+ this.skinning = false;
+ this.morphTargets = false;
+ this.morphNormals = false;
+ this.setValues(parameters);
+ }
+
+ MeshNormalMaterial.prototype = Object.create(Material.prototype);
+ MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;
+ MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
+
+ MeshNormalMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * lightMap: new THREE.Texture( <Image> ),
+ * lightMapIntensity: <float>
+ *
+ * aoMap: new THREE.Texture( <Image> ),
+ * aoMapIntensity: <float>
+ *
+ * emissive: <hex>,
+ * emissiveIntensity: <float>
+ * emissiveMap: new THREE.Texture( <Image> ),
+ *
+ * specularMap: new THREE.Texture( <Image> ),
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
+ * combine: THREE.Multiply,
+ * reflectivity: <float>,
+ * refractionRatio: <float>,
+ *
+ * wireframe: <boolean>,
+ * wireframeLinewidth: <float>,
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function MeshLambertMaterial(parameters) {
+ Material.call(this);
+ this.type = 'MeshLambertMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.map = null;
+ this.lightMap = null;
+ this.lightMapIntensity = 1.0;
+ this.aoMap = null;
+ this.aoMapIntensity = 1.0;
+ this.emissive = new Color(0x000000);
+ this.emissiveIntensity = 1.0;
+ this.emissiveMap = null;
+ this.specularMap = null;
+ this.alphaMap = null;
+ this.envMap = null;
+ this.combine = MultiplyOperation;
+ this.reflectivity = 1;
+ this.refractionRatio = 0.98;
+ this.wireframe = false;
+ this.wireframeLinewidth = 1;
+ this.wireframeLinecap = 'round';
+ this.wireframeLinejoin = 'round';
+ this.skinning = false;
+ this.morphTargets = false;
+ this.morphNormals = false;
+ this.setValues(parameters);
+ }
+
+ MeshLambertMaterial.prototype = Object.create(Material.prototype);
+ MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;
+ MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
+
+ MeshLambertMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.map = source.map;
+ this.lightMap = source.lightMap;
+ this.lightMapIntensity = source.lightMapIntensity;
+ this.aoMap = source.aoMap;
+ this.aoMapIntensity = source.aoMapIntensity;
+ this.emissive.copy(source.emissive);
+ this.emissiveMap = source.emissiveMap;
+ this.emissiveIntensity = source.emissiveIntensity;
+ this.specularMap = source.specularMap;
+ this.alphaMap = source.alphaMap;
+ this.envMap = source.envMap;
+ this.combine = source.combine;
+ this.reflectivity = source.reflectivity;
+ this.refractionRatio = source.refractionRatio;
+ this.wireframe = source.wireframe;
+ this.wireframeLinewidth = source.wireframeLinewidth;
+ this.wireframeLinecap = source.wireframeLinecap;
+ this.wireframeLinejoin = source.wireframeLinejoin;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * matcap: new THREE.Texture( <Image> ),
+ *
+ * map: new THREE.Texture( <Image> ),
+ *
+ * bumpMap: new THREE.Texture( <Image> ),
+ * bumpScale: <float>,
+ *
+ * normalMap: new THREE.Texture( <Image> ),
+ * normalMapType: THREE.TangentSpaceNormalMap,
+ * normalScale: <Vector2>,
+ *
+ * displacementMap: new THREE.Texture( <Image> ),
+ * displacementScale: <float>,
+ * displacementBias: <float>,
+ *
+ * alphaMap: new THREE.Texture( <Image> ),
+ *
+ * skinning: <bool>,
+ * morphTargets: <bool>,
+ * morphNormals: <bool>
+ * }
+ */
+
+ function MeshMatcapMaterial(parameters) {
+ Material.call(this);
+ this.defines = {
+ 'MATCAP': ''
+ };
+ this.type = 'MeshMatcapMaterial';
+ this.color = new Color(0xffffff); // diffuse
+
+ this.matcap = null;
+ this.map = null;
+ this.bumpMap = null;
+ this.bumpScale = 1;
+ this.normalMap = null;
+ this.normalMapType = TangentSpaceNormalMap;
+ this.normalScale = new Vector2(1, 1);
+ this.displacementMap = null;
+ this.displacementScale = 1;
+ this.displacementBias = 0;
+ this.alphaMap = null;
+ this.skinning = false;
+ this.morphTargets = false;
+ this.morphNormals = false;
+ this.setValues(parameters);
+ }
+
+ MeshMatcapMaterial.prototype = Object.create(Material.prototype);
+ MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial;
+ MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
+
+ MeshMatcapMaterial.prototype.copy = function (source) {
+ Material.prototype.copy.call(this, source);
+ this.defines = {
+ 'MATCAP': ''
+ };
+ this.color.copy(source.color);
+ this.matcap = source.matcap;
+ this.map = source.map;
+ this.bumpMap = source.bumpMap;
+ this.bumpScale = source.bumpScale;
+ this.normalMap = source.normalMap;
+ this.normalMapType = source.normalMapType;
+ this.normalScale.copy(source.normalScale);
+ this.displacementMap = source.displacementMap;
+ this.displacementScale = source.displacementScale;
+ this.displacementBias = source.displacementBias;
+ this.alphaMap = source.alphaMap;
+ this.skinning = source.skinning;
+ this.morphTargets = source.morphTargets;
+ this.morphNormals = source.morphNormals;
+ return this;
+ };
+
+ /**
+ * parameters = {
+ * color: <hex>,
+ * opacity: <float>,
+ *
+ * linewidth: <float>,
+ *
+ * scale: <float>,
+ * dashSize: <float>,
+ * gapSize: <float>
+ * }
+ */
+
+ function LineDashedMaterial(parameters) {
+ LineBasicMaterial.call(this);
+ this.type = 'LineDashedMaterial';
+ this.scale = 1;
+ this.dashSize = 3;
+ this.gapSize = 1;
+ this.setValues(parameters);
+ }
+
+ LineDashedMaterial.prototype = Object.create(LineBasicMaterial.prototype);
+ LineDashedMaterial.prototype.constructor = LineDashedMaterial;
+ LineDashedMaterial.prototype.isLineDashedMaterial = true;
+
+ LineDashedMaterial.prototype.copy = function (source) {
+ LineBasicMaterial.prototype.copy.call(this, source);
+ this.scale = source.scale;
+ this.dashSize = source.dashSize;
+ this.gapSize = source.gapSize;
+ return this;
+ };
+
+ var Materials = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ ShadowMaterial: ShadowMaterial,
+ SpriteMaterial: SpriteMaterial,
+ RawShaderMaterial: RawShaderMaterial,
+ ShaderMaterial: ShaderMaterial,
+ PointsMaterial: PointsMaterial,
+ MeshPhysicalMaterial: MeshPhysicalMaterial,
+ MeshStandardMaterial: MeshStandardMaterial,
+ MeshPhongMaterial: MeshPhongMaterial,
+ MeshToonMaterial: MeshToonMaterial,
+ MeshNormalMaterial: MeshNormalMaterial,
+ MeshLambertMaterial: MeshLambertMaterial,
+ MeshDepthMaterial: MeshDepthMaterial,
+ MeshDistanceMaterial: MeshDistanceMaterial,
+ MeshBasicMaterial: MeshBasicMaterial,
+ MeshMatcapMaterial: MeshMatcapMaterial,
+ LineDashedMaterial: LineDashedMaterial,
+ LineBasicMaterial: LineBasicMaterial,
+ Material: Material
+ });
+
+ var AnimationUtils = {
+ // same as Array.prototype.slice, but also works on typed arrays
+ arraySlice: function arraySlice(array, from, to) {
+ if (AnimationUtils.isTypedArray(array)) {
+ // in ios9 array.subarray(from, undefined) will return empty array
+ // but array.subarray(from) or array.subarray(from, len) is correct
+ return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));
+ }
+
+ return array.slice(from, to);
+ },
+ // converts an array to a specific type
+ convertArray: function convertArray(array, type, forceClone) {
+ if (!array || // let 'undefined' and 'null' pass
+ !forceClone && array.constructor === type) return array;
+
+ if (typeof type.BYTES_PER_ELEMENT === 'number') {
+ return new type(array); // create typed array
+ }
+
+ return Array.prototype.slice.call(array); // create Array
+ },
+ isTypedArray: function isTypedArray(object) {
+ return ArrayBuffer.isView(object) && !(object instanceof DataView);
+ },
+ // returns an array by which times and values can be sorted
+ getKeyframeOrder: function getKeyframeOrder(times) {
+ function compareTime(i, j) {
+ return times[i] - times[j];
+ }
+
+ var n = times.length;
+ var result = new Array(n);
+
+ for (var i = 0; i !== n; ++i) {
+ result[i] = i;
+ }
+
+ result.sort(compareTime);
+ return result;
+ },
+ // uses the array previously returned by 'getKeyframeOrder' to sort data
+ sortedArray: function sortedArray(values, stride, order) {
+ var nValues = values.length;
+ var result = new values.constructor(nValues);
+
+ for (var i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {
+ var srcOffset = order[i] * stride;
+
+ for (var j = 0; j !== stride; ++j) {
+ result[dstOffset++] = values[srcOffset + j];
+ }
+ }
+
+ return result;
+ },
+ // function for parsing AOS keyframe formats
+ flattenJSON: function flattenJSON(jsonKeys, times, values, valuePropertyName) {
+ var i = 1,
+ key = jsonKeys[0];
+
+ while (key !== undefined && key[valuePropertyName] === undefined) {
+ key = jsonKeys[i++];
+ }
+
+ if (key === undefined) return; // no data
+
+ var value = key[valuePropertyName];
+ if (value === undefined) return; // no data
+
+ if (Array.isArray(value)) {
+ do {
+ value = key[valuePropertyName];
+
+ if (value !== undefined) {
+ times.push(key.time);
+ values.push.apply(values, value); // push all elements
+ }
+
+ key = jsonKeys[i++];
+ } while (key !== undefined);
+ } else if (value.toArray !== undefined) {
+ // ...assume THREE.Math-ish
+ do {
+ value = key[valuePropertyName];
+
+ if (value !== undefined) {
+ times.push(key.time);
+ value.toArray(values, values.length);
+ }
+
+ key = jsonKeys[i++];
+ } while (key !== undefined);
+ } else {
+ // otherwise push as-is
+ do {
+ value = key[valuePropertyName];
+
+ if (value !== undefined) {
+ times.push(key.time);
+ values.push(value);
+ }
+
+ key = jsonKeys[i++];
+ } while (key !== undefined);
+ }
+ },
+ subclip: function subclip(sourceClip, name, startFrame, endFrame, fps) {
+ if (fps === void 0) {
+ fps = 30;
+ }
+
+ var clip = sourceClip.clone();
+ clip.name = name;
+ var tracks = [];
+
+ for (var i = 0; i < clip.tracks.length; ++i) {
+ var track = clip.tracks[i];
+ var valueSize = track.getValueSize();
+ var times = [];
+ var values = [];
+
+ for (var j = 0; j < track.times.length; ++j) {
+ var frame = track.times[j] * fps;
+ if (frame < startFrame || frame >= endFrame) continue;
+ times.push(track.times[j]);
+
+ for (var k = 0; k < valueSize; ++k) {
+ values.push(track.values[j * valueSize + k]);
+ }
+ }
+
+ if (times.length === 0) continue;
+ track.times = AnimationUtils.convertArray(times, track.times.constructor);
+ track.values = AnimationUtils.convertArray(values, track.values.constructor);
+ tracks.push(track);
+ }
+
+ clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip
+
+ var minStartTime = Infinity;
+
+ for (var _i = 0; _i < clip.tracks.length; ++_i) {
+ if (minStartTime > clip.tracks[_i].times[0]) {
+ minStartTime = clip.tracks[_i].times[0];
+ }
+ } // shift all tracks such that clip begins at t=0
+
+
+ for (var _i2 = 0; _i2 < clip.tracks.length; ++_i2) {
+ clip.tracks[_i2].shift(-1 * minStartTime);
+ }
+
+ clip.resetDuration();
+ return clip;
+ },
+ makeClipAdditive: function makeClipAdditive(targetClip, referenceFrame, referenceClip, fps) {
+ if (referenceFrame === void 0) {
+ referenceFrame = 0;
+ }
+
+ if (referenceClip === void 0) {
+ referenceClip = targetClip;
+ }
+
+ if (fps === void 0) {
+ fps = 30;
+ }
+
+ if (fps <= 0) fps = 30;
+ var numTracks = referenceClip.tracks.length;
+ var referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame
+
+ var _loop = function _loop(i) {
+ var referenceTrack = referenceClip.tracks[i];
+ var referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric
+
+ if (referenceTrackType === 'bool' || referenceTrackType === 'string') return "continue"; // Find the track in the target clip whose name and type matches the reference track
+
+ var targetTrack = targetClip.tracks.find(function (track) {
+ return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;
+ });
+ if (targetTrack === undefined) return "continue";
+ var referenceOffset = 0;
+ var referenceValueSize = referenceTrack.getValueSize();
+
+ if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
+ referenceOffset = referenceValueSize / 3;
+ }
+
+ var targetOffset = 0;
+ var targetValueSize = targetTrack.getValueSize();
+
+ if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
+ targetOffset = targetValueSize / 3;
+ }
+
+ var lastIndex = referenceTrack.times.length - 1;
+ var referenceValue = void 0; // Find the value to subtract out of the track
+
+ if (referenceTime <= referenceTrack.times[0]) {
+ // Reference frame is earlier than the first keyframe, so just use the first keyframe
+ var startIndex = referenceOffset;
+ var endIndex = referenceValueSize - referenceOffset;
+ referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
+ } else if (referenceTime >= referenceTrack.times[lastIndex]) {
+ // Reference frame is after the last keyframe, so just use the last keyframe
+ var _startIndex = lastIndex * referenceValueSize + referenceOffset;
+
+ var _endIndex = _startIndex + referenceValueSize - referenceOffset;
+
+ referenceValue = AnimationUtils.arraySlice(referenceTrack.values, _startIndex, _endIndex);
+ } else {
+ // Interpolate to the reference value
+ var interpolant = referenceTrack.createInterpolant();
+ var _startIndex2 = referenceOffset;
+
+ var _endIndex2 = referenceValueSize - referenceOffset;
+
+ interpolant.evaluate(referenceTime);
+ referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, _startIndex2, _endIndex2);
+ } // Conjugate the quaternion
+
+
+ if (referenceTrackType === 'quaternion') {
+ var referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();
+ referenceQuat.toArray(referenceValue);
+ } // Subtract the reference value from all of the track values
+
+
+ var numTimes = targetTrack.times.length;
+
+ for (var j = 0; j < numTimes; ++j) {
+ var valueStart = j * targetValueSize + targetOffset;
+
+ if (referenceTrackType === 'quaternion') {
+ // Multiply the conjugate for quaternion track types
+ Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);
+ } else {
+ var valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types
+
+ for (var k = 0; k < valueEnd; ++k) {
+ targetTrack.values[valueStart + k] -= referenceValue[k];
+ }
+ }
+ }
+ };
+
+ for (var i = 0; i < numTracks; ++i) {
+ var _ret = _loop(i);
+
+ if (_ret === "continue") continue;
+ }
+
+ targetClip.blendMode = AdditiveAnimationBlendMode;
+ return targetClip;
+ }
+ };
+
+ /**
+ * Abstract base class of interpolants over parametric samples.
+ *
+ * The parameter domain is one dimensional, typically the time or a path
+ * along a curve defined by the data.
+ *
+ * The sample values can have any dimensionality and derived classes may
+ * apply special interpretations to the data.
+ *
+ * This class provides the interval seek in a Template Method, deferring
+ * the actual interpolation to derived classes.
+ *
+ * Time complexity is O(1) for linear access crossing at most two points
+ * and O(log N) for random access, where N is the number of positions.
+ *
+ * References:
+ *
+ * http://www.oodesign.com/template-method-pattern.html
+ *
+ */
+ function Interpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ this.parameterPositions = parameterPositions;
+ this._cachedIndex = 0;
+ this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);
+ this.sampleValues = sampleValues;
+ this.valueSize = sampleSize;
+ }
+
+ Object.assign(Interpolant.prototype, {
+ evaluate: function evaluate(t) {
+ var pp = this.parameterPositions;
+ var i1 = this._cachedIndex,
+ t1 = pp[i1],
+ t0 = pp[i1 - 1];
+
+ validate_interval: {
+ seek: {
+ var right;
+
+ linear_scan: {
+ //- See http://jsperf.com/comparison-to-undefined/3
+ //- slower code:
+ //-
+ //- if ( t >= t1 || t1 === undefined ) {
+ forward_scan: if (!(t < t1)) {
+ for (var giveUpAt = i1 + 2;;) {
+ if (t1 === undefined) {
+ if (t < t0) break forward_scan; // after end
+
+ i1 = pp.length;
+ this._cachedIndex = i1;
+ return this.afterEnd_(i1 - 1, t, t0);
+ }
+
+ if (i1 === giveUpAt) break; // this loop
+
+ t0 = t1;
+ t1 = pp[++i1];
+
+ if (t < t1) {
+ // we have arrived at the sought interval
+ break seek;
+ }
+ } // prepare binary search on the right side of the index
+
+
+ right = pp.length;
+ break linear_scan;
+ } //- slower code:
+ //- if ( t < t0 || t0 === undefined ) {
+
+
+ if (!(t >= t0)) {
+ // looping?
+ var t1global = pp[1];
+
+ if (t < t1global) {
+ i1 = 2; // + 1, using the scan for the details
+
+ t0 = t1global;
+ } // linear reverse scan
+
+
+ for (var _giveUpAt = i1 - 2;;) {
+ if (t0 === undefined) {
+ // before start
+ this._cachedIndex = 0;
+ return this.beforeStart_(0, t, t1);
+ }
+
+ if (i1 === _giveUpAt) break; // this loop
+
+ t1 = t0;
+ t0 = pp[--i1 - 1];
+
+ if (t >= t0) {
+ // we have arrived at the sought interval
+ break seek;
+ }
+ } // prepare binary search on the left side of the index
+
+
+ right = i1;
+ i1 = 0;
+ break linear_scan;
+ } // the interval is valid
+
+
+ break validate_interval;
+ } // linear scan
+ // binary search
+
+
+ while (i1 < right) {
+ var mid = i1 + right >>> 1;
+
+ if (t < pp[mid]) {
+ right = mid;
+ } else {
+ i1 = mid + 1;
+ }
+ }
+
+ t1 = pp[i1];
+ t0 = pp[i1 - 1]; // check boundary cases, again
+
+ if (t0 === undefined) {
+ this._cachedIndex = 0;
+ return this.beforeStart_(0, t, t1);
+ }
+
+ if (t1 === undefined) {
+ i1 = pp.length;
+ this._cachedIndex = i1;
+ return this.afterEnd_(i1 - 1, t0, t);
+ }
+ } // seek
+
+
+ this._cachedIndex = i1;
+ this.intervalChanged_(i1, t0, t1);
+ } // validate_interval
+
+
+ return this.interpolate_(i1, t0, t, t1);
+ },
+ settings: null,
+ // optional, subclass-specific settings structure
+ // Note: The indirection allows central control of many interpolants.
+ // --- Protected interface
+ DefaultSettings_: {},
+ getSettings_: function getSettings_() {
+ return this.settings || this.DefaultSettings_;
+ },
+ copySampleValue_: function copySampleValue_(index) {
+ // copies a sample value to the result buffer
+ var result = this.resultBuffer,
+ values = this.sampleValues,
+ stride = this.valueSize,
+ offset = index * stride;
+
+ for (var i = 0; i !== stride; ++i) {
+ result[i] = values[offset + i];
+ }
+
+ return result;
+ },
+ // Template methods for derived classes:
+ interpolate_: function interpolate_()
+ /* i1, t0, t, t1 */
+ {
+ throw new Error('call to abstract method'); // implementations shall return this.resultBuffer
+ },
+ intervalChanged_: function intervalChanged_()
+ /* i1, t0, t1 */
+ {// empty
+ }
+ }); // DECLARE ALIAS AFTER assign prototype
+
+ Object.assign(Interpolant.prototype, {
+ //( 0, t, t0 ), returns this.resultBuffer
+ beforeStart_: Interpolant.prototype.copySampleValue_,
+ //( N-1, tN-1, t ), returns this.resultBuffer
+ afterEnd_: Interpolant.prototype.copySampleValue_
+ });
+
+ /**
+ * Fast and simple cubic spline interpolant.
+ *
+ * It was derived from a Hermitian construction setting the first derivative
+ * at each sample position to the linear slope between neighboring positions
+ * over their parameter interval.
+ */
+
+ function CubicInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);
+ this._weightPrev = -0;
+ this._offsetPrev = -0;
+ this._weightNext = -0;
+ this._offsetNext = -0;
+ }
+
+ CubicInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), {
+ constructor: CubicInterpolant,
+ DefaultSettings_: {
+ endingStart: ZeroCurvatureEnding,
+ endingEnd: ZeroCurvatureEnding
+ },
+ intervalChanged_: function intervalChanged_(i1, t0, t1) {
+ var pp = this.parameterPositions;
+ var iPrev = i1 - 2,
+ iNext = i1 + 1,
+ tPrev = pp[iPrev],
+ tNext = pp[iNext];
+
+ if (tPrev === undefined) {
+ switch (this.getSettings_().endingStart) {
+ case ZeroSlopeEnding:
+ // f'(t0) = 0
+ iPrev = i1;
+ tPrev = 2 * t0 - t1;
+ break;
+
+ case WrapAroundEnding:
+ // use the other end of the curve
+ iPrev = pp.length - 2;
+ tPrev = t0 + pp[iPrev] - pp[iPrev + 1];
+ break;
+
+ default:
+ // ZeroCurvatureEnding
+ // f''(t0) = 0 a.k.a. Natural Spline
+ iPrev = i1;
+ tPrev = t1;
+ }
+ }
+
+ if (tNext === undefined) {
+ switch (this.getSettings_().endingEnd) {
+ case ZeroSlopeEnding:
+ // f'(tN) = 0
+ iNext = i1;
+ tNext = 2 * t1 - t0;
+ break;
+
+ case WrapAroundEnding:
+ // use the other end of the curve
+ iNext = 1;
+ tNext = t1 + pp[1] - pp[0];
+ break;
+
+ default:
+ // ZeroCurvatureEnding
+ // f''(tN) = 0, a.k.a. Natural Spline
+ iNext = i1 - 1;
+ tNext = t0;
+ }
+ }
+
+ var halfDt = (t1 - t0) * 0.5,
+ stride = this.valueSize;
+ this._weightPrev = halfDt / (t0 - tPrev);
+ this._weightNext = halfDt / (tNext - t1);
+ this._offsetPrev = iPrev * stride;
+ this._offsetNext = iNext * stride;
+ },
+ interpolate_: function interpolate_(i1, t0, t, t1) {
+ var result = this.resultBuffer,
+ values = this.sampleValues,
+ stride = this.valueSize,
+ o1 = i1 * stride,
+ o0 = o1 - stride,
+ oP = this._offsetPrev,
+ oN = this._offsetNext,
+ wP = this._weightPrev,
+ wN = this._weightNext,
+ p = (t - t0) / (t1 - t0),
+ pp = p * p,
+ ppp = pp * p; // evaluate polynomials
+
+ var sP = -wP * ppp + 2 * wP * pp - wP * p;
+ var s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;
+ var s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;
+ var sN = wN * ppp - wN * pp; // combine data linearly
+
+ for (var i = 0; i !== stride; ++i) {
+ result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];
+ }
+
+ return result;
+ }
+ });
+
+ function LinearInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);
+ }
+
+ LinearInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), {
+ constructor: LinearInterpolant,
+ interpolate_: function interpolate_(i1, t0, t, t1) {
+ var result = this.resultBuffer,
+ values = this.sampleValues,
+ stride = this.valueSize,
+ offset1 = i1 * stride,
+ offset0 = offset1 - stride,
+ weight1 = (t - t0) / (t1 - t0),
+ weight0 = 1 - weight1;
+
+ for (var i = 0; i !== stride; ++i) {
+ result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;
+ }
+
+ return result;
+ }
+ });
+
+ /**
+ *
+ * Interpolant that evaluates to the sample value at the position preceeding
+ * the parameter.
+ */
+
+ function DiscreteInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);
+ }
+
+ DiscreteInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), {
+ constructor: DiscreteInterpolant,
+ interpolate_: function interpolate_(i1
+ /*, t0, t, t1 */
+ ) {
+ return this.copySampleValue_(i1 - 1);
+ }
+ });
+
+ function KeyframeTrack(name, times, values, interpolation) {
+ if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');
+ if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);
+ this.name = name;
+ this.times = AnimationUtils.convertArray(times, this.TimeBufferType);
+ this.values = AnimationUtils.convertArray(values, this.ValueBufferType);
+ this.setInterpolation(interpolation || this.DefaultInterpolation);
+ } // Static methods
+
+
+ Object.assign(KeyframeTrack, {
+ // Serialization (in static context, because of constructor invocation
+ // and automatic invocation of .toJSON):
+ toJSON: function toJSON(track) {
+ var trackType = track.constructor;
+ var json; // derived classes can define a static toJSON method
+
+ if (trackType.toJSON !== undefined) {
+ json = trackType.toJSON(track);
+ } else {
+ // by default, we assume the data can be serialized as-is
+ json = {
+ 'name': track.name,
+ 'times': AnimationUtils.convertArray(track.times, Array),
+ 'values': AnimationUtils.convertArray(track.values, Array)
+ };
+ var interpolation = track.getInterpolation();
+
+ if (interpolation !== track.DefaultInterpolation) {
+ json.interpolation = interpolation;
+ }
+ }
+
+ json.type = track.ValueTypeName; // mandatory
+
+ return json;
+ }
+ });
+ Object.assign(KeyframeTrack.prototype, {
+ constructor: KeyframeTrack,
+ TimeBufferType: Float32Array,
+ ValueBufferType: Float32Array,
+ DefaultInterpolation: InterpolateLinear,
+ InterpolantFactoryMethodDiscrete: function InterpolantFactoryMethodDiscrete(result) {
+ return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);
+ },
+ InterpolantFactoryMethodLinear: function InterpolantFactoryMethodLinear(result) {
+ return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);
+ },
+ InterpolantFactoryMethodSmooth: function InterpolantFactoryMethodSmooth(result) {
+ return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);
+ },
+ setInterpolation: function setInterpolation(interpolation) {
+ var factoryMethod;
+
+ switch (interpolation) {
+ case InterpolateDiscrete:
+ factoryMethod = this.InterpolantFactoryMethodDiscrete;
+ break;
+
+ case InterpolateLinear:
+ factoryMethod = this.InterpolantFactoryMethodLinear;
+ break;
+
+ case InterpolateSmooth:
+ factoryMethod = this.InterpolantFactoryMethodSmooth;
+ break;
+ }
+
+ if (factoryMethod === undefined) {
+ var message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;
+
+ if (this.createInterpolant === undefined) {
+ // fall back to default, unless the default itself is messed up
+ if (interpolation !== this.DefaultInterpolation) {
+ this.setInterpolation(this.DefaultInterpolation);
+ } else {
+ throw new Error(message); // fatal, in this case
+ }
+ }
+
+ console.warn('THREE.KeyframeTrack:', message);
+ return this;
+ }
+
+ this.createInterpolant = factoryMethod;
+ return this;
+ },
+ getInterpolation: function getInterpolation() {
+ switch (this.createInterpolant) {
+ case this.InterpolantFactoryMethodDiscrete:
+ return InterpolateDiscrete;
+
+ case this.InterpolantFactoryMethodLinear:
+ return InterpolateLinear;
+
+ case this.InterpolantFactoryMethodSmooth:
+ return InterpolateSmooth;
+ }
+ },
+ getValueSize: function getValueSize() {
+ return this.values.length / this.times.length;
+ },
+ // move all keyframes either forwards or backwards in time
+ shift: function shift(timeOffset) {
+ if (timeOffset !== 0.0) {
+ var times = this.times;
+
+ for (var i = 0, n = times.length; i !== n; ++i) {
+ times[i] += timeOffset;
+ }
+ }
+
+ return this;
+ },
+ // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
+ scale: function scale(timeScale) {
+ if (timeScale !== 1.0) {
+ var times = this.times;
+
+ for (var i = 0, n = times.length; i !== n; ++i) {
+ times[i] *= timeScale;
+ }
+ }
+
+ return this;
+ },
+ // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
+ // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
+ trim: function trim(startTime, endTime) {
+ var times = this.times,
+ nKeys = times.length;
+ var from = 0,
+ to = nKeys - 1;
+
+ while (from !== nKeys && times[from] < startTime) {
+ ++from;
+ }
+
+ while (to !== -1 && times[to] > endTime) {
+ --to;
+ }
+
+ ++to; // inclusive -> exclusive bound
+
+ if (from !== 0 || to !== nKeys) {
+ // empty tracks are forbidden, so keep at least one keyframe
+ if (from >= to) {
+ to = Math.max(to, 1);
+ from = to - 1;
+ }
+
+ var stride = this.getValueSize();
+ this.times = AnimationUtils.arraySlice(times, from, to);
+ this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);
+ }
+
+ return this;
+ },
+ // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
+ validate: function validate() {
+ var valid = true;
+ var valueSize = this.getValueSize();
+
+ if (valueSize - Math.floor(valueSize) !== 0) {
+ console.error('THREE.KeyframeTrack: Invalid value size in track.', this);
+ valid = false;
+ }
+
+ var times = this.times,
+ values = this.values,
+ nKeys = times.length;
+
+ if (nKeys === 0) {
+ console.error('THREE.KeyframeTrack: Track is empty.', this);
+ valid = false;
+ }
+
+ var prevTime = null;
+
+ for (var i = 0; i !== nKeys; i++) {
+ var currTime = times[i];
+
+ if (typeof currTime === 'number' && isNaN(currTime)) {
+ console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);
+ valid = false;
+ break;
+ }
+
+ if (prevTime !== null && prevTime > currTime) {
+ console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);
+ valid = false;
+ break;
+ }
+
+ prevTime = currTime;
+ }
+
+ if (values !== undefined) {
+ if (AnimationUtils.isTypedArray(values)) {
+ for (var _i = 0, n = values.length; _i !== n; ++_i) {
+ var value = values[_i];
+
+ if (isNaN(value)) {
+ console.error('THREE.KeyframeTrack: Value is not a valid number.', this, _i, value);
+ valid = false;
+ break;
+ }
+ }
+ }
+ }
+
+ return valid;
+ },
+ // removes equivalent sequential keys as common in morph target sequences
+ // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
+ optimize: function optimize() {
+ // times or values may be shared with other tracks, so overwriting is unsafe
+ var times = AnimationUtils.arraySlice(this.times),
+ values = AnimationUtils.arraySlice(this.values),
+ stride = this.getValueSize(),
+ smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
+ lastIndex = times.length - 1;
+ var writeIndex = 1;
+
+ for (var i = 1; i < lastIndex; ++i) {
+ var keep = false;
+ var time = times[i];
+ var timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time
+
+ if (time !== timeNext && (i !== 1 || time !== times[0])) {
+ if (!smoothInterpolation) {
+ // remove unnecessary keyframes same as their neighbors
+ var offset = i * stride,
+ offsetP = offset - stride,
+ offsetN = offset + stride;
+
+ for (var j = 0; j !== stride; ++j) {
+ var value = values[offset + j];
+
+ if (value !== values[offsetP + j] || value !== values[offsetN + j]) {
+ keep = true;
+ break;
+ }
+ }
+ } else {
+ keep = true;
+ }
+ } // in-place compaction
+
+
+ if (keep) {
+ if (i !== writeIndex) {
+ times[writeIndex] = times[i];
+ var readOffset = i * stride,
+ writeOffset = writeIndex * stride;
+
+ for (var _j = 0; _j !== stride; ++_j) {
+ values[writeOffset + _j] = values[readOffset + _j];
+ }
+ }
+
+ ++writeIndex;
+ }
+ } // flush last keyframe (compaction looks ahead)
+
+
+ if (lastIndex > 0) {
+ times[writeIndex] = times[lastIndex];
+
+ for (var _readOffset = lastIndex * stride, _writeOffset = writeIndex * stride, _j2 = 0; _j2 !== stride; ++_j2) {
+ values[_writeOffset + _j2] = values[_readOffset + _j2];
+ }
+
+ ++writeIndex;
+ }
+
+ if (writeIndex !== times.length) {
+ this.times = AnimationUtils.arraySlice(times, 0, writeIndex);
+ this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);
+ } else {
+ this.times = times;
+ this.values = values;
+ }
+
+ return this;
+ },
+ clone: function clone() {
+ var times = AnimationUtils.arraySlice(this.times, 0);
+ var values = AnimationUtils.arraySlice(this.values, 0);
+ var TypedKeyframeTrack = this.constructor;
+ var track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.
+
+ track.createInterpolant = this.createInterpolant;
+ return track;
+ }
+ });
+
+ /**
+ * A Track of Boolean keyframe values.
+ */
+
+ function BooleanKeyframeTrack(name, times, values) {
+ KeyframeTrack.call(this, name, times, values);
+ }
+
+ BooleanKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), {
+ constructor: BooleanKeyframeTrack,
+ ValueTypeName: 'bool',
+ ValueBufferType: Array,
+ DefaultInterpolation: InterpolateDiscrete,
+ InterpolantFactoryMethodLinear: undefined,
+ InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed
+ // representation of a single value and a custom interpolant that
+ // computes "firstValue ^ isOdd( index )".
+
+ });
+
+ /**
+ * A Track of keyframe values that represent color.
+ */
+
+ function ColorKeyframeTrack(name, times, values, interpolation) {
+ KeyframeTrack.call(this, name, times, values, interpolation);
+ }
+
+ ColorKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), {
+ constructor: ColorKeyframeTrack,
+ ValueTypeName: 'color' // ValueBufferType is inherited
+ // DefaultInterpolation is inherited
+ // Note: Very basic implementation and nothing special yet.
+ // However, this is the place for color space parameterization.
+
+ });
+
+ /**
+ * A Track of numeric keyframe values.
+ */
+
+ function NumberKeyframeTrack(name, times, values, interpolation) {
+ KeyframeTrack.call(this, name, times, values, interpolation);
+ }
+
+ NumberKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), {
+ constructor: NumberKeyframeTrack,
+ ValueTypeName: 'number' // ValueBufferType is inherited
+ // DefaultInterpolation is inherited
+
+ });
+
+ /**
+ * Spherical linear unit quaternion interpolant.
+ */
+
+ function QuaternionLinearInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) {
+ Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer);
+ }
+
+ QuaternionLinearInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), {
+ constructor: QuaternionLinearInterpolant,
+ interpolate_: function interpolate_(i1, t0, t, t1) {
+ var result = this.resultBuffer,
+ values = this.sampleValues,
+ stride = this.valueSize,
+ alpha = (t - t0) / (t1 - t0);
+ var offset = i1 * stride;
+
+ for (var end = offset + stride; offset !== end; offset += 4) {
+ Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);
+ }
+
+ return result;
+ }
+ });
+
+ /**
+ * A Track of quaternion keyframe values.
+ */
+
+ function QuaternionKeyframeTrack(name, times, values, interpolation) {
+ KeyframeTrack.call(this, name, times, values, interpolation);
+ }
+
+ QuaternionKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), {
+ constructor: QuaternionKeyframeTrack,
+ ValueTypeName: 'quaternion',
+ // ValueBufferType is inherited
+ DefaultInterpolation: InterpolateLinear,
+ InterpolantFactoryMethodLinear: function InterpolantFactoryMethodLinear(result) {
+ return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);
+ },
+ InterpolantFactoryMethodSmooth: undefined // not yet implemented
+
+ });
+
+ /**
+ * A Track that interpolates Strings
+ */
+
+ function StringKeyframeTrack(name, times, values, interpolation) {
+ KeyframeTrack.call(this, name, times, values, interpolation);
+ }
+
+ StringKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), {
+ constructor: StringKeyframeTrack,
+ ValueTypeName: 'string',
+ ValueBufferType: Array,
+ DefaultInterpolation: InterpolateDiscrete,
+ InterpolantFactoryMethodLinear: undefined,
+ InterpolantFactoryMethodSmooth: undefined
+ });
+
+ /**
+ * A Track of vectored keyframe values.
+ */
+
+ function VectorKeyframeTrack(name, times, values, interpolation) {
+ KeyframeTrack.call(this, name, times, values, interpolation);
+ }
+
+ VectorKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), {
+ constructor: VectorKeyframeTrack,
+ ValueTypeName: 'vector' // ValueBufferType is inherited
+ // DefaultInterpolation is inherited
+
+ });
+
+ function AnimationClip(name, duration, tracks, blendMode) {
+ if (duration === void 0) {
+ duration = -1;
+ }
+
+ if (blendMode === void 0) {
+ blendMode = NormalAnimationBlendMode;
+ }
+
+ this.name = name;
+ this.tracks = tracks;
+ this.duration = duration;
+ this.blendMode = blendMode;
+ this.uuid = MathUtils.generateUUID(); // this means it should figure out its duration by scanning the tracks
+
+ if (this.duration < 0) {
+ this.resetDuration();
+ }
+ }
+
+ function getTrackTypeForValueTypeName(typeName) {
+ switch (typeName.toLowerCase()) {
+ case 'scalar':
+ case 'double':
+ case 'float':
+ case 'number':
+ case 'integer':
+ return NumberKeyframeTrack;
+
+ case 'vector':
+ case 'vector2':
+ case 'vector3':
+ case 'vector4':
+ return VectorKeyframeTrack;
+
+ case 'color':
+ return ColorKeyframeTrack;
+
+ case 'quaternion':
+ return QuaternionKeyframeTrack;
+
+ case 'bool':
+ case 'boolean':
+ return BooleanKeyframeTrack;
+
+ case 'string':
+ return StringKeyframeTrack;
+ }
+
+ throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);
+ }
+
+ function parseKeyframeTrack(json) {
+ if (json.type === undefined) {
+ throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');
+ }
+
+ var trackType = getTrackTypeForValueTypeName(json.type);
+
+ if (json.times === undefined) {
+ var times = [],
+ values = [];
+ AnimationUtils.flattenJSON(json.keys, times, values, 'value');
+ json.times = times;
+ json.values = values;
+ } // derived classes can define a static parse method
+
+
+ if (trackType.parse !== undefined) {
+ return trackType.parse(json);
+ } else {
+ // by default, we assume a constructor compatible with the base
+ return new trackType(json.name, json.times, json.values, json.interpolation);
+ }
+ }
+
+ Object.assign(AnimationClip, {
+ parse: function parse(json) {
+ var tracks = [],
+ jsonTracks = json.tracks,
+ frameTime = 1.0 / (json.fps || 1.0);
+
+ for (var i = 0, n = jsonTracks.length; i !== n; ++i) {
+ tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));
+ }
+
+ var clip = new AnimationClip(json.name, json.duration, tracks, json.blendMode);
+ clip.uuid = json.uuid;
+ return clip;
+ },
+ toJSON: function toJSON(clip) {
+ var tracks = [],
+ clipTracks = clip.tracks;
+ var json = {
+ 'name': clip.name,
+ 'duration': clip.duration,
+ 'tracks': tracks,
+ 'uuid': clip.uuid,
+ 'blendMode': clip.blendMode
+ };
+
+ for (var i = 0, n = clipTracks.length; i !== n; ++i) {
+ tracks.push(KeyframeTrack.toJSON(clipTracks[i]));
+ }
+
+ return json;
+ },
+ CreateFromMorphTargetSequence: function CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {
+ var numMorphTargets = morphTargetSequence.length;
+ var tracks = [];
+
+ for (var i = 0; i < numMorphTargets; i++) {
+ var times = [];
+ var values = [];
+ times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);
+ values.push(0, 1, 0);
+ var order = AnimationUtils.getKeyframeOrder(times);
+ times = AnimationUtils.sortedArray(times, 1, order);
+ values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the
+ // last frame as well for perfect loop.
+
+ if (!noLoop && times[0] === 0) {
+ times.push(numMorphTargets);
+ values.push(values[0]);
+ }
+
+ tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));
+ }
+
+ return new AnimationClip(name, -1, tracks);
+ },
+ findByName: function findByName(objectOrClipArray, name) {
+ var clipArray = objectOrClipArray;
+
+ if (!Array.isArray(objectOrClipArray)) {
+ var o = objectOrClipArray;
+ clipArray = o.geometry && o.geometry.animations || o.animations;
+ }
+
+ for (var i = 0; i < clipArray.length; i++) {
+ if (clipArray[i].name === name) {
+ return clipArray[i];
+ }
+ }
+
+ return null;
+ },
+ CreateClipsFromMorphTargetSequences: function CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {
+ var animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences
+ // such flamingo_flyA_003, flamingo_run1_003, crdeath0059
+
+ var pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based
+ // patterns like Walk_001, Walk_002, Run_001, Run_002
+
+ for (var i = 0, il = morphTargets.length; i < il; i++) {
+ var morphTarget = morphTargets[i];
+ var parts = morphTarget.name.match(pattern);
+
+ if (parts && parts.length > 1) {
+ var name = parts[1];
+ var animationMorphTargets = animationToMorphTargets[name];
+
+ if (!animationMorphTargets) {
+ animationToMorphTargets[name] = animationMorphTargets = [];
+ }
+
+ animationMorphTargets.push(morphTarget);
+ }
+ }
+
+ var clips = [];
+
+ for (var _name in animationToMorphTargets) {
+ clips.push(AnimationClip.CreateFromMorphTargetSequence(_name, animationToMorphTargets[_name], fps, noLoop));
+ }
+
+ return clips;
+ },
+ // parse the animation.hierarchy format
+ parseAnimation: function parseAnimation(animation, bones) {
+ if (!animation) {
+ console.error('THREE.AnimationClip: No animation in JSONLoader data.');
+ return null;
+ }
+
+ var addNonemptyTrack = function addNonemptyTrack(trackType, trackName, animationKeys, propertyName, destTracks) {
+ // only return track if there are actually keys.
+ if (animationKeys.length !== 0) {
+ var times = [];
+ var values = [];
+ AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again
+
+ if (times.length !== 0) {
+ destTracks.push(new trackType(trackName, times, values));
+ }
+ }
+ };
+
+ var tracks = [];
+ var clipName = animation.name || 'default';
+ var fps = animation.fps || 30;
+ var blendMode = animation.blendMode; // automatic length determination in AnimationClip.
+
+ var duration = animation.length || -1;
+ var hierarchyTracks = animation.hierarchy || [];
+
+ for (var h = 0; h < hierarchyTracks.length; h++) {
+ var animationKeys = hierarchyTracks[h].keys; // skip empty tracks
+
+ if (!animationKeys || animationKeys.length === 0) continue; // process morph targets
+
+ if (animationKeys[0].morphTargets) {
+ // figure out all morph targets used in this track
+ var morphTargetNames = {};
+ var k = void 0;
+
+ for (k = 0; k < animationKeys.length; k++) {
+ if (animationKeys[k].morphTargets) {
+ for (var m = 0; m < animationKeys[k].morphTargets.length; m++) {
+ morphTargetNames[animationKeys[k].morphTargets[m]] = -1;
+ }
+ }
+ } // create a track for each morph target with all zero
+ // morphTargetInfluences except for the keys in which
+ // the morphTarget is named.
+
+
+ for (var morphTargetName in morphTargetNames) {
+ var times = [];
+ var values = [];
+
+ for (var _m = 0; _m !== animationKeys[k].morphTargets.length; ++_m) {
+ var animationKey = animationKeys[k];
+ times.push(animationKey.time);
+ values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);
+ }
+
+ tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));
+ }
+
+ duration = morphTargetNames.length * (fps || 1.0);
+ } else {
+ // ...assume skeletal animation
+ var boneName = '.bones[' + bones[h].name + ']';
+ addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);
+ addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);
+ addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);
+ }
+ }
+
+ if (tracks.length === 0) {
+ return null;
+ }
+
+ var clip = new AnimationClip(clipName, duration, tracks, blendMode);
+ return clip;
+ }
+ });
+ Object.assign(AnimationClip.prototype, {
+ resetDuration: function resetDuration() {
+ var tracks = this.tracks;
+ var duration = 0;
+
+ for (var i = 0, n = tracks.length; i !== n; ++i) {
+ var track = this.tracks[i];
+ duration = Math.max(duration, track.times[track.times.length - 1]);
+ }
+
+ this.duration = duration;
+ return this;
+ },
+ trim: function trim() {
+ for (var i = 0; i < this.tracks.length; i++) {
+ this.tracks[i].trim(0, this.duration);
+ }
+
+ return this;
+ },
+ validate: function validate() {
+ var valid = true;
+
+ for (var i = 0; i < this.tracks.length; i++) {
+ valid = valid && this.tracks[i].validate();
+ }
+
+ return valid;
+ },
+ optimize: function optimize() {
+ for (var i = 0; i < this.tracks.length; i++) {
+ this.tracks[i].optimize();
+ }
+
+ return this;
+ },
+ clone: function clone() {
+ var tracks = [];
+
+ for (var i = 0; i < this.tracks.length; i++) {
+ tracks.push(this.tracks[i].clone());
+ }
+
+ return new AnimationClip(this.name, this.duration, tracks, this.blendMode);
+ },
+ toJSON: function toJSON() {
+ return AnimationClip.toJSON(this);
+ }
+ });
+
+ var Cache = {
+ enabled: false,
+ files: {},
+ add: function add(key, file) {
+ if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );
+
+ this.files[key] = file;
+ },
+ get: function get(key) {
+ if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );
+
+ return this.files[key];
+ },
+ remove: function remove(key) {
+ delete this.files[key];
+ },
+ clear: function clear() {
+ this.files = {};
+ }
+ };
+
+ function LoadingManager(onLoad, onProgress, onError) {
+ var scope = this;
+ var isLoading = false;
+ var itemsLoaded = 0;
+ var itemsTotal = 0;
+ var urlModifier = undefined;
+ var handlers = []; // Refer to #5689 for the reason why we don't set .onStart
+ // in the constructor
+
+ this.onStart = undefined;
+ this.onLoad = onLoad;
+ this.onProgress = onProgress;
+ this.onError = onError;
+
+ this.itemStart = function (url) {
+ itemsTotal++;
+
+ if (isLoading === false) {
+ if (scope.onStart !== undefined) {
+ scope.onStart(url, itemsLoaded, itemsTotal);
+ }
+ }
+
+ isLoading = true;
+ };
+
+ this.itemEnd = function (url) {
+ itemsLoaded++;
+
+ if (scope.onProgress !== undefined) {
+ scope.onProgress(url, itemsLoaded, itemsTotal);
+ }
+
+ if (itemsLoaded === itemsTotal) {
+ isLoading = false;
+
+ if (scope.onLoad !== undefined) {
+ scope.onLoad();
+ }
+ }
+ };
+
+ this.itemError = function (url) {
+ if (scope.onError !== undefined) {
+ scope.onError(url);
+ }
+ };
+
+ this.resolveURL = function (url) {
+ if (urlModifier) {
+ return urlModifier(url);
+ }
+
+ return url;
+ };
+
+ this.setURLModifier = function (transform) {
+ urlModifier = transform;
+ return this;
+ };
+
+ this.addHandler = function (regex, loader) {
+ handlers.push(regex, loader);
+ return this;
+ };
+
+ this.removeHandler = function (regex) {
+ var index = handlers.indexOf(regex);
+
+ if (index !== -1) {
+ handlers.splice(index, 2);
+ }
+
+ return this;
+ };
+
+ this.getHandler = function (file) {
+ for (var i = 0, l = handlers.length; i < l; i += 2) {
+ var regex = handlers[i];
+ var loader = handlers[i + 1];
+ if (regex.global) regex.lastIndex = 0; // see #17920
+
+ if (regex.test(file)) {
+ return loader;
+ }
+ }
+
+ return null;
+ };
+ }
+
+ var DefaultLoadingManager = new LoadingManager();
+
+ function Loader(manager) {
+ this.manager = manager !== undefined ? manager : DefaultLoadingManager;
+ this.crossOrigin = 'anonymous';
+ this.withCredentials = false;
+ this.path = '';
+ this.resourcePath = '';
+ this.requestHeader = {};
+ }
+
+ Object.assign(Loader.prototype, {
+ load: function load()
+ /* url, onLoad, onProgress, onError */
+ {},
+ loadAsync: function loadAsync(url, onProgress) {
+ var scope = this;
+ return new Promise(function (resolve, reject) {
+ scope.load(url, resolve, onProgress, reject);
+ });
+ },
+ parse: function parse()
+ /* data */
+ {},
+ setCrossOrigin: function setCrossOrigin(crossOrigin) {
+ this.crossOrigin = crossOrigin;
+ return this;
+ },
+ setWithCredentials: function setWithCredentials(value) {
+ this.withCredentials = value;
+ return this;
+ },
+ setPath: function setPath(path) {
+ this.path = path;
+ return this;
+ },
+ setResourcePath: function setResourcePath(resourcePath) {
+ this.resourcePath = resourcePath;
+ return this;
+ },
+ setRequestHeader: function setRequestHeader(requestHeader) {
+ this.requestHeader = requestHeader;
+ return this;
+ }
+ });
+
+ var loading = {};
+
+ function FileLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ FileLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: FileLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ if (url === undefined) url = '';
+ if (this.path !== undefined) url = this.path + url;
+ url = this.manager.resolveURL(url);
+ var scope = this;
+ var cached = Cache.get(url);
+
+ if (cached !== undefined) {
+ scope.manager.itemStart(url);
+ setTimeout(function () {
+ if (onLoad) onLoad(cached);
+ scope.manager.itemEnd(url);
+ }, 0);
+ return cached;
+ } // Check if request is duplicate
+
+
+ if (loading[url] !== undefined) {
+ loading[url].push({
+ onLoad: onLoad,
+ onProgress: onProgress,
+ onError: onError
+ });
+ return;
+ } // Check for data: URI
+
+
+ var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
+ var dataUriRegexResult = url.match(dataUriRegex);
+ var request; // Safari can not handle Data URIs through XMLHttpRequest so process manually
+
+ if (dataUriRegexResult) {
+ var mimeType = dataUriRegexResult[1];
+ var isBase64 = !!dataUriRegexResult[2];
+ var data = dataUriRegexResult[3];
+ data = decodeURIComponent(data);
+ if (isBase64) data = atob(data);
+
+ try {
+ var response;
+ var responseType = (this.responseType || '').toLowerCase();
+
+ switch (responseType) {
+ case 'arraybuffer':
+ case 'blob':
+ var view = new Uint8Array(data.length);
+
+ for (var i = 0; i < data.length; i++) {
+ view[i] = data.charCodeAt(i);
+ }
+
+ if (responseType === 'blob') {
+ response = new Blob([view.buffer], {
+ type: mimeType
+ });
+ } else {
+ response = view.buffer;
+ }
+
+ break;
+
+ case 'document':
+ var parser = new DOMParser();
+ response = parser.parseFromString(data, mimeType);
+ break;
+
+ case 'json':
+ response = JSON.parse(data);
+ break;
+
+ default:
+ // 'text' or other
+ response = data;
+ break;
+ } // Wait for next browser tick like standard XMLHttpRequest event dispatching does
+
+
+ setTimeout(function () {
+ if (onLoad) onLoad(response);
+ scope.manager.itemEnd(url);
+ }, 0);
+ } catch (error) {
+ // Wait for next browser tick like standard XMLHttpRequest event dispatching does
+ setTimeout(function () {
+ if (onError) onError(error);
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }, 0);
+ }
+ } else {
+ // Initialise array for duplicate requests
+ loading[url] = [];
+ loading[url].push({
+ onLoad: onLoad,
+ onProgress: onProgress,
+ onError: onError
+ });
+ request = new XMLHttpRequest();
+ request.open('GET', url, true);
+ request.addEventListener('load', function (event) {
+ var response = this.response;
+ var callbacks = loading[url];
+ delete loading[url];
+
+ if (this.status === 200 || this.status === 0) {
+ // Some browsers return HTTP Status 0 when using non-http protocol
+ // e.g. 'file://' or 'data://'. Handle as success.
+ if (this.status === 0) console.warn('THREE.FileLoader: HTTP Status 0 received.'); // Add to cache only on HTTP success, so that we do not cache
+ // error response bodies as proper responses to requests.
+
+ Cache.add(url, response);
+
+ for (var _i = 0, il = callbacks.length; _i < il; _i++) {
+ var callback = callbacks[_i];
+ if (callback.onLoad) callback.onLoad(response);
+ }
+
+ scope.manager.itemEnd(url);
+ } else {
+ for (var _i2 = 0, _il = callbacks.length; _i2 < _il; _i2++) {
+ var _callback = callbacks[_i2];
+ if (_callback.onError) _callback.onError(event);
+ }
+
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }
+ }, false);
+ request.addEventListener('progress', function (event) {
+ var callbacks = loading[url];
+
+ for (var _i3 = 0, il = callbacks.length; _i3 < il; _i3++) {
+ var callback = callbacks[_i3];
+ if (callback.onProgress) callback.onProgress(event);
+ }
+ }, false);
+ request.addEventListener('error', function (event) {
+ var callbacks = loading[url];
+ delete loading[url];
+
+ for (var _i4 = 0, il = callbacks.length; _i4 < il; _i4++) {
+ var callback = callbacks[_i4];
+ if (callback.onError) callback.onError(event);
+ }
+
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }, false);
+ request.addEventListener('abort', function (event) {
+ var callbacks = loading[url];
+ delete loading[url];
+
+ for (var _i5 = 0, il = callbacks.length; _i5 < il; _i5++) {
+ var callback = callbacks[_i5];
+ if (callback.onError) callback.onError(event);
+ }
+
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }, false);
+ if (this.responseType !== undefined) request.responseType = this.responseType;
+ if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials;
+ if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain');
+
+ for (var header in this.requestHeader) {
+ request.setRequestHeader(header, this.requestHeader[header]);
+ }
+
+ request.send(null);
+ }
+
+ scope.manager.itemStart(url);
+ return request;
+ },
+ setResponseType: function setResponseType(value) {
+ this.responseType = value;
+ return this;
+ },
+ setMimeType: function setMimeType(value) {
+ this.mimeType = value;
+ return this;
+ }
+ });
+
+ function AnimationLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ AnimationLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: AnimationLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var loader = new FileLoader(scope.manager);
+ loader.setPath(scope.path);
+ loader.setRequestHeader(scope.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ try {
+ onLoad(scope.parse(JSON.parse(text)));
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
+
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ },
+ parse: function parse(json) {
+ var animations = [];
+
+ for (var i = 0; i < json.length; i++) {
+ var clip = AnimationClip.parse(json[i]);
+ animations.push(clip);
+ }
+
+ return animations;
+ }
+ });
+
+ /**
+ * Abstract Base class to block based textures loader (dds, pvr, ...)
+ *
+ * Sub classes have to implement the parse() method which will be used in load().
+ */
+
+ function CompressedTextureLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ CompressedTextureLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: CompressedTextureLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var images = [];
+ var texture = new CompressedTexture();
+ var loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setResponseType('arraybuffer');
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ var loaded = 0;
+
+ function loadTexture(i) {
+ loader.load(url[i], function (buffer) {
+ var texDatas = scope.parse(buffer, true);
+ images[i] = {
+ width: texDatas.width,
+ height: texDatas.height,
+ format: texDatas.format,
+ mipmaps: texDatas.mipmaps
+ };
+ loaded += 1;
+
+ if (loaded === 6) {
+ if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;
+ texture.image = images;
+ texture.format = texDatas.format;
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture);
+ }
+ }, onProgress, onError);
+ }
+
+ if (Array.isArray(url)) {
+ for (var i = 0, il = url.length; i < il; ++i) {
+ loadTexture(i);
+ }
+ } else {
+ // compressed cubemap texture stored in a single DDS file
+ loader.load(url, function (buffer) {
+ var texDatas = scope.parse(buffer, true);
+
+ if (texDatas.isCubemap) {
+ var faces = texDatas.mipmaps.length / texDatas.mipmapCount;
+
+ for (var f = 0; f < faces; f++) {
+ images[f] = {
+ mipmaps: []
+ };
+
+ for (var _i = 0; _i < texDatas.mipmapCount; _i++) {
+ images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + _i]);
+ images[f].format = texDatas.format;
+ images[f].width = texDatas.width;
+ images[f].height = texDatas.height;
+ }
+ }
+
+ texture.image = images;
+ } else {
+ texture.image.width = texDatas.width;
+ texture.image.height = texDatas.height;
+ texture.mipmaps = texDatas.mipmaps;
+ }
+
+ if (texDatas.mipmapCount === 1) {
+ texture.minFilter = LinearFilter;
+ }
+
+ texture.format = texDatas.format;
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture);
+ }, onProgress, onError);
+ }
+
+ return texture;
+ }
+ });
+
+ function ImageLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ ImageLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: ImageLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ if (this.path !== undefined) url = this.path + url;
+ url = this.manager.resolveURL(url);
+ var scope = this;
+ var cached = Cache.get(url);
+
+ if (cached !== undefined) {
+ scope.manager.itemStart(url);
+ setTimeout(function () {
+ if (onLoad) onLoad(cached);
+ scope.manager.itemEnd(url);
+ }, 0);
+ return cached;
+ }
+
+ var image = document.createElementNS('http://www.w3.org/1999/xhtml', 'img');
+
+ function onImageLoad() {
+ image.removeEventListener('load', onImageLoad, false);
+ image.removeEventListener('error', onImageError, false);
+ Cache.add(url, this);
+ if (onLoad) onLoad(this);
+ scope.manager.itemEnd(url);
+ }
+
+ function onImageError(event) {
+ image.removeEventListener('load', onImageLoad, false);
+ image.removeEventListener('error', onImageError, false);
+ if (onError) onError(event);
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ }
+
+ image.addEventListener('load', onImageLoad, false);
+ image.addEventListener('error', onImageError, false);
+
+ if (url.substr(0, 5) !== 'data:') {
+ if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;
+ }
+
+ scope.manager.itemStart(url);
+ image.src = url;
+ return image;
+ }
+ });
+
+ function CubeTextureLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ CubeTextureLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: CubeTextureLoader,
+ load: function load(urls, onLoad, onProgress, onError) {
+ var texture = new CubeTexture();
+ var loader = new ImageLoader(this.manager);
+ loader.setCrossOrigin(this.crossOrigin);
+ loader.setPath(this.path);
+ var loaded = 0;
+
+ function loadTexture(i) {
+ loader.load(urls[i], function (image) {
+ texture.images[i] = image;
+ loaded++;
+
+ if (loaded === 6) {
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture);
+ }
+ }, undefined, onError);
+ }
+
+ for (var i = 0; i < urls.length; ++i) {
+ loadTexture(i);
+ }
+
+ return texture;
+ }
+ });
+
+ /**
+ * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
+ *
+ * Sub classes have to implement the parse() method which will be used in load().
+ */
+
+ function DataTextureLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ DataTextureLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: DataTextureLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var texture = new DataTexture();
+ var loader = new FileLoader(this.manager);
+ loader.setResponseType('arraybuffer');
+ loader.setRequestHeader(this.requestHeader);
+ loader.setPath(this.path);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (buffer) {
+ var texData = scope.parse(buffer);
+ if (!texData) return;
+
+ if (texData.image !== undefined) {
+ texture.image = texData.image;
+ } else if (texData.data !== undefined) {
+ texture.image.width = texData.width;
+ texture.image.height = texData.height;
+ texture.image.data = texData.data;
+ }
+
+ texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
+ texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
+ texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
+ texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
+ texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
+
+ if (texData.encoding !== undefined) {
+ texture.encoding = texData.encoding;
+ }
+
+ if (texData.flipY !== undefined) {
+ texture.flipY = texData.flipY;
+ }
+
+ if (texData.format !== undefined) {
+ texture.format = texData.format;
+ }
+
+ if (texData.type !== undefined) {
+ texture.type = texData.type;
+ }
+
+ if (texData.mipmaps !== undefined) {
+ texture.mipmaps = texData.mipmaps;
+ texture.minFilter = LinearMipmapLinearFilter; // presumably...
+ }
+
+ if (texData.mipmapCount === 1) {
+ texture.minFilter = LinearFilter;
+ }
+
+ texture.needsUpdate = true;
+ if (onLoad) onLoad(texture, texData);
+ }, onProgress, onError);
+ return texture;
+ }
+ });
+
+ function TextureLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ TextureLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: TextureLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var texture = new Texture();
+ var loader = new ImageLoader(this.manager);
+ loader.setCrossOrigin(this.crossOrigin);
+ loader.setPath(this.path);
+ loader.load(url, function (image) {
+ texture.image = image; // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
+
+ var isJPEG = url.search(/\.jpe?g($|\?)/i) > 0 || url.search(/^data\:image\/jpeg/) === 0;
+ texture.format = isJPEG ? RGBFormat : RGBAFormat;
+ texture.needsUpdate = true;
+
+ if (onLoad !== undefined) {
+ onLoad(texture);
+ }
+ }, onProgress, onError);
+ return texture;
+ }
+ });
+
+ /**
+ * Extensible curve object.
+ *
+ * Some common of curve methods:
+ * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
+ * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
+ * .getPoints(), .getSpacedPoints()
+ * .getLength()
+ * .updateArcLengths()
+ *
+ * This following curves inherit from THREE.Curve:
+ *
+ * -- 2D curves --
+ * THREE.ArcCurve
+ * THREE.CubicBezierCurve
+ * THREE.EllipseCurve
+ * THREE.LineCurve
+ * THREE.QuadraticBezierCurve
+ * THREE.SplineCurve
+ *
+ * -- 3D curves --
+ * THREE.CatmullRomCurve3
+ * THREE.CubicBezierCurve3
+ * THREE.LineCurve3
+ * THREE.QuadraticBezierCurve3
+ *
+ * A series of curves can be represented as a THREE.CurvePath.
+ *
+ **/
+
+ function Curve() {
+ this.type = 'Curve';
+ this.arcLengthDivisions = 200;
+ }
+
+ Object.assign(Curve.prototype, {
+ // Virtual base class method to overwrite and implement in subclasses
+ // - t [0 .. 1]
+ getPoint: function getPoint()
+ /* t, optionalTarget */
+ {
+ console.warn('THREE.Curve: .getPoint() not implemented.');
+ return null;
+ },
+ // Get point at relative position in curve according to arc length
+ // - u [0 .. 1]
+ getPointAt: function getPointAt(u, optionalTarget) {
+ var t = this.getUtoTmapping(u);
+ return this.getPoint(t, optionalTarget);
+ },
+ // Get sequence of points using getPoint( t )
+ getPoints: function getPoints(divisions) {
+ if (divisions === void 0) {
+ divisions = 5;
+ }
+
+ var points = [];
+
+ for (var d = 0; d <= divisions; d++) {
+ points.push(this.getPoint(d / divisions));
+ }
+
+ return points;
+ },
+ // Get sequence of points using getPointAt( u )
+ getSpacedPoints: function getSpacedPoints(divisions) {
+ if (divisions === void 0) {
+ divisions = 5;
+ }
+
+ var points = [];
+
+ for (var d = 0; d <= divisions; d++) {
+ points.push(this.getPointAt(d / divisions));
+ }
+
+ return points;
+ },
+ // Get total curve arc length
+ getLength: function getLength() {
+ var lengths = this.getLengths();
+ return lengths[lengths.length - 1];
+ },
+ // Get list of cumulative segment lengths
+ getLengths: function getLengths(divisions) {
+ if (divisions === undefined) divisions = this.arcLengthDivisions;
+
+ if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {
+ return this.cacheArcLengths;
+ }
+
+ this.needsUpdate = false;
+ var cache = [];
+ var current,
+ last = this.getPoint(0);
+ var sum = 0;
+ cache.push(0);
+
+ for (var p = 1; p <= divisions; p++) {
+ current = this.getPoint(p / divisions);
+ sum += current.distanceTo(last);
+ cache.push(sum);
+ last = current;
+ }
+
+ this.cacheArcLengths = cache;
+ return cache; // { sums: cache, sum: sum }; Sum is in the last element.
+ },
+ updateArcLengths: function updateArcLengths() {
+ this.needsUpdate = true;
+ this.getLengths();
+ },
+ // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
+ getUtoTmapping: function getUtoTmapping(u, distance) {
+ var arcLengths = this.getLengths();
+ var i = 0;
+ var il = arcLengths.length;
+ var targetArcLength; // The targeted u distance value to get
+
+ if (distance) {
+ targetArcLength = distance;
+ } else {
+ targetArcLength = u * arcLengths[il - 1];
+ } // binary search for the index with largest value smaller than target u distance
+
+
+ var low = 0,
+ high = il - 1,
+ comparison;
+
+ while (low <= high) {
+ i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
+
+ comparison = arcLengths[i] - targetArcLength;
+
+ if (comparison < 0) {
+ low = i + 1;
+ } else if (comparison > 0) {
+ high = i - 1;
+ } else {
+ high = i;
+ break; // DONE
+ }
+ }
+
+ i = high;
+
+ if (arcLengths[i] === targetArcLength) {
+ return i / (il - 1);
+ } // we could get finer grain at lengths, or use simple interpolation between two points
+
+
+ var lengthBefore = arcLengths[i];
+ var lengthAfter = arcLengths[i + 1];
+ var segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points
+
+ var segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t
+
+ var t = (i + segmentFraction) / (il - 1);
+ return t;
+ },
+ // Returns a unit vector tangent at t
+ // In case any sub curve does not implement its tangent derivation,
+ // 2 points a small delta apart will be used to find its gradient
+ // which seems to give a reasonable approximation
+ getTangent: function getTangent(t, optionalTarget) {
+ var delta = 0.0001;
+ var t1 = t - delta;
+ var t2 = t + delta; // Capping in case of danger
+
+ if (t1 < 0) t1 = 0;
+ if (t2 > 1) t2 = 1;
+ var pt1 = this.getPoint(t1);
+ var pt2 = this.getPoint(t2);
+ var tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());
+ tangent.copy(pt2).sub(pt1).normalize();
+ return tangent;
+ },
+ getTangentAt: function getTangentAt(u, optionalTarget) {
+ var t = this.getUtoTmapping(u);
+ return this.getTangent(t, optionalTarget);
+ },
+ computeFrenetFrames: function computeFrenetFrames(segments, closed) {
+ // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
+ var normal = new Vector3();
+ var tangents = [];
+ var normals = [];
+ var binormals = [];
+ var vec = new Vector3();
+ var mat = new Matrix4(); // compute the tangent vectors for each segment on the curve
+
+ for (var i = 0; i <= segments; i++) {
+ var u = i / segments;
+ tangents[i] = this.getTangentAt(u, new Vector3());
+ tangents[i].normalize();
+ } // select an initial normal vector perpendicular to the first tangent vector,
+ // and in the direction of the minimum tangent xyz component
+
+
+ normals[0] = new Vector3();
+ binormals[0] = new Vector3();
+ var min = Number.MAX_VALUE;
+ var tx = Math.abs(tangents[0].x);
+ var ty = Math.abs(tangents[0].y);
+ var tz = Math.abs(tangents[0].z);
+
+ if (tx <= min) {
+ min = tx;
+ normal.set(1, 0, 0);
+ }
+
+ if (ty <= min) {
+ min = ty;
+ normal.set(0, 1, 0);
+ }
+
+ if (tz <= min) {
+ normal.set(0, 0, 1);
+ }
+
+ vec.crossVectors(tangents[0], normal).normalize();
+ normals[0].crossVectors(tangents[0], vec);
+ binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve
+
+ for (var _i = 1; _i <= segments; _i++) {
+ normals[_i] = normals[_i - 1].clone();
+ binormals[_i] = binormals[_i - 1].clone();
+ vec.crossVectors(tangents[_i - 1], tangents[_i]);
+
+ if (vec.length() > Number.EPSILON) {
+ vec.normalize();
+ var theta = Math.acos(MathUtils.clamp(tangents[_i - 1].dot(tangents[_i]), -1, 1)); // clamp for floating pt errors
+
+ normals[_i].applyMatrix4(mat.makeRotationAxis(vec, theta));
+ }
+
+ binormals[_i].crossVectors(tangents[_i], normals[_i]);
+ } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
+
+
+ if (closed === true) {
+ var _theta = Math.acos(MathUtils.clamp(normals[0].dot(normals[segments]), -1, 1));
+
+ _theta /= segments;
+
+ if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {
+ _theta = -_theta;
+ }
+
+ for (var _i2 = 1; _i2 <= segments; _i2++) {
+ // twist a little...
+ normals[_i2].applyMatrix4(mat.makeRotationAxis(tangents[_i2], _theta * _i2));
+
+ binormals[_i2].crossVectors(tangents[_i2], normals[_i2]);
+ }
+ }
+
+ return {
+ tangents: tangents,
+ normals: normals,
+ binormals: binormals
+ };
+ },
+ clone: function clone() {
+ return new this.constructor().copy(this);
+ },
+ copy: function copy(source) {
+ this.arcLengthDivisions = source.arcLengthDivisions;
+ return this;
+ },
+ toJSON: function toJSON() {
+ var data = {
+ metadata: {
+ version: 4.5,
+ type: 'Curve',
+ generator: 'Curve.toJSON'
+ }
+ };
+ data.arcLengthDivisions = this.arcLengthDivisions;
+ data.type = this.type;
+ return data;
+ },
+ fromJSON: function fromJSON(json) {
+ this.arcLengthDivisions = json.arcLengthDivisions;
+ return this;
+ }
+ });
+
+ function EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
+ Curve.call(this);
+ this.type = 'EllipseCurve';
+ this.aX = aX || 0;
+ this.aY = aY || 0;
+ this.xRadius = xRadius || 1;
+ this.yRadius = yRadius || 1;
+ this.aStartAngle = aStartAngle || 0;
+ this.aEndAngle = aEndAngle || 2 * Math.PI;
+ this.aClockwise = aClockwise || false;
+ this.aRotation = aRotation || 0;
+ }
+
+ EllipseCurve.prototype = Object.create(Curve.prototype);
+ EllipseCurve.prototype.constructor = EllipseCurve;
+ EllipseCurve.prototype.isEllipseCurve = true;
+
+ EllipseCurve.prototype.getPoint = function (t, optionalTarget) {
+ var point = optionalTarget || new Vector2();
+ var twoPi = Math.PI * 2;
+ var deltaAngle = this.aEndAngle - this.aStartAngle;
+ var samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI
+
+ while (deltaAngle < 0) {
+ deltaAngle += twoPi;
+ }
+
+ while (deltaAngle > twoPi) {
+ deltaAngle -= twoPi;
+ }
+
+ if (deltaAngle < Number.EPSILON) {
+ if (samePoints) {
+ deltaAngle = 0;
+ } else {
+ deltaAngle = twoPi;
+ }
+ }
+
+ if (this.aClockwise === true && !samePoints) {
+ if (deltaAngle === twoPi) {
+ deltaAngle = -twoPi;
+ } else {
+ deltaAngle = deltaAngle - twoPi;
+ }
+ }
+
+ var angle = this.aStartAngle + t * deltaAngle;
+ var x = this.aX + this.xRadius * Math.cos(angle);
+ var y = this.aY + this.yRadius * Math.sin(angle);
+
+ if (this.aRotation !== 0) {
+ var cos = Math.cos(this.aRotation);
+ var sin = Math.sin(this.aRotation);
+ var tx = x - this.aX;
+ var ty = y - this.aY; // Rotate the point about the center of the ellipse.
+
+ x = tx * cos - ty * sin + this.aX;
+ y = tx * sin + ty * cos + this.aY;
+ }
+
+ return point.set(x, y);
+ };
+
+ EllipseCurve.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.aX = source.aX;
+ this.aY = source.aY;
+ this.xRadius = source.xRadius;
+ this.yRadius = source.yRadius;
+ this.aStartAngle = source.aStartAngle;
+ this.aEndAngle = source.aEndAngle;
+ this.aClockwise = source.aClockwise;
+ this.aRotation = source.aRotation;
+ return this;
+ };
+
+ EllipseCurve.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.aX = this.aX;
+ data.aY = this.aY;
+ data.xRadius = this.xRadius;
+ data.yRadius = this.yRadius;
+ data.aStartAngle = this.aStartAngle;
+ data.aEndAngle = this.aEndAngle;
+ data.aClockwise = this.aClockwise;
+ data.aRotation = this.aRotation;
+ return data;
+ };
+
+ EllipseCurve.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.aX = json.aX;
+ this.aY = json.aY;
+ this.xRadius = json.xRadius;
+ this.yRadius = json.yRadius;
+ this.aStartAngle = json.aStartAngle;
+ this.aEndAngle = json.aEndAngle;
+ this.aClockwise = json.aClockwise;
+ this.aRotation = json.aRotation;
+ return this;
+ };
+
+ function ArcCurve(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
+ EllipseCurve.call(this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
+ this.type = 'ArcCurve';
+ }
+
+ ArcCurve.prototype = Object.create(EllipseCurve.prototype);
+ ArcCurve.prototype.constructor = ArcCurve;
+ ArcCurve.prototype.isArcCurve = true;
+
+ /**
+ * Centripetal CatmullRom Curve - which is useful for avoiding
+ * cusps and self-intersections in non-uniform catmull rom curves.
+ * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
+ *
+ * curve.type accepts centripetal(default), chordal and catmullrom
+ * curve.tension is used for catmullrom which defaults to 0.5
+ */
+
+ /*
+ Based on an optimized c++ solution in
+ - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
+ - http://ideone.com/NoEbVM
+
+ This CubicPoly class could be used for reusing some variables and calculations,
+ but for three.js curve use, it could be possible inlined and flatten into a single function call
+ which can be placed in CurveUtils.
+ */
+
+ function CubicPoly() {
+ var c0 = 0,
+ c1 = 0,
+ c2 = 0,
+ c3 = 0;
+ /*
+ * Compute coefficients for a cubic polynomial
+ * p(s) = c0 + c1*s + c2*s^2 + c3*s^3
+ * such that
+ * p(0) = x0, p(1) = x1
+ * and
+ * p'(0) = t0, p'(1) = t1.
+ */
+
+ function init(x0, x1, t0, t1) {
+ c0 = x0;
+ c1 = t0;
+ c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
+ c3 = 2 * x0 - 2 * x1 + t0 + t1;
+ }
+
+ return {
+ initCatmullRom: function initCatmullRom(x0, x1, x2, x3, tension) {
+ init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
+ },
+ initNonuniformCatmullRom: function initNonuniformCatmullRom(x0, x1, x2, x3, dt0, dt1, dt2) {
+ // compute tangents when parameterized in [t1,t2]
+ var t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
+ var t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]
+
+ t1 *= dt1;
+ t2 *= dt1;
+ init(x1, x2, t1, t2);
+ },
+ calc: function calc(t) {
+ var t2 = t * t;
+ var t3 = t2 * t;
+ return c0 + c1 * t + c2 * t2 + c3 * t3;
+ }
+ };
+ } //
+
+
+ var tmp = new Vector3();
+ var px = new CubicPoly(),
+ py = new CubicPoly(),
+ pz = new CubicPoly();
+
+ function CatmullRomCurve3(points, closed, curveType, tension) {
+ if (points === void 0) {
+ points = [];
+ }
+
+ if (closed === void 0) {
+ closed = false;
+ }
+
+ if (curveType === void 0) {
+ curveType = 'centripetal';
+ }
+
+ if (tension === void 0) {
+ tension = 0.5;
+ }
+
+ Curve.call(this);
+ this.type = 'CatmullRomCurve3';
+ this.points = points;
+ this.closed = closed;
+ this.curveType = curveType;
+ this.tension = tension;
+ }
+
+ CatmullRomCurve3.prototype = Object.create(Curve.prototype);
+ CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;
+ CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
+
+ CatmullRomCurve3.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector3();
+ }
+
+ var point = optionalTarget;
+ var points = this.points;
+ var l = points.length;
+ var p = (l - (this.closed ? 0 : 1)) * t;
+ var intPoint = Math.floor(p);
+ var weight = p - intPoint;
+
+ if (this.closed) {
+ intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
+ } else if (weight === 0 && intPoint === l - 1) {
+ intPoint = l - 2;
+ weight = 1;
+ }
+
+ var p0, p3; // 4 points (p1 & p2 defined below)
+
+ if (this.closed || intPoint > 0) {
+ p0 = points[(intPoint - 1) % l];
+ } else {
+ // extrapolate first point
+ tmp.subVectors(points[0], points[1]).add(points[0]);
+ p0 = tmp;
+ }
+
+ var p1 = points[intPoint % l];
+ var p2 = points[(intPoint + 1) % l];
+
+ if (this.closed || intPoint + 2 < l) {
+ p3 = points[(intPoint + 2) % l];
+ } else {
+ // extrapolate last point
+ tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
+ p3 = tmp;
+ }
+
+ if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
+ // init Centripetal / Chordal Catmull-Rom
+ var pow = this.curveType === 'chordal' ? 0.5 : 0.25;
+ var dt0 = Math.pow(p0.distanceToSquared(p1), pow);
+ var dt1 = Math.pow(p1.distanceToSquared(p2), pow);
+ var dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points
+
+ if (dt1 < 1e-4) dt1 = 1.0;
+ if (dt0 < 1e-4) dt0 = dt1;
+ if (dt2 < 1e-4) dt2 = dt1;
+ px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
+ py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
+ pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
+ } else if (this.curveType === 'catmullrom') {
+ px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
+ py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
+ pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
+ }
+
+ point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
+ return point;
+ };
+
+ CatmullRomCurve3.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.points = [];
+
+ for (var i = 0, l = source.points.length; i < l; i++) {
+ var point = source.points[i];
+ this.points.push(point.clone());
+ }
+
+ this.closed = source.closed;
+ this.curveType = source.curveType;
+ this.tension = source.tension;
+ return this;
+ };
+
+ CatmullRomCurve3.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.points = [];
+
+ for (var i = 0, l = this.points.length; i < l; i++) {
+ var point = this.points[i];
+ data.points.push(point.toArray());
+ }
+
+ data.closed = this.closed;
+ data.curveType = this.curveType;
+ data.tension = this.tension;
+ return data;
+ };
+
+ CatmullRomCurve3.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.points = [];
+
+ for (var i = 0, l = json.points.length; i < l; i++) {
+ var point = json.points[i];
+ this.points.push(new Vector3().fromArray(point));
+ }
+
+ this.closed = json.closed;
+ this.curveType = json.curveType;
+ this.tension = json.tension;
+ return this;
+ };
+
+ /**
+ * Bezier Curves formulas obtained from
+ * http://en.wikipedia.org/wiki/Bézier_curve
+ */
+ function CatmullRom(t, p0, p1, p2, p3) {
+ var v0 = (p2 - p0) * 0.5;
+ var v1 = (p3 - p1) * 0.5;
+ var t2 = t * t;
+ var t3 = t * t2;
+ return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
+ } //
+
+
+ function QuadraticBezierP0(t, p) {
+ var k = 1 - t;
+ return k * k * p;
+ }
+
+ function QuadraticBezierP1(t, p) {
+ return 2 * (1 - t) * t * p;
+ }
+
+ function QuadraticBezierP2(t, p) {
+ return t * t * p;
+ }
+
+ function QuadraticBezier(t, p0, p1, p2) {
+ return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);
+ } //
+
+
+ function CubicBezierP0(t, p) {
+ var k = 1 - t;
+ return k * k * k * p;
+ }
+
+ function CubicBezierP1(t, p) {
+ var k = 1 - t;
+ return 3 * k * k * t * p;
+ }
+
+ function CubicBezierP2(t, p) {
+ return 3 * (1 - t) * t * t * p;
+ }
+
+ function CubicBezierP3(t, p) {
+ return t * t * t * p;
+ }
+
+ function CubicBezier(t, p0, p1, p2, p3) {
+ return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);
+ }
+
+ function CubicBezierCurve(v0, v1, v2, v3) {
+ if (v0 === void 0) {
+ v0 = new Vector2();
+ }
+
+ if (v1 === void 0) {
+ v1 = new Vector2();
+ }
+
+ if (v2 === void 0) {
+ v2 = new Vector2();
+ }
+
+ if (v3 === void 0) {
+ v3 = new Vector2();
+ }
+
+ Curve.call(this);
+ this.type = 'CubicBezierCurve';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ this.v3 = v3;
+ }
+
+ CubicBezierCurve.prototype = Object.create(Curve.prototype);
+ CubicBezierCurve.prototype.constructor = CubicBezierCurve;
+ CubicBezierCurve.prototype.isCubicBezierCurve = true;
+
+ CubicBezierCurve.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector2();
+ }
+
+ var point = optionalTarget;
+ var v0 = this.v0,
+ v1 = this.v1,
+ v2 = this.v2,
+ v3 = this.v3;
+ point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));
+ return point;
+ };
+
+ CubicBezierCurve.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ this.v3.copy(source.v3);
+ return this;
+ };
+
+ CubicBezierCurve.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ data.v3 = this.v3.toArray();
+ return data;
+ };
+
+ CubicBezierCurve.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ this.v3.fromArray(json.v3);
+ return this;
+ };
+
+ function CubicBezierCurve3(v0, v1, v2, v3) {
+ if (v0 === void 0) {
+ v0 = new Vector3();
+ }
+
+ if (v1 === void 0) {
+ v1 = new Vector3();
+ }
+
+ if (v2 === void 0) {
+ v2 = new Vector3();
+ }
+
+ if (v3 === void 0) {
+ v3 = new Vector3();
+ }
+
+ Curve.call(this);
+ this.type = 'CubicBezierCurve3';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ this.v3 = v3;
+ }
+
+ CubicBezierCurve3.prototype = Object.create(Curve.prototype);
+ CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;
+ CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
+
+ CubicBezierCurve3.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector3();
+ }
+
+ var point = optionalTarget;
+ var v0 = this.v0,
+ v1 = this.v1,
+ v2 = this.v2,
+ v3 = this.v3;
+ point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));
+ return point;
+ };
+
+ CubicBezierCurve3.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ this.v3.copy(source.v3);
+ return this;
+ };
+
+ CubicBezierCurve3.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ data.v3 = this.v3.toArray();
+ return data;
+ };
+
+ CubicBezierCurve3.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ this.v3.fromArray(json.v3);
+ return this;
+ };
+
+ function LineCurve(v1, v2) {
+ if (v1 === void 0) {
+ v1 = new Vector2();
+ }
+
+ if (v2 === void 0) {
+ v2 = new Vector2();
+ }
+
+ Curve.call(this);
+ this.type = 'LineCurve';
+ this.v1 = v1;
+ this.v2 = v2;
+ }
+
+ LineCurve.prototype = Object.create(Curve.prototype);
+ LineCurve.prototype.constructor = LineCurve;
+ LineCurve.prototype.isLineCurve = true;
+
+ LineCurve.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector2();
+ }
+
+ var point = optionalTarget;
+
+ if (t === 1) {
+ point.copy(this.v2);
+ } else {
+ point.copy(this.v2).sub(this.v1);
+ point.multiplyScalar(t).add(this.v1);
+ }
+
+ return point;
+ }; // Line curve is linear, so we can overwrite default getPointAt
+
+
+ LineCurve.prototype.getPointAt = function (u, optionalTarget) {
+ return this.getPoint(u, optionalTarget);
+ };
+
+ LineCurve.prototype.getTangent = function (t, optionalTarget) {
+ var tangent = optionalTarget || new Vector2();
+ tangent.copy(this.v2).sub(this.v1).normalize();
+ return tangent;
+ };
+
+ LineCurve.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ };
+
+ LineCurve.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ };
+
+ LineCurve.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ };
+
+ function LineCurve3(v1, v2) {
+ if (v1 === void 0) {
+ v1 = new Vector3();
+ }
+
+ if (v2 === void 0) {
+ v2 = new Vector3();
+ }
+
+ Curve.call(this);
+ this.type = 'LineCurve3';
+ this.v1 = v1;
+ this.v2 = v2;
+ }
+
+ LineCurve3.prototype = Object.create(Curve.prototype);
+ LineCurve3.prototype.constructor = LineCurve3;
+ LineCurve3.prototype.isLineCurve3 = true;
+
+ LineCurve3.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector3();
+ }
+
+ var point = optionalTarget;
+
+ if (t === 1) {
+ point.copy(this.v2);
+ } else {
+ point.copy(this.v2).sub(this.v1);
+ point.multiplyScalar(t).add(this.v1);
+ }
+
+ return point;
+ }; // Line curve is linear, so we can overwrite default getPointAt
+
+
+ LineCurve3.prototype.getPointAt = function (u, optionalTarget) {
+ return this.getPoint(u, optionalTarget);
+ };
+
+ LineCurve3.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ };
+
+ LineCurve3.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ };
+
+ LineCurve3.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ };
+
+ function QuadraticBezierCurve(v0, v1, v2) {
+ if (v0 === void 0) {
+ v0 = new Vector2();
+ }
+
+ if (v1 === void 0) {
+ v1 = new Vector2();
+ }
+
+ if (v2 === void 0) {
+ v2 = new Vector2();
+ }
+
+ Curve.call(this);
+ this.type = 'QuadraticBezierCurve';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ }
+
+ QuadraticBezierCurve.prototype = Object.create(Curve.prototype);
+ QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;
+ QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
+
+ QuadraticBezierCurve.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector2();
+ }
+
+ var point = optionalTarget;
+ var v0 = this.v0,
+ v1 = this.v1,
+ v2 = this.v2;
+ point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));
+ return point;
+ };
+
+ QuadraticBezierCurve.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ };
+
+ QuadraticBezierCurve.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ };
+
+ QuadraticBezierCurve.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ };
+
+ function QuadraticBezierCurve3(v0, v1, v2) {
+ if (v0 === void 0) {
+ v0 = new Vector3();
+ }
+
+ if (v1 === void 0) {
+ v1 = new Vector3();
+ }
+
+ if (v2 === void 0) {
+ v2 = new Vector3();
+ }
+
+ Curve.call(this);
+ this.type = 'QuadraticBezierCurve3';
+ this.v0 = v0;
+ this.v1 = v1;
+ this.v2 = v2;
+ }
+
+ QuadraticBezierCurve3.prototype = Object.create(Curve.prototype);
+ QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;
+ QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
+
+ QuadraticBezierCurve3.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector3();
+ }
+
+ var point = optionalTarget;
+ var v0 = this.v0,
+ v1 = this.v1,
+ v2 = this.v2;
+ point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));
+ return point;
+ };
+
+ QuadraticBezierCurve3.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.v0.copy(source.v0);
+ this.v1.copy(source.v1);
+ this.v2.copy(source.v2);
+ return this;
+ };
+
+ QuadraticBezierCurve3.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.v0 = this.v0.toArray();
+ data.v1 = this.v1.toArray();
+ data.v2 = this.v2.toArray();
+ return data;
+ };
+
+ QuadraticBezierCurve3.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.v0.fromArray(json.v0);
+ this.v1.fromArray(json.v1);
+ this.v2.fromArray(json.v2);
+ return this;
+ };
+
+ function SplineCurve(points) {
+ if (points === void 0) {
+ points = [];
+ }
+
+ Curve.call(this);
+ this.type = 'SplineCurve';
+ this.points = points;
+ }
+
+ SplineCurve.prototype = Object.create(Curve.prototype);
+ SplineCurve.prototype.constructor = SplineCurve;
+ SplineCurve.prototype.isSplineCurve = true;
+
+ SplineCurve.prototype.getPoint = function (t, optionalTarget) {
+ if (optionalTarget === void 0) {
+ optionalTarget = new Vector2();
+ }
+
+ var point = optionalTarget;
+ var points = this.points;
+ var p = (points.length - 1) * t;
+ var intPoint = Math.floor(p);
+ var weight = p - intPoint;
+ var p0 = points[intPoint === 0 ? intPoint : intPoint - 1];
+ var p1 = points[intPoint];
+ var p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];
+ var p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];
+ point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));
+ return point;
+ };
+
+ SplineCurve.prototype.copy = function (source) {
+ Curve.prototype.copy.call(this, source);
+ this.points = [];
+
+ for (var i = 0, l = source.points.length; i < l; i++) {
+ var point = source.points[i];
+ this.points.push(point.clone());
+ }
+
+ return this;
+ };
+
+ SplineCurve.prototype.toJSON = function () {
+ var data = Curve.prototype.toJSON.call(this);
+ data.points = [];
+
+ for (var i = 0, l = this.points.length; i < l; i++) {
+ var point = this.points[i];
+ data.points.push(point.toArray());
+ }
+
+ return data;
+ };
+
+ SplineCurve.prototype.fromJSON = function (json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.points = [];
+
+ for (var i = 0, l = json.points.length; i < l; i++) {
+ var point = json.points[i];
+ this.points.push(new Vector2().fromArray(point));
+ }
+
+ return this;
+ };
+
+ var Curves = /*#__PURE__*/Object.freeze({
+ __proto__: null,
+ ArcCurve: ArcCurve,
+ CatmullRomCurve3: CatmullRomCurve3,
+ CubicBezierCurve: CubicBezierCurve,
+ CubicBezierCurve3: CubicBezierCurve3,
+ EllipseCurve: EllipseCurve,
+ LineCurve: LineCurve,
+ LineCurve3: LineCurve3,
+ QuadraticBezierCurve: QuadraticBezierCurve,
+ QuadraticBezierCurve3: QuadraticBezierCurve3,
+ SplineCurve: SplineCurve
+ });
+
+ /**************************************************************
+ * Curved Path - a curve path is simply a array of connected
+ * curves, but retains the api of a curve
+ **************************************************************/
+
+ function CurvePath() {
+ Curve.call(this);
+ this.type = 'CurvePath';
+ this.curves = [];
+ this.autoClose = false; // Automatically closes the path
+ }
+
+ CurvePath.prototype = Object.assign(Object.create(Curve.prototype), {
+ constructor: CurvePath,
+ add: function add(curve) {
+ this.curves.push(curve);
+ },
+ closePath: function closePath() {
+ // Add a line curve if start and end of lines are not connected
+ var startPoint = this.curves[0].getPoint(0);
+ var endPoint = this.curves[this.curves.length - 1].getPoint(1);
+
+ if (!startPoint.equals(endPoint)) {
+ this.curves.push(new LineCurve(endPoint, startPoint));
+ }
+ },
+ // To get accurate point with reference to
+ // entire path distance at time t,
+ // following has to be done:
+ // 1. Length of each sub path have to be known
+ // 2. Locate and identify type of curve
+ // 3. Get t for the curve
+ // 4. Return curve.getPointAt(t')
+ getPoint: function getPoint(t) {
+ var d = t * this.getLength();
+ var curveLengths = this.getCurveLengths();
+ var i = 0; // To think about boundaries points.
+
+ while (i < curveLengths.length) {
+ if (curveLengths[i] >= d) {
+ var diff = curveLengths[i] - d;
+ var curve = this.curves[i];
+ var segmentLength = curve.getLength();
+ var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
+ return curve.getPointAt(u);
+ }
+
+ i++;
+ }
+
+ return null; // loop where sum != 0, sum > d , sum+1 <d
+ },
+ // We cannot use the default THREE.Curve getPoint() with getLength() because in
+ // THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
+ // getPoint() depends on getLength
+ getLength: function getLength() {
+ var lens = this.getCurveLengths();
+ return lens[lens.length - 1];
+ },
+ // cacheLengths must be recalculated.
+ updateArcLengths: function updateArcLengths() {
+ this.needsUpdate = true;
+ this.cacheLengths = null;
+ this.getCurveLengths();
+ },
+ // Compute lengths and cache them
+ // We cannot overwrite getLengths() because UtoT mapping uses it.
+ getCurveLengths: function getCurveLengths() {
+ // We use cache values if curves and cache array are same length
+ if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {
+ return this.cacheLengths;
+ } // Get length of sub-curve
+ // Push sums into cached array
+
+
+ var lengths = [];
+ var sums = 0;
+
+ for (var i = 0, l = this.curves.length; i < l; i++) {
+ sums += this.curves[i].getLength();
+ lengths.push(sums);
+ }
+
+ this.cacheLengths = lengths;
+ return lengths;
+ },
+ getSpacedPoints: function getSpacedPoints(divisions) {
+ if (divisions === void 0) {
+ divisions = 40;
+ }
+
+ var points = [];
+
+ for (var i = 0; i <= divisions; i++) {
+ points.push(this.getPoint(i / divisions));
+ }
+
+ if (this.autoClose) {
+ points.push(points[0]);
+ }
+
+ return points;
+ },
+ getPoints: function getPoints(divisions) {
+ if (divisions === void 0) {
+ divisions = 12;
+ }
+
+ var points = [];
+ var last;
+
+ for (var i = 0, curves = this.curves; i < curves.length; i++) {
+ var curve = curves[i];
+ var resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;
+ var pts = curve.getPoints(resolution);
+
+ for (var j = 0; j < pts.length; j++) {
+ var point = pts[j];
+ if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates
+
+ points.push(point);
+ last = point;
+ }
+ }
+
+ if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {
+ points.push(points[0]);
+ }
+
+ return points;
+ },
+ copy: function copy(source) {
+ Curve.prototype.copy.call(this, source);
+ this.curves = [];
+
+ for (var i = 0, l = source.curves.length; i < l; i++) {
+ var curve = source.curves[i];
+ this.curves.push(curve.clone());
+ }
+
+ this.autoClose = source.autoClose;
+ return this;
+ },
+ toJSON: function toJSON() {
+ var data = Curve.prototype.toJSON.call(this);
+ data.autoClose = this.autoClose;
+ data.curves = [];
+
+ for (var i = 0, l = this.curves.length; i < l; i++) {
+ var curve = this.curves[i];
+ data.curves.push(curve.toJSON());
+ }
+
+ return data;
+ },
+ fromJSON: function fromJSON(json) {
+ Curve.prototype.fromJSON.call(this, json);
+ this.autoClose = json.autoClose;
+ this.curves = [];
+
+ for (var i = 0, l = json.curves.length; i < l; i++) {
+ var curve = json.curves[i];
+ this.curves.push(new Curves[curve.type]().fromJSON(curve));
+ }
+
+ return this;
+ }
+ });
+
+ function Path(points) {
+ CurvePath.call(this);
+ this.type = 'Path';
+ this.currentPoint = new Vector2();
+
+ if (points) {
+ this.setFromPoints(points);
+ }
+ }
+
+ Path.prototype = Object.assign(Object.create(CurvePath.prototype), {
+ constructor: Path,
+ setFromPoints: function setFromPoints(points) {
+ this.moveTo(points[0].x, points[0].y);
+
+ for (var i = 1, l = points.length; i < l; i++) {
+ this.lineTo(points[i].x, points[i].y);
+ }
+
+ return this;
+ },
+ moveTo: function moveTo(x, y) {
+ this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?
+
+ return this;
+ },
+ lineTo: function lineTo(x, y) {
+ var curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));
+ this.curves.push(curve);
+ this.currentPoint.set(x, y);
+ return this;
+ },
+ quadraticCurveTo: function quadraticCurveTo(aCPx, aCPy, aX, aY) {
+ var curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));
+ this.curves.push(curve);
+ this.currentPoint.set(aX, aY);
+ return this;
+ },
+ bezierCurveTo: function bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
+ var curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));
+ this.curves.push(curve);
+ this.currentPoint.set(aX, aY);
+ return this;
+ },
+ splineThru: function splineThru(pts
+ /*Array of Vector*/
+ ) {
+ var npts = [this.currentPoint.clone()].concat(pts);
+ var curve = new SplineCurve(npts);
+ this.curves.push(curve);
+ this.currentPoint.copy(pts[pts.length - 1]);
+ return this;
+ },
+ arc: function arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
+ var x0 = this.currentPoint.x;
+ var y0 = this.currentPoint.y;
+ this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);
+ return this;
+ },
+ absarc: function absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
+ this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
+ return this;
+ },
+ ellipse: function ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
+ var x0 = this.currentPoint.x;
+ var y0 = this.currentPoint.y;
+ this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
+ return this;
+ },
+ absellipse: function absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
+ var curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
+
+ if (this.curves.length > 0) {
+ // if a previous curve is present, attempt to join
+ var firstPoint = curve.getPoint(0);
+
+ if (!firstPoint.equals(this.currentPoint)) {
+ this.lineTo(firstPoint.x, firstPoint.y);
+ }
+ }
+
+ this.curves.push(curve);
+ var lastPoint = curve.getPoint(1);
+ this.currentPoint.copy(lastPoint);
+ return this;
+ },
+ copy: function copy(source) {
+ CurvePath.prototype.copy.call(this, source);
+ this.currentPoint.copy(source.currentPoint);
+ return this;
+ },
+ toJSON: function toJSON() {
+ var data = CurvePath.prototype.toJSON.call(this);
+ data.currentPoint = this.currentPoint.toArray();
+ return data;
+ },
+ fromJSON: function fromJSON(json) {
+ CurvePath.prototype.fromJSON.call(this, json);
+ this.currentPoint.fromArray(json.currentPoint);
+ return this;
+ }
+ });
+
+ function Shape(points) {
+ Path.call(this, points);
+ this.uuid = MathUtils.generateUUID();
+ this.type = 'Shape';
+ this.holes = [];
+ }
+
+ Shape.prototype = Object.assign(Object.create(Path.prototype), {
+ constructor: Shape,
+ getPointsHoles: function getPointsHoles(divisions) {
+ var holesPts = [];
+
+ for (var i = 0, l = this.holes.length; i < l; i++) {
+ holesPts[i] = this.holes[i].getPoints(divisions);
+ }
+
+ return holesPts;
+ },
+ // get points of shape and holes (keypoints based on segments parameter)
+ extractPoints: function extractPoints(divisions) {
+ return {
+ shape: this.getPoints(divisions),
+ holes: this.getPointsHoles(divisions)
+ };
+ },
+ copy: function copy(source) {
+ Path.prototype.copy.call(this, source);
+ this.holes = [];
+
+ for (var i = 0, l = source.holes.length; i < l; i++) {
+ var hole = source.holes[i];
+ this.holes.push(hole.clone());
+ }
+
+ return this;
+ },
+ toJSON: function toJSON() {
+ var data = Path.prototype.toJSON.call(this);
+ data.uuid = this.uuid;
+ data.holes = [];
+
+ for (var i = 0, l = this.holes.length; i < l; i++) {
+ var hole = this.holes[i];
+ data.holes.push(hole.toJSON());
+ }
+
+ return data;
+ },
+ fromJSON: function fromJSON(json) {
+ Path.prototype.fromJSON.call(this, json);
+ this.uuid = json.uuid;
+ this.holes = [];
+
+ for (var i = 0, l = json.holes.length; i < l; i++) {
+ var hole = json.holes[i];
+ this.holes.push(new Path().fromJSON(hole));
+ }
+
+ return this;
+ }
+ });
+
+ function Light(color, intensity) {
+ if (intensity === void 0) {
+ intensity = 1;
+ }
+
+ Object3D.call(this);
+ this.type = 'Light';
+ this.color = new Color(color);
+ this.intensity = intensity;
+ }
+
+ Light.prototype = Object.assign(Object.create(Object3D.prototype), {
+ constructor: Light,
+ isLight: true,
+ copy: function copy(source) {
+ Object3D.prototype.copy.call(this, source);
+ this.color.copy(source.color);
+ this.intensity = source.intensity;
+ return this;
+ },
+ toJSON: function toJSON(meta) {
+ var data = Object3D.prototype.toJSON.call(this, meta);
+ data.object.color = this.color.getHex();
+ data.object.intensity = this.intensity;
+ if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();
+ if (this.distance !== undefined) data.object.distance = this.distance;
+ if (this.angle !== undefined) data.object.angle = this.angle;
+ if (this.decay !== undefined) data.object.decay = this.decay;
+ if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;
+ if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();
+ return data;
+ }
+ });
+
+ function HemisphereLight(skyColor, groundColor, intensity) {
+ Light.call(this, skyColor, intensity);
+ this.type = 'HemisphereLight';
+ this.position.copy(Object3D.DefaultUp);
+ this.updateMatrix();
+ this.groundColor = new Color(groundColor);
+ }
+
+ HemisphereLight.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: HemisphereLight,
+ isHemisphereLight: true,
+ copy: function copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.groundColor.copy(source.groundColor);
+ return this;
+ }
+ });
+
+ function LightShadow(camera) {
+ this.camera = camera;
+ this.bias = 0;
+ this.normalBias = 0;
+ this.radius = 1;
+ this.mapSize = new Vector2(512, 512);
+ this.map = null;
+ this.mapPass = null;
+ this.matrix = new Matrix4();
+ this.autoUpdate = true;
+ this.needsUpdate = false;
+ this._frustum = new Frustum();
+ this._frameExtents = new Vector2(1, 1);
+ this._viewportCount = 1;
+ this._viewports = [new Vector4(0, 0, 1, 1)];
+ }
+
+ Object.assign(LightShadow.prototype, {
+ _projScreenMatrix: new Matrix4(),
+ _lightPositionWorld: new Vector3(),
+ _lookTarget: new Vector3(),
+ getViewportCount: function getViewportCount() {
+ return this._viewportCount;
+ },
+ getFrustum: function getFrustum() {
+ return this._frustum;
+ },
+ updateMatrices: function updateMatrices(light) {
+ var shadowCamera = this.camera,
+ shadowMatrix = this.matrix,
+ projScreenMatrix = this._projScreenMatrix,
+ lookTarget = this._lookTarget,
+ lightPositionWorld = this._lightPositionWorld;
+ lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
+ shadowCamera.position.copy(lightPositionWorld);
+ lookTarget.setFromMatrixPosition(light.target.matrixWorld);
+ shadowCamera.lookAt(lookTarget);
+ shadowCamera.updateMatrixWorld();
+ projScreenMatrix.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);
+
+ this._frustum.setFromProjectionMatrix(projScreenMatrix);
+
+ shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
+ shadowMatrix.multiply(shadowCamera.projectionMatrix);
+ shadowMatrix.multiply(shadowCamera.matrixWorldInverse);
+ },
+ getViewport: function getViewport(viewportIndex) {
+ return this._viewports[viewportIndex];
+ },
+ getFrameExtents: function getFrameExtents() {
+ return this._frameExtents;
+ },
+ copy: function copy(source) {
+ this.camera = source.camera.clone();
+ this.bias = source.bias;
+ this.radius = source.radius;
+ this.mapSize.copy(source.mapSize);
+ return this;
+ },
+ clone: function clone() {
+ return new this.constructor().copy(this);
+ },
+ toJSON: function toJSON() {
+ var object = {};
+ if (this.bias !== 0) object.bias = this.bias;
+ if (this.normalBias !== 0) object.normalBias = this.normalBias;
+ if (this.radius !== 1) object.radius = this.radius;
+ if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();
+ object.camera = this.camera.toJSON(false).object;
+ delete object.camera.matrix;
+ return object;
+ }
+ });
+
+ function SpotLightShadow() {
+ LightShadow.call(this, new PerspectiveCamera(50, 1, 0.5, 500));
+ this.focus = 1;
+ }
+
+ SpotLightShadow.prototype = Object.assign(Object.create(LightShadow.prototype), {
+ constructor: SpotLightShadow,
+ isSpotLightShadow: true,
+ updateMatrices: function updateMatrices(light) {
+ var camera = this.camera;
+ var fov = MathUtils.RAD2DEG * 2 * light.angle * this.focus;
+ var aspect = this.mapSize.width / this.mapSize.height;
+ var far = light.distance || camera.far;
+
+ if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {
+ camera.fov = fov;
+ camera.aspect = aspect;
+ camera.far = far;
+ camera.updateProjectionMatrix();
+ }
+
+ LightShadow.prototype.updateMatrices.call(this, light);
+ }
+ });
+
+ function SpotLight(color, intensity, distance, angle, penumbra, decay) {
+ Light.call(this, color, intensity);
+ this.type = 'SpotLight';
+ this.position.copy(Object3D.DefaultUp);
+ this.updateMatrix();
+ this.target = new Object3D();
+ Object.defineProperty(this, 'power', {
+ get: function get() {
+ // intensity = power per solid angle.
+ // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
+ return this.intensity * Math.PI;
+ },
+ set: function set(power) {
+ // intensity = power per solid angle.
+ // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
+ this.intensity = power / Math.PI;
+ }
+ });
+ this.distance = distance !== undefined ? distance : 0;
+ this.angle = angle !== undefined ? angle : Math.PI / 3;
+ this.penumbra = penumbra !== undefined ? penumbra : 0;
+ this.decay = decay !== undefined ? decay : 1; // for physically correct lights, should be 2.
+
+ this.shadow = new SpotLightShadow();
+ }
+
+ SpotLight.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: SpotLight,
+ isSpotLight: true,
+ copy: function copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.distance = source.distance;
+ this.angle = source.angle;
+ this.penumbra = source.penumbra;
+ this.decay = source.decay;
+ this.target = source.target.clone();
+ this.shadow = source.shadow.clone();
+ return this;
+ }
+ });
+
+ function PointLightShadow() {
+ LightShadow.call(this, new PerspectiveCamera(90, 1, 0.5, 500));
+ this._frameExtents = new Vector2(4, 2);
+ this._viewportCount = 6;
+ this._viewports = [// These viewports map a cube-map onto a 2D texture with the
+ // following orientation:
+ //
+ // xzXZ
+ // y Y
+ //
+ // X - Positive x direction
+ // x - Negative x direction
+ // Y - Positive y direction
+ // y - Negative y direction
+ // Z - Positive z direction
+ // z - Negative z direction
+ // positive X
+ new Vector4(2, 1, 1, 1), // negative X
+ new Vector4(0, 1, 1, 1), // positive Z
+ new Vector4(3, 1, 1, 1), // negative Z
+ new Vector4(1, 1, 1, 1), // positive Y
+ new Vector4(3, 0, 1, 1), // negative Y
+ new Vector4(1, 0, 1, 1)];
+ this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];
+ this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];
+ }
+
+ PointLightShadow.prototype = Object.assign(Object.create(LightShadow.prototype), {
+ constructor: PointLightShadow,
+ isPointLightShadow: true,
+ updateMatrices: function updateMatrices(light, viewportIndex) {
+ if (viewportIndex === void 0) {
+ viewportIndex = 0;
+ }
+
+ var camera = this.camera,
+ shadowMatrix = this.matrix,
+ lightPositionWorld = this._lightPositionWorld,
+ lookTarget = this._lookTarget,
+ projScreenMatrix = this._projScreenMatrix;
+ lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
+ camera.position.copy(lightPositionWorld);
+ lookTarget.copy(camera.position);
+ lookTarget.add(this._cubeDirections[viewportIndex]);
+ camera.up.copy(this._cubeUps[viewportIndex]);
+ camera.lookAt(lookTarget);
+ camera.updateMatrixWorld();
+ shadowMatrix.makeTranslation(-lightPositionWorld.x, -lightPositionWorld.y, -lightPositionWorld.z);
+ projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
+
+ this._frustum.setFromProjectionMatrix(projScreenMatrix);
+ }
+ });
+
+ function PointLight(color, intensity, distance, decay) {
+ Light.call(this, color, intensity);
+ this.type = 'PointLight';
+ Object.defineProperty(this, 'power', {
+ get: function get() {
+ // intensity = power per solid angle.
+ // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
+ return this.intensity * 4 * Math.PI;
+ },
+ set: function set(power) {
+ // intensity = power per solid angle.
+ // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
+ this.intensity = power / (4 * Math.PI);
+ }
+ });
+ this.distance = distance !== undefined ? distance : 0;
+ this.decay = decay !== undefined ? decay : 1; // for physically correct lights, should be 2.
+
+ this.shadow = new PointLightShadow();
+ }
+
+ PointLight.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: PointLight,
+ isPointLight: true,
+ copy: function copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.distance = source.distance;
+ this.decay = source.decay;
+ this.shadow = source.shadow.clone();
+ return this;
+ }
+ });
+
+ function OrthographicCamera(left, right, top, bottom, near, far) {
+ if (left === void 0) {
+ left = -1;
+ }
+
+ if (right === void 0) {
+ right = 1;
+ }
+
+ if (top === void 0) {
+ top = 1;
+ }
+
+ if (bottom === void 0) {
+ bottom = -1;
+ }
+
+ if (near === void 0) {
+ near = 0.1;
+ }
+
+ if (far === void 0) {
+ far = 2000;
+ }
+
+ Camera.call(this);
+ this.type = 'OrthographicCamera';
+ this.zoom = 1;
+ this.view = null;
+ this.left = left;
+ this.right = right;
+ this.top = top;
+ this.bottom = bottom;
+ this.near = near;
+ this.far = far;
+ this.updateProjectionMatrix();
+ }
+
+ OrthographicCamera.prototype = Object.assign(Object.create(Camera.prototype), {
+ constructor: OrthographicCamera,
+ isOrthographicCamera: true,
+ copy: function copy(source, recursive) {
+ Camera.prototype.copy.call(this, source, recursive);
+ this.left = source.left;
+ this.right = source.right;
+ this.top = source.top;
+ this.bottom = source.bottom;
+ this.near = source.near;
+ this.far = source.far;
+ this.zoom = source.zoom;
+ this.view = source.view === null ? null : Object.assign({}, source.view);
+ return this;
+ },
+ setViewOffset: function setViewOffset(fullWidth, fullHeight, x, y, width, height) {
+ if (this.view === null) {
+ this.view = {
+ enabled: true,
+ fullWidth: 1,
+ fullHeight: 1,
+ offsetX: 0,
+ offsetY: 0,
+ width: 1,
+ height: 1
+ };
+ }
+
+ this.view.enabled = true;
+ this.view.fullWidth = fullWidth;
+ this.view.fullHeight = fullHeight;
+ this.view.offsetX = x;
+ this.view.offsetY = y;
+ this.view.width = width;
+ this.view.height = height;
+ this.updateProjectionMatrix();
+ },
+ clearViewOffset: function clearViewOffset() {
+ if (this.view !== null) {
+ this.view.enabled = false;
+ }
+
+ this.updateProjectionMatrix();
+ },
+ updateProjectionMatrix: function updateProjectionMatrix() {
+ var dx = (this.right - this.left) / (2 * this.zoom);
+ var dy = (this.top - this.bottom) / (2 * this.zoom);
+ var cx = (this.right + this.left) / 2;
+ var cy = (this.top + this.bottom) / 2;
+ var left = cx - dx;
+ var right = cx + dx;
+ var top = cy + dy;
+ var bottom = cy - dy;
+
+ if (this.view !== null && this.view.enabled) {
+ var scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;
+ var scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;
+ left += scaleW * this.view.offsetX;
+ right = left + scaleW * this.view.width;
+ top -= scaleH * this.view.offsetY;
+ bottom = top - scaleH * this.view.height;
+ }
+
+ this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);
+ this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
+ },
+ toJSON: function toJSON(meta) {
+ var data = Object3D.prototype.toJSON.call(this, meta);
+ data.object.zoom = this.zoom;
+ data.object.left = this.left;
+ data.object.right = this.right;
+ data.object.top = this.top;
+ data.object.bottom = this.bottom;
+ data.object.near = this.near;
+ data.object.far = this.far;
+ if (this.view !== null) data.object.view = Object.assign({}, this.view);
+ return data;
+ }
+ });
+
+ function DirectionalLightShadow() {
+ LightShadow.call(this, new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));
+ }
+
+ DirectionalLightShadow.prototype = Object.assign(Object.create(LightShadow.prototype), {
+ constructor: DirectionalLightShadow,
+ isDirectionalLightShadow: true,
+ updateMatrices: function updateMatrices(light) {
+ LightShadow.prototype.updateMatrices.call(this, light);
+ }
+ });
+
+ function DirectionalLight(color, intensity) {
+ Light.call(this, color, intensity);
+ this.type = 'DirectionalLight';
+ this.position.copy(Object3D.DefaultUp);
+ this.updateMatrix();
+ this.target = new Object3D();
+ this.shadow = new DirectionalLightShadow();
+ }
+
+ DirectionalLight.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: DirectionalLight,
+ isDirectionalLight: true,
+ copy: function copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.target = source.target.clone();
+ this.shadow = source.shadow.clone();
+ return this;
+ }
+ });
+
+ function AmbientLight(color, intensity) {
+ Light.call(this, color, intensity);
+ this.type = 'AmbientLight';
+ }
+
+ AmbientLight.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: AmbientLight,
+ isAmbientLight: true
+ });
+
+ function RectAreaLight(color, intensity, width, height) {
+ Light.call(this, color, intensity);
+ this.type = 'RectAreaLight';
+ this.width = width !== undefined ? width : 10;
+ this.height = height !== undefined ? height : 10;
+ }
+
+ RectAreaLight.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: RectAreaLight,
+ isRectAreaLight: true,
+ copy: function copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.width = source.width;
+ this.height = source.height;
+ return this;
+ },
+ toJSON: function toJSON(meta) {
+ var data = Light.prototype.toJSON.call(this, meta);
+ data.object.width = this.width;
+ data.object.height = this.height;
+ return data;
+ }
+ });
+
+ /**
+ * Primary reference:
+ * https://graphics.stanford.edu/papers/envmap/envmap.pdf
+ *
+ * Secondary reference:
+ * https://www.ppsloan.org/publications/StupidSH36.pdf
+ */
+ // 3-band SH defined by 9 coefficients
+
+ var SphericalHarmonics3 = /*#__PURE__*/function () {
+ function SphericalHarmonics3() {
+ Object.defineProperty(this, 'isSphericalHarmonics3', {
+ value: true
+ });
+ this.coefficients = [];
+
+ for (var i = 0; i < 9; i++) {
+ this.coefficients.push(new Vector3());
+ }
+ }
+
+ var _proto = SphericalHarmonics3.prototype;
+
+ _proto.set = function set(coefficients) {
+ for (var i = 0; i < 9; i++) {
+ this.coefficients[i].copy(coefficients[i]);
+ }
+
+ return this;
+ };
+
+ _proto.zero = function zero() {
+ for (var i = 0; i < 9; i++) {
+ this.coefficients[i].set(0, 0, 0);
+ }
+
+ return this;
+ } // get the radiance in the direction of the normal
+ // target is a Vector3
+ ;
+
+ _proto.getAt = function getAt(normal, target) {
+ // normal is assumed to be unit length
+ var x = normal.x,
+ y = normal.y,
+ z = normal.z;
+ var coeff = this.coefficients; // band 0
+
+ target.copy(coeff[0]).multiplyScalar(0.282095); // band 1
+
+ target.addScaledVector(coeff[1], 0.488603 * y);
+ target.addScaledVector(coeff[2], 0.488603 * z);
+ target.addScaledVector(coeff[3], 0.488603 * x); // band 2
+
+ target.addScaledVector(coeff[4], 1.092548 * (x * y));
+ target.addScaledVector(coeff[5], 1.092548 * (y * z));
+ target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));
+ target.addScaledVector(coeff[7], 1.092548 * (x * z));
+ target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));
+ return target;
+ } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
+ // target is a Vector3
+ // https://graphics.stanford.edu/papers/envmap/envmap.pdf
+ ;
+
+ _proto.getIrradianceAt = function getIrradianceAt(normal, target) {
+ // normal is assumed to be unit length
+ var x = normal.x,
+ y = normal.y,
+ z = normal.z;
+ var coeff = this.coefficients; // band 0
+
+ target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095
+ // band 1
+
+ target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603
+
+ target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);
+ target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2
+
+ target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548
+
+ target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);
+ target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3
+
+ target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);
+ target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274
+
+ return target;
+ };
+
+ _proto.add = function add(sh) {
+ for (var i = 0; i < 9; i++) {
+ this.coefficients[i].add(sh.coefficients[i]);
+ }
+
+ return this;
+ };
+
+ _proto.addScaledSH = function addScaledSH(sh, s) {
+ for (var i = 0; i < 9; i++) {
+ this.coefficients[i].addScaledVector(sh.coefficients[i], s);
+ }
+
+ return this;
+ };
+
+ _proto.scale = function scale(s) {
+ for (var i = 0; i < 9; i++) {
+ this.coefficients[i].multiplyScalar(s);
+ }
+
+ return this;
+ };
+
+ _proto.lerp = function lerp(sh, alpha) {
+ for (var i = 0; i < 9; i++) {
+ this.coefficients[i].lerp(sh.coefficients[i], alpha);
+ }
+
+ return this;
+ };
+
+ _proto.equals = function equals(sh) {
+ for (var i = 0; i < 9; i++) {
+ if (!this.coefficients[i].equals(sh.coefficients[i])) {
+ return false;
+ }
+ }
+
+ return true;
+ };
+
+ _proto.copy = function copy(sh) {
+ return this.set(sh.coefficients);
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.fromArray = function fromArray(array, offset) {
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ var coefficients = this.coefficients;
+
+ for (var i = 0; i < 9; i++) {
+ coefficients[i].fromArray(array, offset + i * 3);
+ }
+
+ return this;
+ };
+
+ _proto.toArray = function toArray(array, offset) {
+ if (array === void 0) {
+ array = [];
+ }
+
+ if (offset === void 0) {
+ offset = 0;
+ }
+
+ var coefficients = this.coefficients;
+
+ for (var i = 0; i < 9; i++) {
+ coefficients[i].toArray(array, offset + i * 3);
+ }
+
+ return array;
+ } // evaluate the basis functions
+ // shBasis is an Array[ 9 ]
+ ;
+
+ SphericalHarmonics3.getBasisAt = function getBasisAt(normal, shBasis) {
+ // normal is assumed to be unit length
+ var x = normal.x,
+ y = normal.y,
+ z = normal.z; // band 0
+
+ shBasis[0] = 0.282095; // band 1
+
+ shBasis[1] = 0.488603 * y;
+ shBasis[2] = 0.488603 * z;
+ shBasis[3] = 0.488603 * x; // band 2
+
+ shBasis[4] = 1.092548 * x * y;
+ shBasis[5] = 1.092548 * y * z;
+ shBasis[6] = 0.315392 * (3 * z * z - 1);
+ shBasis[7] = 1.092548 * x * z;
+ shBasis[8] = 0.546274 * (x * x - y * y);
+ };
+
+ return SphericalHarmonics3;
+ }();
+
+ function LightProbe(sh, intensity) {
+ Light.call(this, undefined, intensity);
+ this.type = 'LightProbe';
+ this.sh = sh !== undefined ? sh : new SphericalHarmonics3();
+ }
+
+ LightProbe.prototype = Object.assign(Object.create(Light.prototype), {
+ constructor: LightProbe,
+ isLightProbe: true,
+ copy: function copy(source) {
+ Light.prototype.copy.call(this, source);
+ this.sh.copy(source.sh);
+ return this;
+ },
+ fromJSON: function fromJSON(json) {
+ this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
+
+ this.sh.fromArray(json.sh);
+ return this;
+ },
+ toJSON: function toJSON(meta) {
+ var data = Light.prototype.toJSON.call(this, meta);
+ data.object.sh = this.sh.toArray();
+ return data;
+ }
+ });
+
+ function MaterialLoader(manager) {
+ Loader.call(this, manager);
+ this.textures = {};
+ }
+
+ MaterialLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: MaterialLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var loader = new FileLoader(scope.manager);
+ loader.setPath(scope.path);
+ loader.setRequestHeader(scope.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ try {
+ onLoad(scope.parse(JSON.parse(text)));
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
+
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ },
+ parse: function parse(json) {
+ var textures = this.textures;
+
+ function getTexture(name) {
+ if (textures[name] === undefined) {
+ console.warn('THREE.MaterialLoader: Undefined texture', name);
+ }
+
+ return textures[name];
+ }
+
+ var material = new Materials[json.type]();
+ if (json.uuid !== undefined) material.uuid = json.uuid;
+ if (json.name !== undefined) material.name = json.name;
+ if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);
+ if (json.roughness !== undefined) material.roughness = json.roughness;
+ if (json.metalness !== undefined) material.metalness = json.metalness;
+ if (json.sheen !== undefined) material.sheen = new Color().setHex(json.sheen);
+ if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);
+ if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);
+ if (json.shininess !== undefined) material.shininess = json.shininess;
+ if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;
+ if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;
+ if (json.fog !== undefined) material.fog = json.fog;
+ if (json.flatShading !== undefined) material.flatShading = json.flatShading;
+ if (json.blending !== undefined) material.blending = json.blending;
+ if (json.combine !== undefined) material.combine = json.combine;
+ if (json.side !== undefined) material.side = json.side;
+ if (json.opacity !== undefined) material.opacity = json.opacity;
+ if (json.transparent !== undefined) material.transparent = json.transparent;
+ if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;
+ if (json.depthTest !== undefined) material.depthTest = json.depthTest;
+ if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;
+ if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;
+ if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;
+ if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;
+ if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;
+ if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;
+ if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;
+ if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;
+ if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;
+ if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;
+ if (json.wireframe !== undefined) material.wireframe = json.wireframe;
+ if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;
+ if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;
+ if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;
+ if (json.rotation !== undefined) material.rotation = json.rotation;
+ if (json.linewidth !== 1) material.linewidth = json.linewidth;
+ if (json.dashSize !== undefined) material.dashSize = json.dashSize;
+ if (json.gapSize !== undefined) material.gapSize = json.gapSize;
+ if (json.scale !== undefined) material.scale = json.scale;
+ if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;
+ if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;
+ if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;
+ if (json.skinning !== undefined) material.skinning = json.skinning;
+ if (json.morphTargets !== undefined) material.morphTargets = json.morphTargets;
+ if (json.morphNormals !== undefined) material.morphNormals = json.morphNormals;
+ if (json.dithering !== undefined) material.dithering = json.dithering;
+ if (json.vertexTangents !== undefined) material.vertexTangents = json.vertexTangents;
+ if (json.visible !== undefined) material.visible = json.visible;
+ if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;
+ if (json.userData !== undefined) material.userData = json.userData;
+
+ if (json.vertexColors !== undefined) {
+ if (typeof json.vertexColors === 'number') {
+ material.vertexColors = json.vertexColors > 0 ? true : false;
+ } else {
+ material.vertexColors = json.vertexColors;
+ }
+ } // Shader Material
+
+
+ if (json.uniforms !== undefined) {
+ for (var name in json.uniforms) {
+ var uniform = json.uniforms[name];
+ material.uniforms[name] = {};
+
+ switch (uniform.type) {
+ case 't':
+ material.uniforms[name].value = getTexture(uniform.value);
+ break;
+
+ case 'c':
+ material.uniforms[name].value = new Color().setHex(uniform.value);
+ break;
+
+ case 'v2':
+ material.uniforms[name].value = new Vector2().fromArray(uniform.value);
+ break;
+
+ case 'v3':
+ material.uniforms[name].value = new Vector3().fromArray(uniform.value);
+ break;
+
+ case 'v4':
+ material.uniforms[name].value = new Vector4().fromArray(uniform.value);
+ break;
+
+ case 'm3':
+ material.uniforms[name].value = new Matrix3().fromArray(uniform.value);
+ break;
+
+ case 'm4':
+ material.uniforms[name].value = new Matrix4().fromArray(uniform.value);
+ break;
+
+ default:
+ material.uniforms[name].value = uniform.value;
+ }
+ }
+ }
+
+ if (json.defines !== undefined) material.defines = json.defines;
+ if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;
+ if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;
+
+ if (json.extensions !== undefined) {
+ for (var key in json.extensions) {
+ material.extensions[key] = json.extensions[key];
+ }
+ } // Deprecated
+
+
+ if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading
+ // for PointsMaterial
+
+ if (json.size !== undefined) material.size = json.size;
+ if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps
+
+ if (json.map !== undefined) material.map = getTexture(json.map);
+ if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);
+ if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);
+ if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);
+ if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;
+ if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);
+ if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;
+
+ if (json.normalScale !== undefined) {
+ var normalScale = json.normalScale;
+
+ if (Array.isArray(normalScale) === false) {
+ // Blender exporter used to export a scalar. See #7459
+ normalScale = [normalScale, normalScale];
+ }
+
+ material.normalScale = new Vector2().fromArray(normalScale);
+ }
+
+ if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);
+ if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;
+ if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;
+ if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);
+ if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);
+ if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);
+ if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;
+ if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);
+ if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);
+ if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;
+ if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;
+ if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;
+ if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);
+ if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;
+ if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);
+ if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;
+ if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);
+ if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);
+ if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);
+ if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);
+ if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);
+ if (json.transmission !== undefined) material.transmission = json.transmission;
+ if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);
+ return material;
+ },
+ setTextures: function setTextures(value) {
+ this.textures = value;
+ return this;
+ }
+ });
+
+ var LoaderUtils = {
+ decodeText: function decodeText(array) {
+ if (typeof TextDecoder !== 'undefined') {
+ return new TextDecoder().decode(array);
+ } // Avoid the String.fromCharCode.apply(null, array) shortcut, which
+ // throws a "maximum call stack size exceeded" error for large arrays.
+
+
+ var s = '';
+
+ for (var i = 0, il = array.length; i < il; i++) {
+ // Implicitly assumes little-endian.
+ s += String.fromCharCode(array[i]);
+ }
+
+ try {
+ // merges multi-byte utf-8 characters.
+ return decodeURIComponent(escape(s));
+ } catch (e) {
+ // see #16358
+ return s;
+ }
+ },
+ extractUrlBase: function extractUrlBase(url) {
+ var index = url.lastIndexOf('/');
+ if (index === -1) return './';
+ return url.substr(0, index + 1);
+ }
+ };
+
+ function InstancedBufferGeometry() {
+ BufferGeometry.call(this);
+ this.type = 'InstancedBufferGeometry';
+ this.instanceCount = Infinity;
+ }
+
+ InstancedBufferGeometry.prototype = Object.assign(Object.create(BufferGeometry.prototype), {
+ constructor: InstancedBufferGeometry,
+ isInstancedBufferGeometry: true,
+ copy: function copy(source) {
+ BufferGeometry.prototype.copy.call(this, source);
+ this.instanceCount = source.instanceCount;
+ return this;
+ },
+ clone: function clone() {
+ return new this.constructor().copy(this);
+ },
+ toJSON: function toJSON() {
+ var data = BufferGeometry.prototype.toJSON.call(this);
+ data.instanceCount = this.instanceCount;
+ data.isInstancedBufferGeometry = true;
+ return data;
+ }
+ });
+
+ function InstancedBufferAttribute(array, itemSize, normalized, meshPerAttribute) {
+ if (typeof normalized === 'number') {
+ meshPerAttribute = normalized;
+ normalized = false;
+ console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');
+ }
+
+ BufferAttribute.call(this, array, itemSize, normalized);
+ this.meshPerAttribute = meshPerAttribute || 1;
+ }
+
+ InstancedBufferAttribute.prototype = Object.assign(Object.create(BufferAttribute.prototype), {
+ constructor: InstancedBufferAttribute,
+ isInstancedBufferAttribute: true,
+ copy: function copy(source) {
+ BufferAttribute.prototype.copy.call(this, source);
+ this.meshPerAttribute = source.meshPerAttribute;
+ return this;
+ },
+ toJSON: function toJSON() {
+ var data = BufferAttribute.prototype.toJSON.call(this);
+ data.meshPerAttribute = this.meshPerAttribute;
+ data.isInstancedBufferAttribute = true;
+ return data;
+ }
+ });
+
+ function BufferGeometryLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ BufferGeometryLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: BufferGeometryLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var loader = new FileLoader(scope.manager);
+ loader.setPath(scope.path);
+ loader.setRequestHeader(scope.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ try {
+ onLoad(scope.parse(JSON.parse(text)));
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
+
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ },
+ parse: function parse(json) {
+ var interleavedBufferMap = {};
+ var arrayBufferMap = {};
+
+ function getInterleavedBuffer(json, uuid) {
+ if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];
+ var interleavedBuffers = json.interleavedBuffers;
+ var interleavedBuffer = interleavedBuffers[uuid];
+ var buffer = getArrayBuffer(json, interleavedBuffer.buffer);
+ var array = getTypedArray(interleavedBuffer.type, buffer);
+ var ib = new InterleavedBuffer(array, interleavedBuffer.stride);
+ ib.uuid = interleavedBuffer.uuid;
+ interleavedBufferMap[uuid] = ib;
+ return ib;
+ }
+
+ function getArrayBuffer(json, uuid) {
+ if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];
+ var arrayBuffers = json.arrayBuffers;
+ var arrayBuffer = arrayBuffers[uuid];
+ var ab = new Uint32Array(arrayBuffer).buffer;
+ arrayBufferMap[uuid] = ab;
+ return ab;
+ }
+
+ var geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
+ var index = json.data.index;
+
+ if (index !== undefined) {
+ var typedArray = getTypedArray(index.type, index.array);
+ geometry.setIndex(new BufferAttribute(typedArray, 1));
+ }
+
+ var attributes = json.data.attributes;
+
+ for (var key in attributes) {
+ var attribute = attributes[key];
+ var bufferAttribute = void 0;
+
+ if (attribute.isInterleavedBufferAttribute) {
+ var interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
+ bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
+ } else {
+ var _typedArray = getTypedArray(attribute.type, attribute.array);
+
+ var bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
+ bufferAttribute = new bufferAttributeConstr(_typedArray, attribute.itemSize, attribute.normalized);
+ }
+
+ if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
+ geometry.setAttribute(key, bufferAttribute);
+ }
+
+ var morphAttributes = json.data.morphAttributes;
+
+ if (morphAttributes) {
+ for (var _key in morphAttributes) {
+ var attributeArray = morphAttributes[_key];
+ var array = [];
+
+ for (var i = 0, il = attributeArray.length; i < il; i++) {
+ var _attribute = attributeArray[i];
+
+ var _bufferAttribute = void 0;
+
+ if (_attribute.isInterleavedBufferAttribute) {
+ var _interleavedBuffer = getInterleavedBuffer(json.data, _attribute.data);
+
+ _bufferAttribute = new InterleavedBufferAttribute(_interleavedBuffer, _attribute.itemSize, _attribute.offset, _attribute.normalized);
+ } else {
+ var _typedArray2 = getTypedArray(_attribute.type, _attribute.array);
+
+ _bufferAttribute = new BufferAttribute(_typedArray2, _attribute.itemSize, _attribute.normalized);
+ }
+
+ if (_attribute.name !== undefined) _bufferAttribute.name = _attribute.name;
+ array.push(_bufferAttribute);
+ }
+
+ geometry.morphAttributes[_key] = array;
+ }
+ }
+
+ var morphTargetsRelative = json.data.morphTargetsRelative;
+
+ if (morphTargetsRelative) {
+ geometry.morphTargetsRelative = true;
+ }
+
+ var groups = json.data.groups || json.data.drawcalls || json.data.offsets;
+
+ if (groups !== undefined) {
+ for (var _i = 0, n = groups.length; _i !== n; ++_i) {
+ var group = groups[_i];
+ geometry.addGroup(group.start, group.count, group.materialIndex);
+ }
+ }
+
+ var boundingSphere = json.data.boundingSphere;
+
+ if (boundingSphere !== undefined) {
+ var center = new Vector3();
+
+ if (boundingSphere.center !== undefined) {
+ center.fromArray(boundingSphere.center);
+ }
+
+ geometry.boundingSphere = new Sphere(center, boundingSphere.radius);
+ }
+
+ if (json.name) geometry.name = json.name;
+ if (json.userData) geometry.userData = json.userData;
+ return geometry;
+ }
+ });
+
+ var ObjectLoader = /*#__PURE__*/function (_Loader) {
+ _inheritsLoose(ObjectLoader, _Loader);
+
+ function ObjectLoader(manager) {
+ return _Loader.call(this, manager) || this;
+ }
+
+ var _proto = ObjectLoader.prototype;
+
+ _proto.load = function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
+ this.resourcePath = this.resourcePath || path;
+ var loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(this.withCredentials);
+ loader.load(url, function (text) {
+ var json = null;
+
+ try {
+ json = JSON.parse(text);
+ } catch (error) {
+ if (onError !== undefined) onError(error);
+ console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);
+ return;
+ }
+
+ var metadata = json.metadata;
+
+ if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
+ console.error('THREE.ObjectLoader: Can\'t load ' + url);
+ return;
+ }
+
+ scope.parse(json, onLoad);
+ }, onProgress, onError);
+ };
+
+ _proto.parse = function parse(json, onLoad) {
+ var animations = this.parseAnimations(json.animations);
+ var shapes = this.parseShapes(json.shapes);
+ var geometries = this.parseGeometries(json.geometries, shapes);
+ var images = this.parseImages(json.images, function () {
+ if (onLoad !== undefined) onLoad(object);
+ });
+ var textures = this.parseTextures(json.textures, images);
+ var materials = this.parseMaterials(json.materials, textures);
+ var object = this.parseObject(json.object, geometries, materials, animations);
+ var skeletons = this.parseSkeletons(json.skeletons, object);
+ this.bindSkeletons(object, skeletons); //
+
+ if (onLoad !== undefined) {
+ var hasImages = false;
+
+ for (var uuid in images) {
+ if (images[uuid] instanceof HTMLImageElement) {
+ hasImages = true;
+ break;
+ }
+ }
+
+ if (hasImages === false) onLoad(object);
+ }
+
+ return object;
+ };
+
+ _proto.parseShapes = function parseShapes(json) {
+ var shapes = {};
+
+ if (json !== undefined) {
+ for (var i = 0, l = json.length; i < l; i++) {
+ var shape = new Shape().fromJSON(json[i]);
+ shapes[shape.uuid] = shape;
+ }
+ }
+
+ return shapes;
+ };
+
+ _proto.parseSkeletons = function parseSkeletons(json, object) {
+ var skeletons = {};
+ var bones = {}; // generate bone lookup table
+
+ object.traverse(function (child) {
+ if (child.isBone) bones[child.uuid] = child;
+ }); // create skeletons
+
+ if (json !== undefined) {
+ for (var i = 0, l = json.length; i < l; i++) {
+ var skeleton = new Skeleton().fromJSON(json[i], bones);
+ skeletons[skeleton.uuid] = skeleton;
+ }
+ }
+
+ return skeletons;
+ };
+
+ _proto.parseGeometries = function parseGeometries(json, shapes) {
+ var geometries = {};
+ var geometryShapes;
+
+ if (json !== undefined) {
+ var bufferGeometryLoader = new BufferGeometryLoader();
+
+ for (var i = 0, l = json.length; i < l; i++) {
+ var geometry = void 0;
+ var data = json[i];
+
+ switch (data.type) {
+ case 'PlaneGeometry':
+ case 'PlaneBufferGeometry':
+ geometry = new Geometries[data.type](data.width, data.height, data.widthSegments, data.heightSegments);
+ break;
+
+ case 'BoxGeometry':
+ case 'BoxBufferGeometry':
+ geometry = new Geometries[data.type](data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
+ break;
+
+ case 'CircleGeometry':
+ case 'CircleBufferGeometry':
+ geometry = new Geometries[data.type](data.radius, data.segments, data.thetaStart, data.thetaLength);
+ break;
+
+ case 'CylinderGeometry':
+ case 'CylinderBufferGeometry':
+ geometry = new Geometries[data.type](data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
+ break;
+
+ case 'ConeGeometry':
+ case 'ConeBufferGeometry':
+ geometry = new Geometries[data.type](data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
+ break;
+
+ case 'SphereGeometry':
+ case 'SphereBufferGeometry':
+ geometry = new Geometries[data.type](data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);
+ break;
+
+ case 'DodecahedronGeometry':
+ case 'DodecahedronBufferGeometry':
+ case 'IcosahedronGeometry':
+ case 'IcosahedronBufferGeometry':
+ case 'OctahedronGeometry':
+ case 'OctahedronBufferGeometry':
+ case 'TetrahedronGeometry':
+ case 'TetrahedronBufferGeometry':
+ geometry = new Geometries[data.type](data.radius, data.detail);
+ break;
+
+ case 'RingGeometry':
+ case 'RingBufferGeometry':
+ geometry = new Geometries[data.type](data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);
+ break;
+
+ case 'TorusGeometry':
+ case 'TorusBufferGeometry':
+ geometry = new Geometries[data.type](data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);
+ break;
+
+ case 'TorusKnotGeometry':
+ case 'TorusKnotBufferGeometry':
+ geometry = new Geometries[data.type](data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);
+ break;
+
+ case 'TubeGeometry':
+ case 'TubeBufferGeometry':
+ // This only works for built-in curves (e.g. CatmullRomCurve3).
+ // User defined curves or instances of CurvePath will not be deserialized.
+ geometry = new Geometries[data.type](new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);
+ break;
+
+ case 'LatheGeometry':
+ case 'LatheBufferGeometry':
+ geometry = new Geometries[data.type](data.points, data.segments, data.phiStart, data.phiLength);
+ break;
+
+ case 'PolyhedronGeometry':
+ case 'PolyhedronBufferGeometry':
+ geometry = new Geometries[data.type](data.vertices, data.indices, data.radius, data.details);
+ break;
+
+ case 'ShapeGeometry':
+ case 'ShapeBufferGeometry':
+ geometryShapes = [];
+
+ for (var j = 0, jl = data.shapes.length; j < jl; j++) {
+ var shape = shapes[data.shapes[j]];
+ geometryShapes.push(shape);
+ }
+
+ geometry = new Geometries[data.type](geometryShapes, data.curveSegments);
+ break;
+
+ case 'ExtrudeGeometry':
+ case 'ExtrudeBufferGeometry':
+ geometryShapes = [];
+
+ for (var _j = 0, _jl = data.shapes.length; _j < _jl; _j++) {
+ var _shape = shapes[data.shapes[_j]];
+ geometryShapes.push(_shape);
+ }
+
+ var extrudePath = data.options.extrudePath;
+
+ if (extrudePath !== undefined) {
+ data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);
+ }
+
+ geometry = new Geometries[data.type](geometryShapes, data.options);
+ break;
+
+ case 'BufferGeometry':
+ case 'InstancedBufferGeometry':
+ geometry = bufferGeometryLoader.parse(data);
+ break;
+
+ case 'Geometry':
+ console.error('THREE.ObjectLoader: Loading "Geometry" is not supported anymore.');
+ break;
+
+ default:
+ console.warn('THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"');
+ continue;
+ }
+
+ geometry.uuid = data.uuid;
+ if (data.name !== undefined) geometry.name = data.name;
+ if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;
+ geometries[data.uuid] = geometry;
+ }
+ }
+
+ return geometries;
+ };
+
+ _proto.parseMaterials = function parseMaterials(json, textures) {
+ var cache = {}; // MultiMaterial
+
+ var materials = {};
+
+ if (json !== undefined) {
+ var loader = new MaterialLoader();
+ loader.setTextures(textures);
+
+ for (var i = 0, l = json.length; i < l; i++) {
+ var data = json[i];
+
+ if (data.type === 'MultiMaterial') {
+ // Deprecated
+ var array = [];
+
+ for (var j = 0; j < data.materials.length; j++) {
+ var material = data.materials[j];
+
+ if (cache[material.uuid] === undefined) {
+ cache[material.uuid] = loader.parse(material);
+ }
+
+ array.push(cache[material.uuid]);
+ }
+
+ materials[data.uuid] = array;
+ } else {
+ if (cache[data.uuid] === undefined) {
+ cache[data.uuid] = loader.parse(data);
+ }
+
+ materials[data.uuid] = cache[data.uuid];
+ }
+ }
+ }
+
+ return materials;
+ };
+
+ _proto.parseAnimations = function parseAnimations(json) {
+ var animations = {};
+
+ if (json !== undefined) {
+ for (var i = 0; i < json.length; i++) {
+ var data = json[i];
+ var clip = AnimationClip.parse(data);
+ animations[clip.uuid] = clip;
+ }
+ }
+
+ return animations;
+ };
+
+ _proto.parseImages = function parseImages(json, onLoad) {
+ var scope = this;
+ var images = {};
+ var loader;
+
+ function loadImage(url) {
+ scope.manager.itemStart(url);
+ return loader.load(url, function () {
+ scope.manager.itemEnd(url);
+ }, undefined, function () {
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ });
+ }
+
+ function deserializeImage(image) {
+ if (typeof image === 'string') {
+ var url = image;
+ var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
+ return loadImage(path);
+ } else {
+ if (image.data) {
+ return {
+ data: getTypedArray(image.type, image.data),
+ width: image.width,
+ height: image.height
+ };
+ } else {
+ return null;
+ }
+ }
+ }
+
+ if (json !== undefined && json.length > 0) {
+ var manager = new LoadingManager(onLoad);
+ loader = new ImageLoader(manager);
+ loader.setCrossOrigin(this.crossOrigin);
+
+ for (var i = 0, il = json.length; i < il; i++) {
+ var image = json[i];
+ var url = image.url;
+
+ if (Array.isArray(url)) {
+ // load array of images e.g CubeTexture
+ images[image.uuid] = [];
+
+ for (var j = 0, jl = url.length; j < jl; j++) {
+ var currentUrl = url[j];
+ var deserializedImage = deserializeImage(currentUrl);
+
+ if (deserializedImage !== null) {
+ if (deserializedImage instanceof HTMLImageElement) {
+ images[image.uuid].push(deserializedImage);
+ } else {
+ // special case: handle array of data textures for cube textures
+ images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
+ }
+ }
+ }
+ } else {
+ // load single image
+ var _deserializedImage = deserializeImage(image.url);
+
+ if (_deserializedImage !== null) {
+ images[image.uuid] = _deserializedImage;
+ }
+ }
+ }
+ }
+
+ return images;
+ };
+
+ _proto.parseTextures = function parseTextures(json, images) {
+ function parseConstant(value, type) {
+ if (typeof value === 'number') return value;
+ console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);
+ return type[value];
+ }
+
+ var textures = {};
+
+ if (json !== undefined) {
+ for (var i = 0, l = json.length; i < l; i++) {
+ var data = json[i];
+
+ if (data.image === undefined) {
+ console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);
+ }
+
+ if (images[data.image] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined image', data.image);
+ }
+
+ var texture = void 0;
+ var image = images[data.image];
+
+ if (Array.isArray(image)) {
+ texture = new CubeTexture(image);
+ if (image.length === 6) texture.needsUpdate = true;
+ } else {
+ if (image && image.data) {
+ texture = new DataTexture(image.data, image.width, image.height);
+ } else {
+ texture = new Texture(image);
+ }
+
+ if (image) texture.needsUpdate = true; // textures can have undefined image data
+ }
+
+ texture.uuid = data.uuid;
+ if (data.name !== undefined) texture.name = data.name;
+ if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);
+ if (data.offset !== undefined) texture.offset.fromArray(data.offset);
+ if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);
+ if (data.center !== undefined) texture.center.fromArray(data.center);
+ if (data.rotation !== undefined) texture.rotation = data.rotation;
+
+ if (data.wrap !== undefined) {
+ texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);
+ texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);
+ }
+
+ if (data.format !== undefined) texture.format = data.format;
+ if (data.type !== undefined) texture.type = data.type;
+ if (data.encoding !== undefined) texture.encoding = data.encoding;
+ if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);
+ if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);
+ if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;
+ if (data.flipY !== undefined) texture.flipY = data.flipY;
+ if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;
+ if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;
+ textures[data.uuid] = texture;
+ }
+ }
+
+ return textures;
+ };
+
+ _proto.parseObject = function parseObject(data, geometries, materials, animations) {
+ var object;
+
+ function getGeometry(name) {
+ if (geometries[name] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined geometry', name);
+ }
+
+ return geometries[name];
+ }
+
+ function getMaterial(name) {
+ if (name === undefined) return undefined;
+
+ if (Array.isArray(name)) {
+ var array = [];
+
+ for (var i = 0, l = name.length; i < l; i++) {
+ var uuid = name[i];
+
+ if (materials[uuid] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined material', uuid);
+ }
+
+ array.push(materials[uuid]);
+ }
+
+ return array;
+ }
+
+ if (materials[name] === undefined) {
+ console.warn('THREE.ObjectLoader: Undefined material', name);
+ }
+
+ return materials[name];
+ }
+
+ var geometry, material;
+
+ switch (data.type) {
+ case 'Scene':
+ object = new Scene();
+
+ if (data.background !== undefined) {
+ if (Number.isInteger(data.background)) {
+ object.background = new Color(data.background);
+ }
+ }
+
+ if (data.fog !== undefined) {
+ if (data.fog.type === 'Fog') {
+ object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);
+ } else if (data.fog.type === 'FogExp2') {
+ object.fog = new FogExp2(data.fog.color, data.fog.density);
+ }
+ }
+
+ break;
+
+ case 'PerspectiveCamera':
+ object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);
+ if (data.focus !== undefined) object.focus = data.focus;
+ if (data.zoom !== undefined) object.zoom = data.zoom;
+ if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;
+ if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;
+ if (data.view !== undefined) object.view = Object.assign({}, data.view);
+ break;
+
+ case 'OrthographicCamera':
+ object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);
+ if (data.zoom !== undefined) object.zoom = data.zoom;
+ if (data.view !== undefined) object.view = Object.assign({}, data.view);
+ break;
+
+ case 'AmbientLight':
+ object = new AmbientLight(data.color, data.intensity);
+ break;
+
+ case 'DirectionalLight':
+ object = new DirectionalLight(data.color, data.intensity);
+ break;
+
+ case 'PointLight':
+ object = new PointLight(data.color, data.intensity, data.distance, data.decay);
+ break;
+
+ case 'RectAreaLight':
+ object = new RectAreaLight(data.color, data.intensity, data.width, data.height);
+ break;
+
+ case 'SpotLight':
+ object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);
+ break;
+
+ case 'HemisphereLight':
+ object = new HemisphereLight(data.color, data.groundColor, data.intensity);
+ break;
+
+ case 'LightProbe':
+ object = new LightProbe().fromJSON(data);
+ break;
+
+ case 'SkinnedMesh':
+ geometry = getGeometry(data.geometry);
+ material = getMaterial(data.material);
+ object = new SkinnedMesh(geometry, material);
+ if (data.bindMode !== undefined) object.bindMode = data.bindMode;
+ if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);
+ if (data.skeleton !== undefined) object.skeleton = data.skeleton;
+ break;
+
+ case 'Mesh':
+ geometry = getGeometry(data.geometry);
+ material = getMaterial(data.material);
+ object = new Mesh(geometry, material);
+ break;
+
+ case 'InstancedMesh':
+ geometry = getGeometry(data.geometry);
+ material = getMaterial(data.material);
+ var count = data.count;
+ var instanceMatrix = data.instanceMatrix;
+ object = new InstancedMesh(geometry, material, count);
+ object.instanceMatrix = new BufferAttribute(new Float32Array(instanceMatrix.array), 16);
+ break;
+
+ case 'LOD':
+ object = new LOD();
+ break;
+
+ case 'Line':
+ object = new Line(getGeometry(data.geometry), getMaterial(data.material));
+ break;
+
+ case 'LineLoop':
+ object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));
+ break;
+
+ case 'LineSegments':
+ object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));
+ break;
+
+ case 'PointCloud':
+ case 'Points':
+ object = new Points(getGeometry(data.geometry), getMaterial(data.material));
+ break;
+
+ case 'Sprite':
+ object = new Sprite(getMaterial(data.material));
+ break;
+
+ case 'Group':
+ object = new Group();
+ break;
+
+ case 'Bone':
+ object = new Bone();
+ break;
+
+ default:
+ object = new Object3D();
+ }
+
+ object.uuid = data.uuid;
+ if (data.name !== undefined) object.name = data.name;
+
+ if (data.matrix !== undefined) {
+ object.matrix.fromArray(data.matrix);
+ if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;
+ if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);
+ } else {
+ if (data.position !== undefined) object.position.fromArray(data.position);
+ if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);
+ if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);
+ if (data.scale !== undefined) object.scale.fromArray(data.scale);
+ }
+
+ if (data.castShadow !== undefined) object.castShadow = data.castShadow;
+ if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;
+
+ if (data.shadow) {
+ if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;
+ if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;
+ if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;
+ if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);
+ if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);
+ }
+
+ if (data.visible !== undefined) object.visible = data.visible;
+ if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;
+ if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;
+ if (data.userData !== undefined) object.userData = data.userData;
+ if (data.layers !== undefined) object.layers.mask = data.layers;
+
+ if (data.children !== undefined) {
+ var children = data.children;
+
+ for (var i = 0; i < children.length; i++) {
+ object.add(this.parseObject(children[i], geometries, materials, animations));
+ }
+ }
+
+ if (data.animations !== undefined) {
+ var objectAnimations = data.animations;
+
+ for (var _i = 0; _i < objectAnimations.length; _i++) {
+ var uuid = objectAnimations[_i];
+ object.animations.push(animations[uuid]);
+ }
+ }
+
+ if (data.type === 'LOD') {
+ if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;
+ var levels = data.levels;
+
+ for (var l = 0; l < levels.length; l++) {
+ var level = levels[l];
+ var child = object.getObjectByProperty('uuid', level.object);
+
+ if (child !== undefined) {
+ object.addLevel(child, level.distance);
+ }
+ }
+ }
+
+ return object;
+ };
+
+ _proto.bindSkeletons = function bindSkeletons(object, skeletons) {
+ if (Object.keys(skeletons).length === 0) return;
+ object.traverse(function (child) {
+ if (child.isSkinnedMesh === true && child.skeleton !== undefined) {
+ var skeleton = skeletons[child.skeleton];
+
+ if (skeleton === undefined) {
+ console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);
+ } else {
+ child.bind(skeleton, child.bindMatrix);
+ }
+ }
+ });
+ }
+ /* DEPRECATED */
+ ;
+
+ _proto.setTexturePath = function setTexturePath(value) {
+ console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');
+ return this.setResourcePath(value);
+ };
+
+ return ObjectLoader;
+ }(Loader);
+
+ var TEXTURE_MAPPING = {
+ UVMapping: UVMapping,
+ CubeReflectionMapping: CubeReflectionMapping,
+ CubeRefractionMapping: CubeRefractionMapping,
+ EquirectangularReflectionMapping: EquirectangularReflectionMapping,
+ EquirectangularRefractionMapping: EquirectangularRefractionMapping,
+ CubeUVReflectionMapping: CubeUVReflectionMapping,
+ CubeUVRefractionMapping: CubeUVRefractionMapping
+ };
+ var TEXTURE_WRAPPING = {
+ RepeatWrapping: RepeatWrapping,
+ ClampToEdgeWrapping: ClampToEdgeWrapping,
+ MirroredRepeatWrapping: MirroredRepeatWrapping
+ };
+ var TEXTURE_FILTER = {
+ NearestFilter: NearestFilter,
+ NearestMipmapNearestFilter: NearestMipmapNearestFilter,
+ NearestMipmapLinearFilter: NearestMipmapLinearFilter,
+ LinearFilter: LinearFilter,
+ LinearMipmapNearestFilter: LinearMipmapNearestFilter,
+ LinearMipmapLinearFilter: LinearMipmapLinearFilter
+ };
+
+ function ImageBitmapLoader(manager) {
+ if (typeof createImageBitmap === 'undefined') {
+ console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');
+ }
+
+ if (typeof fetch === 'undefined') {
+ console.warn('THREE.ImageBitmapLoader: fetch() not supported.');
+ }
+
+ Loader.call(this, manager);
+ this.options = {
+ premultiplyAlpha: 'none'
+ };
+ }
+
+ ImageBitmapLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: ImageBitmapLoader,
+ isImageBitmapLoader: true,
+ setOptions: function setOptions(options) {
+ this.options = options;
+ return this;
+ },
+ load: function load(url, onLoad, onProgress, onError) {
+ if (url === undefined) url = '';
+ if (this.path !== undefined) url = this.path + url;
+ url = this.manager.resolveURL(url);
+ var scope = this;
+ var cached = Cache.get(url);
+
+ if (cached !== undefined) {
+ scope.manager.itemStart(url);
+ setTimeout(function () {
+ if (onLoad) onLoad(cached);
+ scope.manager.itemEnd(url);
+ }, 0);
+ return cached;
+ }
+
+ var fetchOptions = {};
+ fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';
+ fetch(url, fetchOptions).then(function (res) {
+ return res.blob();
+ }).then(function (blob) {
+ return createImageBitmap(blob, scope.options);
+ }).then(function (imageBitmap) {
+ Cache.add(url, imageBitmap);
+ if (onLoad) onLoad(imageBitmap);
+ scope.manager.itemEnd(url);
+ }).catch(function (e) {
+ if (onError) onError(e);
+ scope.manager.itemError(url);
+ scope.manager.itemEnd(url);
+ });
+ scope.manager.itemStart(url);
+ }
+ });
+
+ function ShapePath() {
+ this.type = 'ShapePath';
+ this.color = new Color();
+ this.subPaths = [];
+ this.currentPath = null;
+ }
+
+ Object.assign(ShapePath.prototype, {
+ moveTo: function moveTo(x, y) {
+ this.currentPath = new Path();
+ this.subPaths.push(this.currentPath);
+ this.currentPath.moveTo(x, y);
+ return this;
+ },
+ lineTo: function lineTo(x, y) {
+ this.currentPath.lineTo(x, y);
+ return this;
+ },
+ quadraticCurveTo: function quadraticCurveTo(aCPx, aCPy, aX, aY) {
+ this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);
+ return this;
+ },
+ bezierCurveTo: function bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
+ this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);
+ return this;
+ },
+ splineThru: function splineThru(pts) {
+ this.currentPath.splineThru(pts);
+ return this;
+ },
+ toShapes: function toShapes(isCCW, noHoles) {
+ function toShapesNoHoles(inSubpaths) {
+ var shapes = [];
+
+ for (var i = 0, l = inSubpaths.length; i < l; i++) {
+ var _tmpPath = inSubpaths[i];
+
+ var _tmpShape = new Shape();
+
+ _tmpShape.curves = _tmpPath.curves;
+ shapes.push(_tmpShape);
+ }
+
+ return shapes;
+ }
+
+ function isPointInsidePolygon(inPt, inPolygon) {
+ var polyLen = inPolygon.length; // inPt on polygon contour => immediate success or
+ // toggling of inside/outside at every single! intersection point of an edge
+ // with the horizontal line through inPt, left of inPt
+ // not counting lowerY endpoints of edges and whole edges on that line
+
+ var inside = false;
+
+ for (var p = polyLen - 1, q = 0; q < polyLen; p = q++) {
+ var edgeLowPt = inPolygon[p];
+ var edgeHighPt = inPolygon[q];
+ var edgeDx = edgeHighPt.x - edgeLowPt.x;
+ var edgeDy = edgeHighPt.y - edgeLowPt.y;
+
+ if (Math.abs(edgeDy) > Number.EPSILON) {
+ // not parallel
+ if (edgeDy < 0) {
+ edgeLowPt = inPolygon[q];
+ edgeDx = -edgeDx;
+ edgeHighPt = inPolygon[p];
+ edgeDy = -edgeDy;
+ }
+
+ if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;
+
+ if (inPt.y === edgeLowPt.y) {
+ if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?
+ // continue; // no intersection or edgeLowPt => doesn't count !!!
+ } else {
+ var perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);
+ if (perpEdge === 0) return true; // inPt is on contour ?
+
+ if (perpEdge < 0) continue;
+ inside = !inside; // true intersection left of inPt
+ }
+ } else {
+ // parallel or collinear
+ if (inPt.y !== edgeLowPt.y) continue; // parallel
+ // edge lies on the same horizontal line as inPt
+
+ if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !
+ // continue;
+ }
+ }
+
+ return inside;
+ }
+
+ var isClockWise = ShapeUtils.isClockWise;
+ var subPaths = this.subPaths;
+ if (subPaths.length === 0) return [];
+ if (noHoles === true) return toShapesNoHoles(subPaths);
+ var solid, tmpPath, tmpShape;
+ var shapes = [];
+
+ if (subPaths.length === 1) {
+ tmpPath = subPaths[0];
+ tmpShape = new Shape();
+ tmpShape.curves = tmpPath.curves;
+ shapes.push(tmpShape);
+ return shapes;
+ }
+
+ var holesFirst = !isClockWise(subPaths[0].getPoints());
+ holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);
+
+ var betterShapeHoles = [];
+ var newShapes = [];
+ var newShapeHoles = [];
+ var mainIdx = 0;
+ var tmpPoints;
+ newShapes[mainIdx] = undefined;
+ newShapeHoles[mainIdx] = [];
+
+ for (var i = 0, l = subPaths.length; i < l; i++) {
+ tmpPath = subPaths[i];
+ tmpPoints = tmpPath.getPoints();
+ solid = isClockWise(tmpPoints);
+ solid = isCCW ? !solid : solid;
+
+ if (solid) {
+ if (!holesFirst && newShapes[mainIdx]) mainIdx++;
+ newShapes[mainIdx] = {
+ s: new Shape(),
+ p: tmpPoints
+ };
+ newShapes[mainIdx].s.curves = tmpPath.curves;
+ if (holesFirst) mainIdx++;
+ newShapeHoles[mainIdx] = []; //console.log('cw', i);
+ } else {
+ newShapeHoles[mainIdx].push({
+ h: tmpPath,
+ p: tmpPoints[0]
+ }); //console.log('ccw', i);
+ }
+ } // only Holes? -> probably all Shapes with wrong orientation
+
+
+ if (!newShapes[0]) return toShapesNoHoles(subPaths);
+
+ if (newShapes.length > 1) {
+ var ambiguous = false;
+ var toChange = [];
+
+ for (var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
+ betterShapeHoles[sIdx] = [];
+ }
+
+ for (var _sIdx = 0, _sLen = newShapes.length; _sIdx < _sLen; _sIdx++) {
+ var sho = newShapeHoles[_sIdx];
+
+ for (var hIdx = 0; hIdx < sho.length; hIdx++) {
+ var ho = sho[hIdx];
+ var hole_unassigned = true;
+
+ for (var s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {
+ if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {
+ if (_sIdx !== s2Idx) toChange.push({
+ froms: _sIdx,
+ tos: s2Idx,
+ hole: hIdx
+ });
+
+ if (hole_unassigned) {
+ hole_unassigned = false;
+ betterShapeHoles[s2Idx].push(ho);
+ } else {
+ ambiguous = true;
+ }
+ }
+ }
+
+ if (hole_unassigned) {
+ betterShapeHoles[_sIdx].push(ho);
+ }
+ }
+ } // console.log("ambiguous: ", ambiguous);
+
+
+ if (toChange.length > 0) {
+ // console.log("to change: ", toChange);
+ if (!ambiguous) newShapeHoles = betterShapeHoles;
+ }
+ }
+
+ var tmpHoles;
+
+ for (var _i = 0, il = newShapes.length; _i < il; _i++) {
+ tmpShape = newShapes[_i].s;
+ shapes.push(tmpShape);
+ tmpHoles = newShapeHoles[_i];
+
+ for (var j = 0, jl = tmpHoles.length; j < jl; j++) {
+ tmpShape.holes.push(tmpHoles[j].h);
+ }
+ } //console.log("shape", shapes);
+
+
+ return shapes;
+ }
+ });
+
+ var Font = /*#__PURE__*/function () {
+ function Font(data) {
+ Object.defineProperty(this, 'isFont', {
+ value: true
+ });
+ this.type = 'Font';
+ this.data = data;
+ }
+
+ var _proto = Font.prototype;
+
+ _proto.generateShapes = function generateShapes(text, size) {
+ if (size === void 0) {
+ size = 100;
+ }
+
+ var shapes = [];
+ var paths = createPaths(text, size, this.data);
+
+ for (var p = 0, pl = paths.length; p < pl; p++) {
+ Array.prototype.push.apply(shapes, paths[p].toShapes());
+ }
+
+ return shapes;
+ };
+
+ return Font;
+ }();
+
+ function createPaths(text, size, data) {
+ var chars = Array.from ? Array.from(text) : String(text).split(''); // workaround for IE11, see #13988
+
+ var scale = size / data.resolution;
+ var line_height = (data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness) * scale;
+ var paths = [];
+ var offsetX = 0,
+ offsetY = 0;
+
+ for (var i = 0; i < chars.length; i++) {
+ var char = chars[i];
+
+ if (char === '\n') {
+ offsetX = 0;
+ offsetY -= line_height;
+ } else {
+ var ret = createPath(char, scale, offsetX, offsetY, data);
+ offsetX += ret.offsetX;
+ paths.push(ret.path);
+ }
+ }
+
+ return paths;
+ }
+
+ function createPath(char, scale, offsetX, offsetY, data) {
+ var glyph = data.glyphs[char] || data.glyphs['?'];
+
+ if (!glyph) {
+ console.error('THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.');
+ return;
+ }
+
+ var path = new ShapePath();
+ var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;
+
+ if (glyph.o) {
+ var outline = glyph._cachedOutline || (glyph._cachedOutline = glyph.o.split(' '));
+
+ for (var i = 0, l = outline.length; i < l;) {
+ var action = outline[i++];
+
+ switch (action) {
+ case 'm':
+ // moveTo
+ x = outline[i++] * scale + offsetX;
+ y = outline[i++] * scale + offsetY;
+ path.moveTo(x, y);
+ break;
+
+ case 'l':
+ // lineTo
+ x = outline[i++] * scale + offsetX;
+ y = outline[i++] * scale + offsetY;
+ path.lineTo(x, y);
+ break;
+
+ case 'q':
+ // quadraticCurveTo
+ cpx = outline[i++] * scale + offsetX;
+ cpy = outline[i++] * scale + offsetY;
+ cpx1 = outline[i++] * scale + offsetX;
+ cpy1 = outline[i++] * scale + offsetY;
+ path.quadraticCurveTo(cpx1, cpy1, cpx, cpy);
+ break;
+
+ case 'b':
+ // bezierCurveTo
+ cpx = outline[i++] * scale + offsetX;
+ cpy = outline[i++] * scale + offsetY;
+ cpx1 = outline[i++] * scale + offsetX;
+ cpy1 = outline[i++] * scale + offsetY;
+ cpx2 = outline[i++] * scale + offsetX;
+ cpy2 = outline[i++] * scale + offsetY;
+ path.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, cpx, cpy);
+ break;
+ }
+ }
+ }
+
+ return {
+ offsetX: glyph.ha * scale,
+ path: path
+ };
+ }
+
+ function FontLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ FontLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: FontLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var loader = new FileLoader(this.manager);
+ loader.setPath(this.path);
+ loader.setRequestHeader(this.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (text) {
+ var json;
+
+ try {
+ json = JSON.parse(text);
+ } catch (e) {
+ console.warn('THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.');
+ json = JSON.parse(text.substring(65, text.length - 2));
+ }
+
+ var font = scope.parse(json);
+ if (onLoad) onLoad(font);
+ }, onProgress, onError);
+ },
+ parse: function parse(json) {
+ return new Font(json);
+ }
+ });
+
+ var _context;
+
+ var AudioContext = {
+ getContext: function getContext() {
+ if (_context === undefined) {
+ _context = new (window.AudioContext || window.webkitAudioContext)();
+ }
+
+ return _context;
+ },
+ setContext: function setContext(value) {
+ _context = value;
+ }
+ };
+
+ function AudioLoader(manager) {
+ Loader.call(this, manager);
+ }
+
+ AudioLoader.prototype = Object.assign(Object.create(Loader.prototype), {
+ constructor: AudioLoader,
+ load: function load(url, onLoad, onProgress, onError) {
+ var scope = this;
+ var loader = new FileLoader(scope.manager);
+ loader.setResponseType('arraybuffer');
+ loader.setPath(scope.path);
+ loader.setRequestHeader(scope.requestHeader);
+ loader.setWithCredentials(scope.withCredentials);
+ loader.load(url, function (buffer) {
+ try {
+ // Create a copy of the buffer. The `decodeAudioData` method
+ // detaches the buffer when complete, preventing reuse.
+ var bufferCopy = buffer.slice(0);
+ var context = AudioContext.getContext();
+ context.decodeAudioData(bufferCopy, function (audioBuffer) {
+ onLoad(audioBuffer);
+ });
+ } catch (e) {
+ if (onError) {
+ onError(e);
+ } else {
+ console.error(e);
+ }
+
+ scope.manager.itemError(url);
+ }
+ }, onProgress, onError);
+ }
+ });
+
+ function HemisphereLightProbe(skyColor, groundColor, intensity) {
+ LightProbe.call(this, undefined, intensity);
+ var color1 = new Color().set(skyColor);
+ var color2 = new Color().set(groundColor);
+ var sky = new Vector3(color1.r, color1.g, color1.b);
+ var ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
+
+ var c0 = Math.sqrt(Math.PI);
+ var c1 = c0 * Math.sqrt(0.75);
+ this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);
+ this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);
+ }
+
+ HemisphereLightProbe.prototype = Object.assign(Object.create(LightProbe.prototype), {
+ constructor: HemisphereLightProbe,
+ isHemisphereLightProbe: true,
+ copy: function copy(source) {
+ // modifying colors not currently supported
+ LightProbe.prototype.copy.call(this, source);
+ return this;
+ },
+ toJSON: function toJSON(meta) {
+ var data = LightProbe.prototype.toJSON.call(this, meta); // data.sh = this.sh.toArray(); // todo
+
+ return data;
+ }
+ });
+
+ function AmbientLightProbe(color, intensity) {
+ LightProbe.call(this, undefined, intensity);
+ var color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
+
+ this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));
+ }
+
+ AmbientLightProbe.prototype = Object.assign(Object.create(LightProbe.prototype), {
+ constructor: AmbientLightProbe,
+ isAmbientLightProbe: true,
+ copy: function copy(source) {
+ // modifying color not currently supported
+ LightProbe.prototype.copy.call(this, source);
+ return this;
+ },
+ toJSON: function toJSON(meta) {
+ var data = LightProbe.prototype.toJSON.call(this, meta); // data.sh = this.sh.toArray(); // todo
+
+ return data;
+ }
+ });
+
+ var _eyeRight = new Matrix4();
+
+ var _eyeLeft = new Matrix4();
+
+ function StereoCamera() {
+ this.type = 'StereoCamera';
+ this.aspect = 1;
+ this.eyeSep = 0.064;
+ this.cameraL = new PerspectiveCamera();
+ this.cameraL.layers.enable(1);
+ this.cameraL.matrixAutoUpdate = false;
+ this.cameraR = new PerspectiveCamera();
+ this.cameraR.layers.enable(2);
+ this.cameraR.matrixAutoUpdate = false;
+ this._cache = {
+ focus: null,
+ fov: null,
+ aspect: null,
+ near: null,
+ far: null,
+ zoom: null,
+ eyeSep: null
+ };
+ }
+
+ Object.assign(StereoCamera.prototype, {
+ update: function update(camera) {
+ var cache = this._cache;
+ var needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
+
+ if (needsUpdate) {
+ cache.focus = camera.focus;
+ cache.fov = camera.fov;
+ cache.aspect = camera.aspect * this.aspect;
+ cache.near = camera.near;
+ cache.far = camera.far;
+ cache.zoom = camera.zoom;
+ cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on
+ // http://paulbourke.net/stereographics/stereorender/
+
+ var projectionMatrix = camera.projectionMatrix.clone();
+ var eyeSepHalf = cache.eyeSep / 2;
+ var eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
+ var ymax = cache.near * Math.tan(MathUtils.DEG2RAD * cache.fov * 0.5) / cache.zoom;
+ var xmin, xmax; // translate xOffset
+
+ _eyeLeft.elements[12] = -eyeSepHalf;
+ _eyeRight.elements[12] = eyeSepHalf; // for left eye
+
+ xmin = -ymax * cache.aspect + eyeSepOnProjection;
+ xmax = ymax * cache.aspect + eyeSepOnProjection;
+ projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
+ projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
+ this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye
+
+ xmin = -ymax * cache.aspect - eyeSepOnProjection;
+ xmax = ymax * cache.aspect - eyeSepOnProjection;
+ projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
+ projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
+ this.cameraR.projectionMatrix.copy(projectionMatrix);
+ }
+
+ this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);
+ this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);
+ }
+ });
+
+ var Clock = /*#__PURE__*/function () {
+ function Clock(autoStart) {
+ this.autoStart = autoStart !== undefined ? autoStart : true;
+ this.startTime = 0;
+ this.oldTime = 0;
+ this.elapsedTime = 0;
+ this.running = false;
+ }
+
+ var _proto = Clock.prototype;
+
+ _proto.start = function start() {
+ this.startTime = now();
+ this.oldTime = this.startTime;
+ this.elapsedTime = 0;
+ this.running = true;
+ };
+
+ _proto.stop = function stop() {
+ this.getElapsedTime();
+ this.running = false;
+ this.autoStart = false;
+ };
+
+ _proto.getElapsedTime = function getElapsedTime() {
+ this.getDelta();
+ return this.elapsedTime;
+ };
+
+ _proto.getDelta = function getDelta() {
+ var diff = 0;
+
+ if (this.autoStart && !this.running) {
+ this.start();
+ return 0;
+ }
+
+ if (this.running) {
+ var newTime = now();
+ diff = (newTime - this.oldTime) / 1000;
+ this.oldTime = newTime;
+ this.elapsedTime += diff;
+ }
+
+ return diff;
+ };
+
+ return Clock;
+ }();
+
+ function now() {
+ return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732
+ }
+
+ var _position$2 = /*@__PURE__*/new Vector3();
+
+ var _quaternion$3 = /*@__PURE__*/new Quaternion();
+
+ var _scale$1 = /*@__PURE__*/new Vector3();
+
+ var _orientation = /*@__PURE__*/new Vector3();
+
+ var AudioListener = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(AudioListener, _Object3D);
+
+ function AudioListener() {
+ var _this;
+
+ _this = _Object3D.call(this) || this;
+ _this.type = 'AudioListener';
+ _this.context = AudioContext.getContext();
+ _this.gain = _this.context.createGain();
+
+ _this.gain.connect(_this.context.destination);
+
+ _this.filter = null;
+ _this.timeDelta = 0; // private
+
+ _this._clock = new Clock();
+ return _this;
+ }
+
+ var _proto = AudioListener.prototype;
+
+ _proto.getInput = function getInput() {
+ return this.gain;
+ };
+
+ _proto.removeFilter = function removeFilter() {
+ if (this.filter !== null) {
+ this.gain.disconnect(this.filter);
+ this.filter.disconnect(this.context.destination);
+ this.gain.connect(this.context.destination);
+ this.filter = null;
+ }
+
+ return this;
+ };
+
+ _proto.getFilter = function getFilter() {
+ return this.filter;
+ };
+
+ _proto.setFilter = function setFilter(value) {
+ if (this.filter !== null) {
+ this.gain.disconnect(this.filter);
+ this.filter.disconnect(this.context.destination);
+ } else {
+ this.gain.disconnect(this.context.destination);
+ }
+
+ this.filter = value;
+ this.gain.connect(this.filter);
+ this.filter.connect(this.context.destination);
+ return this;
+ };
+
+ _proto.getMasterVolume = function getMasterVolume() {
+ return this.gain.gain.value;
+ };
+
+ _proto.setMasterVolume = function setMasterVolume(value) {
+ this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
+ return this;
+ };
+
+ _proto.updateMatrixWorld = function updateMatrixWorld(force) {
+ _Object3D.prototype.updateMatrixWorld.call(this, force);
+
+ var listener = this.context.listener;
+ var up = this.up;
+ this.timeDelta = this._clock.getDelta();
+ this.matrixWorld.decompose(_position$2, _quaternion$3, _scale$1);
+
+ _orientation.set(0, 0, -1).applyQuaternion(_quaternion$3);
+
+ if (listener.positionX) {
+ // code path for Chrome (see #14393)
+ var endTime = this.context.currentTime + this.timeDelta;
+ listener.positionX.linearRampToValueAtTime(_position$2.x, endTime);
+ listener.positionY.linearRampToValueAtTime(_position$2.y, endTime);
+ listener.positionZ.linearRampToValueAtTime(_position$2.z, endTime);
+ listener.forwardX.linearRampToValueAtTime(_orientation.x, endTime);
+ listener.forwardY.linearRampToValueAtTime(_orientation.y, endTime);
+ listener.forwardZ.linearRampToValueAtTime(_orientation.z, endTime);
+ listener.upX.linearRampToValueAtTime(up.x, endTime);
+ listener.upY.linearRampToValueAtTime(up.y, endTime);
+ listener.upZ.linearRampToValueAtTime(up.z, endTime);
+ } else {
+ listener.setPosition(_position$2.x, _position$2.y, _position$2.z);
+ listener.setOrientation(_orientation.x, _orientation.y, _orientation.z, up.x, up.y, up.z);
+ }
+ };
+
+ return AudioListener;
+ }(Object3D);
+
+ var Audio = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(Audio, _Object3D);
+
+ function Audio(listener) {
+ var _this;
+
+ _this = _Object3D.call(this) || this;
+ _this.type = 'Audio';
+ _this.listener = listener;
+ _this.context = listener.context;
+ _this.gain = _this.context.createGain();
+
+ _this.gain.connect(listener.getInput());
+
+ _this.autoplay = false;
+ _this.buffer = null;
+ _this.detune = 0;
+ _this.loop = false;
+ _this.loopStart = 0;
+ _this.loopEnd = 0;
+ _this.offset = 0;
+ _this.duration = undefined;
+ _this.playbackRate = 1;
+ _this.isPlaying = false;
+ _this.hasPlaybackControl = true;
+ _this.source = null;
+ _this.sourceType = 'empty';
+ _this._startedAt = 0;
+ _this._progress = 0;
+ _this._connected = false;
+ _this.filters = [];
+ return _this;
+ }
+
+ var _proto = Audio.prototype;
+
+ _proto.getOutput = function getOutput() {
+ return this.gain;
+ };
+
+ _proto.setNodeSource = function setNodeSource(audioNode) {
+ this.hasPlaybackControl = false;
+ this.sourceType = 'audioNode';
+ this.source = audioNode;
+ this.connect();
+ return this;
+ };
+
+ _proto.setMediaElementSource = function setMediaElementSource(mediaElement) {
+ this.hasPlaybackControl = false;
+ this.sourceType = 'mediaNode';
+ this.source = this.context.createMediaElementSource(mediaElement);
+ this.connect();
+ return this;
+ };
+
+ _proto.setMediaStreamSource = function setMediaStreamSource(mediaStream) {
+ this.hasPlaybackControl = false;
+ this.sourceType = 'mediaStreamNode';
+ this.source = this.context.createMediaStreamSource(mediaStream);
+ this.connect();
+ return this;
+ };
+
+ _proto.setBuffer = function setBuffer(audioBuffer) {
+ this.buffer = audioBuffer;
+ this.sourceType = 'buffer';
+ if (this.autoplay) this.play();
+ return this;
+ };
+
+ _proto.play = function play(delay) {
+ if (delay === void 0) {
+ delay = 0;
+ }
+
+ if (this.isPlaying === true) {
+ console.warn('THREE.Audio: Audio is already playing.');
+ return;
+ }
+
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
+
+ this._startedAt = this.context.currentTime + delay;
+ var source = this.context.createBufferSource();
+ source.buffer = this.buffer;
+ source.loop = this.loop;
+ source.loopStart = this.loopStart;
+ source.loopEnd = this.loopEnd;
+ source.onended = this.onEnded.bind(this);
+ source.start(this._startedAt, this._progress + this.offset, this.duration);
+ this.isPlaying = true;
+ this.source = source;
+ this.setDetune(this.detune);
+ this.setPlaybackRate(this.playbackRate);
+ return this.connect();
+ };
+
+ _proto.pause = function pause() {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
+
+ if (this.isPlaying === true) {
+ // update current progress
+ this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;
+
+ if (this.loop === true) {
+ // ensure _progress does not exceed duration with looped audios
+ this._progress = this._progress % (this.duration || this.buffer.duration);
+ }
+
+ this.source.stop();
+ this.source.onended = null;
+ this.isPlaying = false;
+ }
+
+ return this;
+ };
+
+ _proto.stop = function stop() {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
+
+ this._progress = 0;
+ this.source.stop();
+ this.source.onended = null;
+ this.isPlaying = false;
+ return this;
+ };
+
+ _proto.connect = function connect() {
+ if (this.filters.length > 0) {
+ this.source.connect(this.filters[0]);
+
+ for (var i = 1, l = this.filters.length; i < l; i++) {
+ this.filters[i - 1].connect(this.filters[i]);
+ }
+
+ this.filters[this.filters.length - 1].connect(this.getOutput());
+ } else {
+ this.source.connect(this.getOutput());
+ }
+
+ this._connected = true;
+ return this;
+ };
+
+ _proto.disconnect = function disconnect() {
+ if (this.filters.length > 0) {
+ this.source.disconnect(this.filters[0]);
+
+ for (var i = 1, l = this.filters.length; i < l; i++) {
+ this.filters[i - 1].disconnect(this.filters[i]);
+ }
+
+ this.filters[this.filters.length - 1].disconnect(this.getOutput());
+ } else {
+ this.source.disconnect(this.getOutput());
+ }
+
+ this._connected = false;
+ return this;
+ };
+
+ _proto.getFilters = function getFilters() {
+ return this.filters;
+ };
+
+ _proto.setFilters = function setFilters(value) {
+ if (!value) value = [];
+
+ if (this._connected === true) {
+ this.disconnect();
+ this.filters = value.slice();
+ this.connect();
+ } else {
+ this.filters = value.slice();
+ }
+
+ return this;
+ };
+
+ _proto.setDetune = function setDetune(value) {
+ this.detune = value;
+ if (this.source.detune === undefined) return; // only set detune when available
+
+ if (this.isPlaying === true) {
+ this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);
+ }
+
+ return this;
+ };
+
+ _proto.getDetune = function getDetune() {
+ return this.detune;
+ };
+
+ _proto.getFilter = function getFilter() {
+ return this.getFilters()[0];
+ };
+
+ _proto.setFilter = function setFilter(filter) {
+ return this.setFilters(filter ? [filter] : []);
+ };
+
+ _proto.setPlaybackRate = function setPlaybackRate(value) {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
+
+ this.playbackRate = value;
+
+ if (this.isPlaying === true) {
+ this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);
+ }
+
+ return this;
+ };
+
+ _proto.getPlaybackRate = function getPlaybackRate() {
+ return this.playbackRate;
+ };
+
+ _proto.onEnded = function onEnded() {
+ this.isPlaying = false;
+ };
+
+ _proto.getLoop = function getLoop() {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return false;
+ }
+
+ return this.loop;
+ };
+
+ _proto.setLoop = function setLoop(value) {
+ if (this.hasPlaybackControl === false) {
+ console.warn('THREE.Audio: this Audio has no playback control.');
+ return;
+ }
+
+ this.loop = value;
+
+ if (this.isPlaying === true) {
+ this.source.loop = this.loop;
+ }
+
+ return this;
+ };
+
+ _proto.setLoopStart = function setLoopStart(value) {
+ this.loopStart = value;
+ return this;
+ };
+
+ _proto.setLoopEnd = function setLoopEnd(value) {
+ this.loopEnd = value;
+ return this;
+ };
+
+ _proto.getVolume = function getVolume() {
+ return this.gain.gain.value;
+ };
+
+ _proto.setVolume = function setVolume(value) {
+ this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
+ return this;
+ };
+
+ return Audio;
+ }(Object3D);
+
+ var _position$3 = /*@__PURE__*/new Vector3();
+
+ var _quaternion$4 = /*@__PURE__*/new Quaternion();
+
+ var _scale$2 = /*@__PURE__*/new Vector3();
+
+ var _orientation$1 = /*@__PURE__*/new Vector3();
+
+ var PositionalAudio = /*#__PURE__*/function (_Audio) {
+ _inheritsLoose(PositionalAudio, _Audio);
+
+ function PositionalAudio(listener) {
+ var _this;
+
+ _this = _Audio.call(this, listener) || this;
+ _this.panner = _this.context.createPanner();
+ _this.panner.panningModel = 'HRTF';
+
+ _this.panner.connect(_this.gain);
+
+ return _this;
+ }
+
+ var _proto = PositionalAudio.prototype;
+
+ _proto.getOutput = function getOutput() {
+ return this.panner;
+ };
+
+ _proto.getRefDistance = function getRefDistance() {
+ return this.panner.refDistance;
+ };
+
+ _proto.setRefDistance = function setRefDistance(value) {
+ this.panner.refDistance = value;
+ return this;
+ };
+
+ _proto.getRolloffFactor = function getRolloffFactor() {
+ return this.panner.rolloffFactor;
+ };
+
+ _proto.setRolloffFactor = function setRolloffFactor(value) {
+ this.panner.rolloffFactor = value;
+ return this;
+ };
+
+ _proto.getDistanceModel = function getDistanceModel() {
+ return this.panner.distanceModel;
+ };
+
+ _proto.setDistanceModel = function setDistanceModel(value) {
+ this.panner.distanceModel = value;
+ return this;
+ };
+
+ _proto.getMaxDistance = function getMaxDistance() {
+ return this.panner.maxDistance;
+ };
+
+ _proto.setMaxDistance = function setMaxDistance(value) {
+ this.panner.maxDistance = value;
+ return this;
+ };
+
+ _proto.setDirectionalCone = function setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {
+ this.panner.coneInnerAngle = coneInnerAngle;
+ this.panner.coneOuterAngle = coneOuterAngle;
+ this.panner.coneOuterGain = coneOuterGain;
+ return this;
+ };
+
+ _proto.updateMatrixWorld = function updateMatrixWorld(force) {
+ _Audio.prototype.updateMatrixWorld.call(this, force);
+
+ if (this.hasPlaybackControl === true && this.isPlaying === false) return;
+ this.matrixWorld.decompose(_position$3, _quaternion$4, _scale$2);
+
+ _orientation$1.set(0, 0, 1).applyQuaternion(_quaternion$4);
+
+ var panner = this.panner;
+
+ if (panner.positionX) {
+ // code path for Chrome and Firefox (see #14393)
+ var endTime = this.context.currentTime + this.listener.timeDelta;
+ panner.positionX.linearRampToValueAtTime(_position$3.x, endTime);
+ panner.positionY.linearRampToValueAtTime(_position$3.y, endTime);
+ panner.positionZ.linearRampToValueAtTime(_position$3.z, endTime);
+ panner.orientationX.linearRampToValueAtTime(_orientation$1.x, endTime);
+ panner.orientationY.linearRampToValueAtTime(_orientation$1.y, endTime);
+ panner.orientationZ.linearRampToValueAtTime(_orientation$1.z, endTime);
+ } else {
+ panner.setPosition(_position$3.x, _position$3.y, _position$3.z);
+ panner.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z);
+ }
+ };
+
+ return PositionalAudio;
+ }(Audio);
+
+ var AudioAnalyser = /*#__PURE__*/function () {
+ function AudioAnalyser(audio, fftSize) {
+ if (fftSize === void 0) {
+ fftSize = 2048;
+ }
+
+ this.analyser = audio.context.createAnalyser();
+ this.analyser.fftSize = fftSize;
+ this.data = new Uint8Array(this.analyser.frequencyBinCount);
+ audio.getOutput().connect(this.analyser);
+ }
+
+ var _proto = AudioAnalyser.prototype;
+
+ _proto.getFrequencyData = function getFrequencyData() {
+ this.analyser.getByteFrequencyData(this.data);
+ return this.data;
+ };
+
+ _proto.getAverageFrequency = function getAverageFrequency() {
+ var value = 0;
+ var data = this.getFrequencyData();
+
+ for (var i = 0; i < data.length; i++) {
+ value += data[i];
+ }
+
+ return value / data.length;
+ };
+
+ return AudioAnalyser;
+ }();
+
+ function PropertyMixer(binding, typeName, valueSize) {
+ this.binding = binding;
+ this.valueSize = valueSize;
+ var mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
+ //
+ // interpolators can use .buffer as their .result
+ // the data then goes to 'incoming'
+ //
+ // 'accu0' and 'accu1' are used frame-interleaved for
+ // the cumulative result and are compared to detect
+ // changes
+ //
+ // 'orig' stores the original state of the property
+ //
+ // 'add' is used for additive cumulative results
+ //
+ // 'work' is optional and is only present for quaternion types. It is used
+ // to store intermediate quaternion multiplication results
+
+ switch (typeName) {
+ case 'quaternion':
+ mixFunction = this._slerp;
+ mixFunctionAdditive = this._slerpAdditive;
+ setIdentity = this._setAdditiveIdentityQuaternion;
+ this.buffer = new Float64Array(valueSize * 6);
+ this._workIndex = 5;
+ break;
+
+ case 'string':
+ case 'bool':
+ mixFunction = this._select; // Use the regular mix function and for additive on these types,
+ // additive is not relevant for non-numeric types
+
+ mixFunctionAdditive = this._select;
+ setIdentity = this._setAdditiveIdentityOther;
+ this.buffer = new Array(valueSize * 5);
+ break;
+
+ default:
+ mixFunction = this._lerp;
+ mixFunctionAdditive = this._lerpAdditive;
+ setIdentity = this._setAdditiveIdentityNumeric;
+ this.buffer = new Float64Array(valueSize * 5);
+ }
+
+ this._mixBufferRegion = mixFunction;
+ this._mixBufferRegionAdditive = mixFunctionAdditive;
+ this._setIdentity = setIdentity;
+ this._origIndex = 3;
+ this._addIndex = 4;
+ this.cumulativeWeight = 0;
+ this.cumulativeWeightAdditive = 0;
+ this.useCount = 0;
+ this.referenceCount = 0;
+ }
+
+ Object.assign(PropertyMixer.prototype, {
+ // accumulate data in the 'incoming' region into 'accu<i>'
+ accumulate: function accumulate(accuIndex, weight) {
+ // note: happily accumulating nothing when weight = 0, the caller knows
+ // the weight and shouldn't have made the call in the first place
+ var buffer = this.buffer,
+ stride = this.valueSize,
+ offset = accuIndex * stride + stride;
+ var currentWeight = this.cumulativeWeight;
+
+ if (currentWeight === 0) {
+ // accuN := incoming * weight
+ for (var i = 0; i !== stride; ++i) {
+ buffer[offset + i] = buffer[i];
+ }
+
+ currentWeight = weight;
+ } else {
+ // accuN := accuN + incoming * weight
+ currentWeight += weight;
+ var mix = weight / currentWeight;
+
+ this._mixBufferRegion(buffer, offset, 0, mix, stride);
+ }
+
+ this.cumulativeWeight = currentWeight;
+ },
+ // accumulate data in the 'incoming' region into 'add'
+ accumulateAdditive: function accumulateAdditive(weight) {
+ var buffer = this.buffer,
+ stride = this.valueSize,
+ offset = stride * this._addIndex;
+
+ if (this.cumulativeWeightAdditive === 0) {
+ // add = identity
+ this._setIdentity();
+ } // add := add + incoming * weight
+
+
+ this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);
+
+ this.cumulativeWeightAdditive += weight;
+ },
+ // apply the state of 'accu<i>' to the binding when accus differ
+ apply: function apply(accuIndex) {
+ var stride = this.valueSize,
+ buffer = this.buffer,
+ offset = accuIndex * stride + stride,
+ weight = this.cumulativeWeight,
+ weightAdditive = this.cumulativeWeightAdditive,
+ binding = this.binding;
+ this.cumulativeWeight = 0;
+ this.cumulativeWeightAdditive = 0;
+
+ if (weight < 1) {
+ // accuN := accuN + original * ( 1 - cumulativeWeight )
+ var originalValueOffset = stride * this._origIndex;
+
+ this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);
+ }
+
+ if (weightAdditive > 0) {
+ // accuN := accuN + additive accuN
+ this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);
+ }
+
+ for (var i = stride, e = stride + stride; i !== e; ++i) {
+ if (buffer[i] !== buffer[i + stride]) {
+ // value has changed -> update scene graph
+ binding.setValue(buffer, offset);
+ break;
+ }
+ }
+ },
+ // remember the state of the bound property and copy it to both accus
+ saveOriginalState: function saveOriginalState() {
+ var binding = this.binding;
+ var buffer = this.buffer,
+ stride = this.valueSize,
+ originalValueOffset = stride * this._origIndex;
+ binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original
+
+ for (var i = stride, e = originalValueOffset; i !== e; ++i) {
+ buffer[i] = buffer[originalValueOffset + i % stride];
+ } // Add to identity for additive
+
+
+ this._setIdentity();
+
+ this.cumulativeWeight = 0;
+ this.cumulativeWeightAdditive = 0;
+ },
+ // apply the state previously taken via 'saveOriginalState' to the binding
+ restoreOriginalState: function restoreOriginalState() {
+ var originalValueOffset = this.valueSize * 3;
+ this.binding.setValue(this.buffer, originalValueOffset);
+ },
+ _setAdditiveIdentityNumeric: function _setAdditiveIdentityNumeric() {
+ var startIndex = this._addIndex * this.valueSize;
+ var endIndex = startIndex + this.valueSize;
+
+ for (var i = startIndex; i < endIndex; i++) {
+ this.buffer[i] = 0;
+ }
+ },
+ _setAdditiveIdentityQuaternion: function _setAdditiveIdentityQuaternion() {
+ this._setAdditiveIdentityNumeric();
+
+ this.buffer[this._addIndex * this.valueSize + 3] = 1;
+ },
+ _setAdditiveIdentityOther: function _setAdditiveIdentityOther() {
+ var startIndex = this._origIndex * this.valueSize;
+ var targetIndex = this._addIndex * this.valueSize;
+
+ for (var i = 0; i < this.valueSize; i++) {
+ this.buffer[targetIndex + i] = this.buffer[startIndex + i];
+ }
+ },
+ // mix functions
+ _select: function _select(buffer, dstOffset, srcOffset, t, stride) {
+ if (t >= 0.5) {
+ for (var i = 0; i !== stride; ++i) {
+ buffer[dstOffset + i] = buffer[srcOffset + i];
+ }
+ }
+ },
+ _slerp: function _slerp(buffer, dstOffset, srcOffset, t) {
+ Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);
+ },
+ _slerpAdditive: function _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
+ var workOffset = this._workIndex * stride; // Store result in intermediate buffer offset
+
+ Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result
+
+ Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);
+ },
+ _lerp: function _lerp(buffer, dstOffset, srcOffset, t, stride) {
+ var s = 1 - t;
+
+ for (var i = 0; i !== stride; ++i) {
+ var j = dstOffset + i;
+ buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;
+ }
+ },
+ _lerpAdditive: function _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
+ for (var i = 0; i !== stride; ++i) {
+ var j = dstOffset + i;
+ buffer[j] = buffer[j] + buffer[srcOffset + i] * t;
+ }
+ }
+ });
+
+ // Characters [].:/ are reserved for track binding syntax.
+ var _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
+
+ var _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches
+ // only latin characters, and the unicode \p{L} is not yet supported. So
+ // instead, we exclude reserved characters and match everything else.
+
+
+ var _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
+
+ var _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must
+ // be matched to parse the rest of the track name.
+
+
+ var _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
+
+
+ var _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved
+ // characters. Accessor may contain any character except closing bracket.
+
+
+ var _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may
+ // contain any non-bracket characters.
+
+
+ var _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);
+
+ var _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');
+
+ var _supportedObjectNames = ['material', 'materials', 'bones'];
+
+ function Composite(targetGroup, path, optionalParsedPath) {
+ var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);
+ this._targetGroup = targetGroup;
+ this._bindings = targetGroup.subscribe_(path, parsedPath);
+ }
+
+ Object.assign(Composite.prototype, {
+ getValue: function getValue(array, offset) {
+ this.bind(); // bind all binding
+
+ var firstValidIndex = this._targetGroup.nCachedObjects_,
+ binding = this._bindings[firstValidIndex]; // and only call .getValue on the first
+
+ if (binding !== undefined) binding.getValue(array, offset);
+ },
+ setValue: function setValue(array, offset) {
+ var bindings = this._bindings;
+
+ for (var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
+ bindings[i].setValue(array, offset);
+ }
+ },
+ bind: function bind() {
+ var bindings = this._bindings;
+
+ for (var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
+ bindings[i].bind();
+ }
+ },
+ unbind: function unbind() {
+ var bindings = this._bindings;
+
+ for (var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
+ bindings[i].unbind();
+ }
+ }
+ });
+
+ function PropertyBinding(rootNode, path, parsedPath) {
+ this.path = path;
+ this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);
+ this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;
+ this.rootNode = rootNode;
+ }
+
+ Object.assign(PropertyBinding, {
+ Composite: Composite,
+ create: function create(root, path, parsedPath) {
+ if (!(root && root.isAnimationObjectGroup)) {
+ return new PropertyBinding(root, path, parsedPath);
+ } else {
+ return new PropertyBinding.Composite(root, path, parsedPath);
+ }
+ },
+
+ /**
+ * Replaces spaces with underscores and removes unsupported characters from
+ * node names, to ensure compatibility with parseTrackName().
+ *
+ * @param {string} name Node name to be sanitized.
+ * @return {string}
+ */
+ sanitizeNodeName: function sanitizeNodeName(name) {
+ return name.replace(/\s/g, '_').replace(_reservedRe, '');
+ },
+ parseTrackName: function parseTrackName(trackName) {
+ var matches = _trackRe.exec(trackName);
+
+ if (!matches) {
+ throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);
+ }
+
+ var results = {
+ // directoryName: matches[ 1 ], // (tschw) currently unused
+ nodeName: matches[2],
+ objectName: matches[3],
+ objectIndex: matches[4],
+ propertyName: matches[5],
+ // required
+ propertyIndex: matches[6]
+ };
+ var lastDot = results.nodeName && results.nodeName.lastIndexOf('.');
+
+ if (lastDot !== undefined && lastDot !== -1) {
+ var objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there
+ // is no way to parse 'foo.bar.baz': 'baz' must be a property, but
+ // 'bar' could be the objectName, or part of a nodeName (which can
+ // include '.' characters).
+
+ if (_supportedObjectNames.indexOf(objectName) !== -1) {
+ results.nodeName = results.nodeName.substring(0, lastDot);
+ results.objectName = objectName;
+ }
+ }
+
+ if (results.propertyName === null || results.propertyName.length === 0) {
+ throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);
+ }
+
+ return results;
+ },
+ findNode: function findNode(root, nodeName) {
+ if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {
+ return root;
+ } // search into skeleton bones.
+
+
+ if (root.skeleton) {
+ var bone = root.skeleton.getBoneByName(nodeName);
+
+ if (bone !== undefined) {
+ return bone;
+ }
+ } // search into node subtree.
+
+
+ if (root.children) {
+ var searchNodeSubtree = function searchNodeSubtree(children) {
+ for (var i = 0; i < children.length; i++) {
+ var childNode = children[i];
+
+ if (childNode.name === nodeName || childNode.uuid === nodeName) {
+ return childNode;
+ }
+
+ var result = searchNodeSubtree(childNode.children);
+ if (result) return result;
+ }
+
+ return null;
+ };
+
+ var subTreeNode = searchNodeSubtree(root.children);
+
+ if (subTreeNode) {
+ return subTreeNode;
+ }
+ }
+
+ return null;
+ }
+ });
+ Object.assign(PropertyBinding.prototype, {
+ // prototype, continued
+ // these are used to "bind" a nonexistent property
+ _getValue_unavailable: function _getValue_unavailable() {},
+ _setValue_unavailable: function _setValue_unavailable() {},
+ BindingType: {
+ Direct: 0,
+ EntireArray: 1,
+ ArrayElement: 2,
+ HasFromToArray: 3
+ },
+ Versioning: {
+ None: 0,
+ NeedsUpdate: 1,
+ MatrixWorldNeedsUpdate: 2
+ },
+ GetterByBindingType: [function getValue_direct(buffer, offset) {
+ buffer[offset] = this.node[this.propertyName];
+ }, function getValue_array(buffer, offset) {
+ var source = this.resolvedProperty;
+
+ for (var i = 0, n = source.length; i !== n; ++i) {
+ buffer[offset++] = source[i];
+ }
+ }, function getValue_arrayElement(buffer, offset) {
+ buffer[offset] = this.resolvedProperty[this.propertyIndex];
+ }, function getValue_toArray(buffer, offset) {
+ this.resolvedProperty.toArray(buffer, offset);
+ }],
+ SetterByBindingTypeAndVersioning: [[// Direct
+ function setValue_direct(buffer, offset) {
+ this.targetObject[this.propertyName] = buffer[offset];
+ }, function setValue_direct_setNeedsUpdate(buffer, offset) {
+ this.targetObject[this.propertyName] = buffer[offset];
+ this.targetObject.needsUpdate = true;
+ }, function setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {
+ this.targetObject[this.propertyName] = buffer[offset];
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ }], [// EntireArray
+ function setValue_array(buffer, offset) {
+ var dest = this.resolvedProperty;
+
+ for (var i = 0, n = dest.length; i !== n; ++i) {
+ dest[i] = buffer[offset++];
+ }
+ }, function setValue_array_setNeedsUpdate(buffer, offset) {
+ var dest = this.resolvedProperty;
+
+ for (var i = 0, n = dest.length; i !== n; ++i) {
+ dest[i] = buffer[offset++];
+ }
+
+ this.targetObject.needsUpdate = true;
+ }, function setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {
+ var dest = this.resolvedProperty;
+
+ for (var i = 0, n = dest.length; i !== n; ++i) {
+ dest[i] = buffer[offset++];
+ }
+
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ }], [// ArrayElement
+ function setValue_arrayElement(buffer, offset) {
+ this.resolvedProperty[this.propertyIndex] = buffer[offset];
+ }, function setValue_arrayElement_setNeedsUpdate(buffer, offset) {
+ this.resolvedProperty[this.propertyIndex] = buffer[offset];
+ this.targetObject.needsUpdate = true;
+ }, function setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {
+ this.resolvedProperty[this.propertyIndex] = buffer[offset];
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ }], [// HasToFromArray
+ function setValue_fromArray(buffer, offset) {
+ this.resolvedProperty.fromArray(buffer, offset);
+ }, function setValue_fromArray_setNeedsUpdate(buffer, offset) {
+ this.resolvedProperty.fromArray(buffer, offset);
+ this.targetObject.needsUpdate = true;
+ }, function setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {
+ this.resolvedProperty.fromArray(buffer, offset);
+ this.targetObject.matrixWorldNeedsUpdate = true;
+ }]],
+ getValue: function getValue_unbound(targetArray, offset) {
+ this.bind();
+ this.getValue(targetArray, offset); // Note: This class uses a State pattern on a per-method basis:
+ // 'bind' sets 'this.getValue' / 'setValue' and shadows the
+ // prototype version of these methods with one that represents
+ // the bound state. When the property is not found, the methods
+ // become no-ops.
+ },
+ setValue: function getValue_unbound(sourceArray, offset) {
+ this.bind();
+ this.setValue(sourceArray, offset);
+ },
+ // create getter / setter pair for a property in the scene graph
+ bind: function bind() {
+ var targetObject = this.node;
+ var parsedPath = this.parsedPath;
+ var objectName = parsedPath.objectName;
+ var propertyName = parsedPath.propertyName;
+ var propertyIndex = parsedPath.propertyIndex;
+
+ if (!targetObject) {
+ targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;
+ this.node = targetObject;
+ } // set fail state so we can just 'return' on error
+
+
+ this.getValue = this._getValue_unavailable;
+ this.setValue = this._setValue_unavailable; // ensure there is a value node
+
+ if (!targetObject) {
+ console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');
+ return;
+ }
+
+ if (objectName) {
+ var objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....
+
+ switch (objectName) {
+ case 'materials':
+ if (!targetObject.material) {
+ console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);
+ return;
+ }
+
+ if (!targetObject.material.materials) {
+ console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);
+ return;
+ }
+
+ targetObject = targetObject.material.materials;
+ break;
+
+ case 'bones':
+ if (!targetObject.skeleton) {
+ console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);
+ return;
+ } // potential future optimization: skip this if propertyIndex is already an integer
+ // and convert the integer string to a true integer.
+
+
+ targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.
+
+ for (var i = 0; i < targetObject.length; i++) {
+ if (targetObject[i].name === objectIndex) {
+ objectIndex = i;
+ break;
+ }
+ }
+
+ break;
+
+ default:
+ if (targetObject[objectName] === undefined) {
+ console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);
+ return;
+ }
+
+ targetObject = targetObject[objectName];
+ }
+
+ if (objectIndex !== undefined) {
+ if (targetObject[objectIndex] === undefined) {
+ console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);
+ return;
+ }
+
+ targetObject = targetObject[objectIndex];
+ }
+ } // resolve property
+
+
+ var nodeProperty = targetObject[propertyName];
+
+ if (nodeProperty === undefined) {
+ var nodeName = parsedPath.nodeName;
+ console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);
+ return;
+ } // determine versioning scheme
+
+
+ var versioning = this.Versioning.None;
+ this.targetObject = targetObject;
+
+ if (targetObject.needsUpdate !== undefined) {
+ // material
+ versioning = this.Versioning.NeedsUpdate;
+ } else if (targetObject.matrixWorldNeedsUpdate !== undefined) {
+ // node transform
+ versioning = this.Versioning.MatrixWorldNeedsUpdate;
+ } // determine how the property gets bound
+
+
+ var bindingType = this.BindingType.Direct;
+
+ if (propertyIndex !== undefined) {
+ // access a sub element of the property array (only primitives are supported right now)
+ if (propertyName === 'morphTargetInfluences') {
+ // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
+ // support resolving morphTarget names into indices.
+ if (!targetObject.geometry) {
+ console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);
+ return;
+ }
+
+ if (targetObject.geometry.isBufferGeometry) {
+ if (!targetObject.geometry.morphAttributes) {
+ console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);
+ return;
+ }
+
+ if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {
+ propertyIndex = targetObject.morphTargetDictionary[propertyIndex];
+ }
+ } else {
+ console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);
+ return;
+ }
+ }
+
+ bindingType = this.BindingType.ArrayElement;
+ this.resolvedProperty = nodeProperty;
+ this.propertyIndex = propertyIndex;
+ } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {
+ // must use copy for Object3D.Euler/Quaternion
+ bindingType = this.BindingType.HasFromToArray;
+ this.resolvedProperty = nodeProperty;
+ } else if (Array.isArray(nodeProperty)) {
+ bindingType = this.BindingType.EntireArray;
+ this.resolvedProperty = nodeProperty;
+ } else {
+ this.propertyName = propertyName;
+ } // select getter / setter
+
+
+ this.getValue = this.GetterByBindingType[bindingType];
+ this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];
+ },
+ unbind: function unbind() {
+ this.node = null; // back to the prototype version of getValue / setValue
+ // note: avoiding to mutate the shape of 'this' via 'delete'
+
+ this.getValue = this._getValue_unbound;
+ this.setValue = this._setValue_unbound;
+ }
+ }); // DECLARE ALIAS AFTER assign prototype
+
+ Object.assign(PropertyBinding.prototype, {
+ // initial state of these methods that calls 'bind'
+ _getValue_unbound: PropertyBinding.prototype.getValue,
+ _setValue_unbound: PropertyBinding.prototype.setValue
+ });
+
+ /**
+ *
+ * A group of objects that receives a shared animation state.
+ *
+ * Usage:
+ *
+ * - Add objects you would otherwise pass as 'root' to the
+ * constructor or the .clipAction method of AnimationMixer.
+ *
+ * - Instead pass this object as 'root'.
+ *
+ * - You can also add and remove objects later when the mixer
+ * is running.
+ *
+ * Note:
+ *
+ * Objects of this class appear as one object to the mixer,
+ * so cache control of the individual objects must be done
+ * on the group.
+ *
+ * Limitation:
+ *
+ * - The animated properties must be compatible among the
+ * all objects in the group.
+ *
+ * - A single property can either be controlled through a
+ * target group or directly, but not both.
+ */
+
+ function AnimationObjectGroup() {
+ this.uuid = MathUtils.generateUUID(); // cached objects followed by the active ones
+
+ this._objects = Array.prototype.slice.call(arguments);
+ this.nCachedObjects_ = 0; // threshold
+ // note: read by PropertyBinding.Composite
+
+ var indices = {};
+ this._indicesByUUID = indices; // for bookkeeping
+
+ for (var i = 0, n = arguments.length; i !== n; ++i) {
+ indices[arguments[i].uuid] = i;
+ }
+
+ this._paths = []; // inside: string
+
+ this._parsedPaths = []; // inside: { we don't care, here }
+
+ this._bindings = []; // inside: Array< PropertyBinding >
+
+ this._bindingsIndicesByPath = {}; // inside: indices in these arrays
+
+ var scope = this;
+ this.stats = {
+ objects: {
+ get total() {
+ return scope._objects.length;
+ },
+
+ get inUse() {
+ return this.total - scope.nCachedObjects_;
+ }
+
+ },
+
+ get bindingsPerObject() {
+ return scope._bindings.length;
+ }
+
+ };
+ }
+
+ Object.assign(AnimationObjectGroup.prototype, {
+ isAnimationObjectGroup: true,
+ add: function add() {
+ var objects = this._objects,
+ indicesByUUID = this._indicesByUUID,
+ paths = this._paths,
+ parsedPaths = this._parsedPaths,
+ bindings = this._bindings,
+ nBindings = bindings.length;
+ var knownObject = undefined,
+ nObjects = objects.length,
+ nCachedObjects = this.nCachedObjects_;
+
+ for (var i = 0, n = arguments.length; i !== n; ++i) {
+ var object = arguments[i],
+ uuid = object.uuid;
+ var index = indicesByUUID[uuid];
+
+ if (index === undefined) {
+ // unknown object -> add it to the ACTIVE region
+ index = nObjects++;
+ indicesByUUID[uuid] = index;
+ objects.push(object); // accounting is done, now do the same for all bindings
+
+ for (var j = 0, m = nBindings; j !== m; ++j) {
+ bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));
+ }
+ } else if (index < nCachedObjects) {
+ knownObject = objects[index]; // move existing object to the ACTIVE region
+
+ var firstActiveIndex = --nCachedObjects,
+ lastCachedObject = objects[firstActiveIndex];
+ indicesByUUID[lastCachedObject.uuid] = index;
+ objects[index] = lastCachedObject;
+ indicesByUUID[uuid] = firstActiveIndex;
+ objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings
+
+ for (var _j = 0, _m = nBindings; _j !== _m; ++_j) {
+ var bindingsForPath = bindings[_j],
+ lastCached = bindingsForPath[firstActiveIndex];
+ var binding = bindingsForPath[index];
+ bindingsForPath[index] = lastCached;
+
+ if (binding === undefined) {
+ // since we do not bother to create new bindings
+ // for objects that are cached, the binding may
+ // or may not exist
+ binding = new PropertyBinding(object, paths[_j], parsedPaths[_j]);
+ }
+
+ bindingsForPath[firstActiveIndex] = binding;
+ }
+ } else if (objects[index] !== knownObject) {
+ console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');
+ } // else the object is already where we want it to be
+
+ } // for arguments
+
+
+ this.nCachedObjects_ = nCachedObjects;
+ },
+ remove: function remove() {
+ var objects = this._objects,
+ indicesByUUID = this._indicesByUUID,
+ bindings = this._bindings,
+ nBindings = bindings.length;
+ var nCachedObjects = this.nCachedObjects_;
+
+ for (var i = 0, n = arguments.length; i !== n; ++i) {
+ var object = arguments[i],
+ uuid = object.uuid,
+ index = indicesByUUID[uuid];
+
+ if (index !== undefined && index >= nCachedObjects) {
+ // move existing object into the CACHED region
+ var lastCachedIndex = nCachedObjects++,
+ firstActiveObject = objects[lastCachedIndex];
+ indicesByUUID[firstActiveObject.uuid] = index;
+ objects[index] = firstActiveObject;
+ indicesByUUID[uuid] = lastCachedIndex;
+ objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings
+
+ for (var j = 0, m = nBindings; j !== m; ++j) {
+ var bindingsForPath = bindings[j],
+ firstActive = bindingsForPath[lastCachedIndex],
+ binding = bindingsForPath[index];
+ bindingsForPath[index] = firstActive;
+ bindingsForPath[lastCachedIndex] = binding;
+ }
+ }
+ } // for arguments
+
+
+ this.nCachedObjects_ = nCachedObjects;
+ },
+ // remove & forget
+ uncache: function uncache() {
+ var objects = this._objects,
+ indicesByUUID = this._indicesByUUID,
+ bindings = this._bindings,
+ nBindings = bindings.length;
+ var nCachedObjects = this.nCachedObjects_,
+ nObjects = objects.length;
+
+ for (var i = 0, n = arguments.length; i !== n; ++i) {
+ var object = arguments[i],
+ uuid = object.uuid,
+ index = indicesByUUID[uuid];
+
+ if (index !== undefined) {
+ delete indicesByUUID[uuid];
+
+ if (index < nCachedObjects) {
+ // object is cached, shrink the CACHED region
+ var firstActiveIndex = --nCachedObjects,
+ lastCachedObject = objects[firstActiveIndex],
+ lastIndex = --nObjects,
+ lastObject = objects[lastIndex]; // last cached object takes this object's place
+
+ indicesByUUID[lastCachedObject.uuid] = index;
+ objects[index] = lastCachedObject; // last object goes to the activated slot and pop
+
+ indicesByUUID[lastObject.uuid] = firstActiveIndex;
+ objects[firstActiveIndex] = lastObject;
+ objects.pop(); // accounting is done, now do the same for all bindings
+
+ for (var j = 0, m = nBindings; j !== m; ++j) {
+ var bindingsForPath = bindings[j],
+ lastCached = bindingsForPath[firstActiveIndex],
+ last = bindingsForPath[lastIndex];
+ bindingsForPath[index] = lastCached;
+ bindingsForPath[firstActiveIndex] = last;
+ bindingsForPath.pop();
+ }
+ } else {
+ // object is active, just swap with the last and pop
+ var _lastIndex = --nObjects,
+ _lastObject = objects[_lastIndex];
+
+ if (_lastIndex > 0) {
+ indicesByUUID[_lastObject.uuid] = index;
+ }
+
+ objects[index] = _lastObject;
+ objects.pop(); // accounting is done, now do the same for all bindings
+
+ for (var _j2 = 0, _m2 = nBindings; _j2 !== _m2; ++_j2) {
+ var _bindingsForPath = bindings[_j2];
+ _bindingsForPath[index] = _bindingsForPath[_lastIndex];
+
+ _bindingsForPath.pop();
+ }
+ } // cached or active
+
+ } // if object is known
+
+ } // for arguments
+
+
+ this.nCachedObjects_ = nCachedObjects;
+ },
+ // Internal interface used by befriended PropertyBinding.Composite:
+ subscribe_: function subscribe_(path, parsedPath) {
+ // returns an array of bindings for the given path that is changed
+ // according to the contained objects in the group
+ var indicesByPath = this._bindingsIndicesByPath;
+ var index = indicesByPath[path];
+ var bindings = this._bindings;
+ if (index !== undefined) return bindings[index];
+ var paths = this._paths,
+ parsedPaths = this._parsedPaths,
+ objects = this._objects,
+ nObjects = objects.length,
+ nCachedObjects = this.nCachedObjects_,
+ bindingsForPath = new Array(nObjects);
+ index = bindings.length;
+ indicesByPath[path] = index;
+ paths.push(path);
+ parsedPaths.push(parsedPath);
+ bindings.push(bindingsForPath);
+
+ for (var i = nCachedObjects, n = objects.length; i !== n; ++i) {
+ var object = objects[i];
+ bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);
+ }
+
+ return bindingsForPath;
+ },
+ unsubscribe_: function unsubscribe_(path) {
+ // tells the group to forget about a property path and no longer
+ // update the array previously obtained with 'subscribe_'
+ var indicesByPath = this._bindingsIndicesByPath,
+ index = indicesByPath[path];
+
+ if (index !== undefined) {
+ var paths = this._paths,
+ parsedPaths = this._parsedPaths,
+ bindings = this._bindings,
+ lastBindingsIndex = bindings.length - 1,
+ lastBindings = bindings[lastBindingsIndex],
+ lastBindingsPath = path[lastBindingsIndex];
+ indicesByPath[lastBindingsPath] = index;
+ bindings[index] = lastBindings;
+ bindings.pop();
+ parsedPaths[index] = parsedPaths[lastBindingsIndex];
+ parsedPaths.pop();
+ paths[index] = paths[lastBindingsIndex];
+ paths.pop();
+ }
+ }
+ });
+
+ var AnimationAction = /*#__PURE__*/function () {
+ function AnimationAction(mixer, clip, localRoot, blendMode) {
+ if (localRoot === void 0) {
+ localRoot = null;
+ }
+
+ if (blendMode === void 0) {
+ blendMode = clip.blendMode;
+ }
+
+ this._mixer = mixer;
+ this._clip = clip;
+ this._localRoot = localRoot;
+ this.blendMode = blendMode;
+ var tracks = clip.tracks,
+ nTracks = tracks.length,
+ interpolants = new Array(nTracks);
+ var interpolantSettings = {
+ endingStart: ZeroCurvatureEnding,
+ endingEnd: ZeroCurvatureEnding
+ };
+
+ for (var i = 0; i !== nTracks; ++i) {
+ var interpolant = tracks[i].createInterpolant(null);
+ interpolants[i] = interpolant;
+ interpolant.settings = interpolantSettings;
+ }
+
+ this._interpolantSettings = interpolantSettings;
+ this._interpolants = interpolants; // bound by the mixer
+ // inside: PropertyMixer (managed by the mixer)
+
+ this._propertyBindings = new Array(nTracks);
+ this._cacheIndex = null; // for the memory manager
+
+ this._byClipCacheIndex = null; // for the memory manager
+
+ this._timeScaleInterpolant = null;
+ this._weightInterpolant = null;
+ this.loop = LoopRepeat;
+ this._loopCount = -1; // global mixer time when the action is to be started
+ // it's set back to 'null' upon start of the action
+
+ this._startTime = null; // scaled local time of the action
+ // gets clamped or wrapped to 0..clip.duration according to loop
+
+ this.time = 0;
+ this.timeScale = 1;
+ this._effectiveTimeScale = 1;
+ this.weight = 1;
+ this._effectiveWeight = 1;
+ this.repetitions = Infinity; // no. of repetitions when looping
+
+ this.paused = false; // true -> zero effective time scale
+
+ this.enabled = true; // false -> zero effective weight
+
+ this.clampWhenFinished = false; // keep feeding the last frame?
+
+ this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
+
+ this.zeroSlopeAtEnd = true; // clips for start, loop and end
+ } // State & Scheduling
+
+
+ var _proto = AnimationAction.prototype;
+
+ _proto.play = function play() {
+ this._mixer._activateAction(this);
+
+ return this;
+ };
+
+ _proto.stop = function stop() {
+ this._mixer._deactivateAction(this);
+
+ return this.reset();
+ };
+
+ _proto.reset = function reset() {
+ this.paused = false;
+ this.enabled = true;
+ this.time = 0; // restart clip
+
+ this._loopCount = -1; // forget previous loops
+
+ this._startTime = null; // forget scheduling
+
+ return this.stopFading().stopWarping();
+ };
+
+ _proto.isRunning = function isRunning() {
+ return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);
+ } // return true when play has been called
+ ;
+
+ _proto.isScheduled = function isScheduled() {
+ return this._mixer._isActiveAction(this);
+ };
+
+ _proto.startAt = function startAt(time) {
+ this._startTime = time;
+ return this;
+ };
+
+ _proto.setLoop = function setLoop(mode, repetitions) {
+ this.loop = mode;
+ this.repetitions = repetitions;
+ return this;
+ } // Weight
+ // set the weight stopping any scheduled fading
+ // although .enabled = false yields an effective weight of zero, this
+ // method does *not* change .enabled, because it would be confusing
+ ;
+
+ _proto.setEffectiveWeight = function setEffectiveWeight(weight) {
+ this.weight = weight; // note: same logic as when updated at runtime
+
+ this._effectiveWeight = this.enabled ? weight : 0;
+ return this.stopFading();
+ } // return the weight considering fading and .enabled
+ ;
+
+ _proto.getEffectiveWeight = function getEffectiveWeight() {
+ return this._effectiveWeight;
+ };
+
+ _proto.fadeIn = function fadeIn(duration) {
+ return this._scheduleFading(duration, 0, 1);
+ };
+
+ _proto.fadeOut = function fadeOut(duration) {
+ return this._scheduleFading(duration, 1, 0);
+ };
+
+ _proto.crossFadeFrom = function crossFadeFrom(fadeOutAction, duration, warp) {
+ fadeOutAction.fadeOut(duration);
+ this.fadeIn(duration);
+
+ if (warp) {
+ var fadeInDuration = this._clip.duration,
+ fadeOutDuration = fadeOutAction._clip.duration,
+ startEndRatio = fadeOutDuration / fadeInDuration,
+ endStartRatio = fadeInDuration / fadeOutDuration;
+ fadeOutAction.warp(1.0, startEndRatio, duration);
+ this.warp(endStartRatio, 1.0, duration);
+ }
+
+ return this;
+ };
+
+ _proto.crossFadeTo = function crossFadeTo(fadeInAction, duration, warp) {
+ return fadeInAction.crossFadeFrom(this, duration, warp);
+ };
+
+ _proto.stopFading = function stopFading() {
+ var weightInterpolant = this._weightInterpolant;
+
+ if (weightInterpolant !== null) {
+ this._weightInterpolant = null;
+
+ this._mixer._takeBackControlInterpolant(weightInterpolant);
+ }
+
+ return this;
+ } // Time Scale Control
+ // set the time scale stopping any scheduled warping
+ // although .paused = true yields an effective time scale of zero, this
+ // method does *not* change .paused, because it would be confusing
+ ;
+
+ _proto.setEffectiveTimeScale = function setEffectiveTimeScale(timeScale) {
+ this.timeScale = timeScale;
+ this._effectiveTimeScale = this.paused ? 0 : timeScale;
+ return this.stopWarping();
+ } // return the time scale considering warping and .paused
+ ;
+
+ _proto.getEffectiveTimeScale = function getEffectiveTimeScale() {
+ return this._effectiveTimeScale;
+ };
+
+ _proto.setDuration = function setDuration(duration) {
+ this.timeScale = this._clip.duration / duration;
+ return this.stopWarping();
+ };
+
+ _proto.syncWith = function syncWith(action) {
+ this.time = action.time;
+ this.timeScale = action.timeScale;
+ return this.stopWarping();
+ };
+
+ _proto.halt = function halt(duration) {
+ return this.warp(this._effectiveTimeScale, 0, duration);
+ };
+
+ _proto.warp = function warp(startTimeScale, endTimeScale, duration) {
+ var mixer = this._mixer,
+ now = mixer.time,
+ timeScale = this.timeScale;
+ var interpolant = this._timeScaleInterpolant;
+
+ if (interpolant === null) {
+ interpolant = mixer._lendControlInterpolant();
+ this._timeScaleInterpolant = interpolant;
+ }
+
+ var times = interpolant.parameterPositions,
+ values = interpolant.sampleValues;
+ times[0] = now;
+ times[1] = now + duration;
+ values[0] = startTimeScale / timeScale;
+ values[1] = endTimeScale / timeScale;
+ return this;
+ };
+
+ _proto.stopWarping = function stopWarping() {
+ var timeScaleInterpolant = this._timeScaleInterpolant;
+
+ if (timeScaleInterpolant !== null) {
+ this._timeScaleInterpolant = null;
+
+ this._mixer._takeBackControlInterpolant(timeScaleInterpolant);
+ }
+
+ return this;
+ } // Object Accessors
+ ;
+
+ _proto.getMixer = function getMixer() {
+ return this._mixer;
+ };
+
+ _proto.getClip = function getClip() {
+ return this._clip;
+ };
+
+ _proto.getRoot = function getRoot() {
+ return this._localRoot || this._mixer._root;
+ } // Interna
+ ;
+
+ _proto._update = function _update(time, deltaTime, timeDirection, accuIndex) {
+ // called by the mixer
+ if (!this.enabled) {
+ // call ._updateWeight() to update ._effectiveWeight
+ this._updateWeight(time);
+
+ return;
+ }
+
+ var startTime = this._startTime;
+
+ if (startTime !== null) {
+ // check for scheduled start of action
+ var timeRunning = (time - startTime) * timeDirection;
+
+ if (timeRunning < 0 || timeDirection === 0) {
+ return; // yet to come / don't decide when delta = 0
+ } // start
+
+
+ this._startTime = null; // unschedule
+
+ deltaTime = timeDirection * timeRunning;
+ } // apply time scale and advance time
+
+
+ deltaTime *= this._updateTimeScale(time);
+
+ var clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in
+ // an effective weight of 0
+
+
+ var weight = this._updateWeight(time);
+
+ if (weight > 0) {
+ var _interpolants = this._interpolants;
+ var propertyMixers = this._propertyBindings;
+
+ switch (this.blendMode) {
+ case AdditiveAnimationBlendMode:
+ for (var j = 0, m = _interpolants.length; j !== m; ++j) {
+ _interpolants[j].evaluate(clipTime);
+
+ propertyMixers[j].accumulateAdditive(weight);
+ }
+
+ break;
+
+ case NormalAnimationBlendMode:
+ default:
+ for (var _j = 0, _m = _interpolants.length; _j !== _m; ++_j) {
+ _interpolants[_j].evaluate(clipTime);
+
+ propertyMixers[_j].accumulate(accuIndex, weight);
+ }
+
+ }
+ }
+ };
+
+ _proto._updateWeight = function _updateWeight(time) {
+ var weight = 0;
+
+ if (this.enabled) {
+ weight = this.weight;
+ var interpolant = this._weightInterpolant;
+
+ if (interpolant !== null) {
+ var interpolantValue = interpolant.evaluate(time)[0];
+ weight *= interpolantValue;
+
+ if (time > interpolant.parameterPositions[1]) {
+ this.stopFading();
+
+ if (interpolantValue === 0) {
+ // faded out, disable
+ this.enabled = false;
+ }
+ }
+ }
+ }
+
+ this._effectiveWeight = weight;
+ return weight;
+ };
+
+ _proto._updateTimeScale = function _updateTimeScale(time) {
+ var timeScale = 0;
+
+ if (!this.paused) {
+ timeScale = this.timeScale;
+ var interpolant = this._timeScaleInterpolant;
+
+ if (interpolant !== null) {
+ var interpolantValue = interpolant.evaluate(time)[0];
+ timeScale *= interpolantValue;
+
+ if (time > interpolant.parameterPositions[1]) {
+ this.stopWarping();
+
+ if (timeScale === 0) {
+ // motion has halted, pause
+ this.paused = true;
+ } else {
+ // warp done - apply final time scale
+ this.timeScale = timeScale;
+ }
+ }
+ }
+ }
+
+ this._effectiveTimeScale = timeScale;
+ return timeScale;
+ };
+
+ _proto._updateTime = function _updateTime(deltaTime) {
+ var duration = this._clip.duration;
+ var loop = this.loop;
+ var time = this.time + deltaTime;
+ var loopCount = this._loopCount;
+ var pingPong = loop === LoopPingPong;
+
+ if (deltaTime === 0) {
+ if (loopCount === -1) return time;
+ return pingPong && (loopCount & 1) === 1 ? duration - time : time;
+ }
+
+ if (loop === LoopOnce) {
+ if (loopCount === -1) {
+ // just started
+ this._loopCount = 0;
+
+ this._setEndings(true, true, false);
+ }
+
+ handle_stop: {
+ if (time >= duration) {
+ time = duration;
+ } else if (time < 0) {
+ time = 0;
+ } else {
+ this.time = time;
+ break handle_stop;
+ }
+
+ if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
+ this.time = time;
+
+ this._mixer.dispatchEvent({
+ type: 'finished',
+ action: this,
+ direction: deltaTime < 0 ? -1 : 1
+ });
+ }
+ } else {
+ // repetitive Repeat or PingPong
+ if (loopCount === -1) {
+ // just started
+ if (deltaTime >= 0) {
+ loopCount = 0;
+
+ this._setEndings(true, this.repetitions === 0, pingPong);
+ } else {
+ // when looping in reverse direction, the initial
+ // transition through zero counts as a repetition,
+ // so leave loopCount at -1
+ this._setEndings(this.repetitions === 0, true, pingPong);
+ }
+ }
+
+ if (time >= duration || time < 0) {
+ // wrap around
+ var loopDelta = Math.floor(time / duration); // signed
+
+ time -= duration * loopDelta;
+ loopCount += Math.abs(loopDelta);
+ var pending = this.repetitions - loopCount;
+
+ if (pending <= 0) {
+ // have to stop (switch state, clamp time, fire event)
+ if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
+ time = deltaTime > 0 ? duration : 0;
+ this.time = time;
+
+ this._mixer.dispatchEvent({
+ type: 'finished',
+ action: this,
+ direction: deltaTime > 0 ? 1 : -1
+ });
+ } else {
+ // keep running
+ if (pending === 1) {
+ // entering the last round
+ var atStart = deltaTime < 0;
+
+ this._setEndings(atStart, !atStart, pingPong);
+ } else {
+ this._setEndings(false, false, pingPong);
+ }
+
+ this._loopCount = loopCount;
+ this.time = time;
+
+ this._mixer.dispatchEvent({
+ type: 'loop',
+ action: this,
+ loopDelta: loopDelta
+ });
+ }
+ } else {
+ this.time = time;
+ }
+
+ if (pingPong && (loopCount & 1) === 1) {
+ // invert time for the "pong round"
+ return duration - time;
+ }
+ }
+
+ return time;
+ };
+
+ _proto._setEndings = function _setEndings(atStart, atEnd, pingPong) {
+ var settings = this._interpolantSettings;
+
+ if (pingPong) {
+ settings.endingStart = ZeroSlopeEnding;
+ settings.endingEnd = ZeroSlopeEnding;
+ } else {
+ // assuming for LoopOnce atStart == atEnd == true
+ if (atStart) {
+ settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
+ } else {
+ settings.endingStart = WrapAroundEnding;
+ }
+
+ if (atEnd) {
+ settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
+ } else {
+ settings.endingEnd = WrapAroundEnding;
+ }
+ }
+ };
+
+ _proto._scheduleFading = function _scheduleFading(duration, weightNow, weightThen) {
+ var mixer = this._mixer,
+ now = mixer.time;
+ var interpolant = this._weightInterpolant;
+
+ if (interpolant === null) {
+ interpolant = mixer._lendControlInterpolant();
+ this._weightInterpolant = interpolant;
+ }
+
+ var times = interpolant.parameterPositions,
+ values = interpolant.sampleValues;
+ times[0] = now;
+ values[0] = weightNow;
+ times[1] = now + duration;
+ values[1] = weightThen;
+ return this;
+ };
+
+ return AnimationAction;
+ }();
+
+ function AnimationMixer(root) {
+ this._root = root;
+
+ this._initMemoryManager();
+
+ this._accuIndex = 0;
+ this.time = 0;
+ this.timeScale = 1.0;
+ }
+
+ AnimationMixer.prototype = Object.assign(Object.create(EventDispatcher.prototype), {
+ constructor: AnimationMixer,
+ _bindAction: function _bindAction(action, prototypeAction) {
+ var root = action._localRoot || this._root,
+ tracks = action._clip.tracks,
+ nTracks = tracks.length,
+ bindings = action._propertyBindings,
+ interpolants = action._interpolants,
+ rootUuid = root.uuid,
+ bindingsByRoot = this._bindingsByRootAndName;
+ var bindingsByName = bindingsByRoot[rootUuid];
+
+ if (bindingsByName === undefined) {
+ bindingsByName = {};
+ bindingsByRoot[rootUuid] = bindingsByName;
+ }
+
+ for (var i = 0; i !== nTracks; ++i) {
+ var track = tracks[i],
+ trackName = track.name;
+ var binding = bindingsByName[trackName];
+
+ if (binding !== undefined) {
+ bindings[i] = binding;
+ } else {
+ binding = bindings[i];
+
+ if (binding !== undefined) {
+ // existing binding, make sure the cache knows
+ if (binding._cacheIndex === null) {
+ ++binding.referenceCount;
+
+ this._addInactiveBinding(binding, rootUuid, trackName);
+ }
+
+ continue;
+ }
+
+ var path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;
+ binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());
+ ++binding.referenceCount;
+
+ this._addInactiveBinding(binding, rootUuid, trackName);
+
+ bindings[i] = binding;
+ }
+
+ interpolants[i].resultBuffer = binding.buffer;
+ }
+ },
+ _activateAction: function _activateAction(action) {
+ if (!this._isActiveAction(action)) {
+ if (action._cacheIndex === null) {
+ // this action has been forgotten by the cache, but the user
+ // appears to be still using it -> rebind
+ var rootUuid = (action._localRoot || this._root).uuid,
+ clipUuid = action._clip.uuid,
+ actionsForClip = this._actionsByClip[clipUuid];
+
+ this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);
+
+ this._addInactiveAction(action, clipUuid, rootUuid);
+ }
+
+ var bindings = action._propertyBindings; // increment reference counts / sort out state
+
+ for (var i = 0, n = bindings.length; i !== n; ++i) {
+ var binding = bindings[i];
+
+ if (binding.useCount++ === 0) {
+ this._lendBinding(binding);
+
+ binding.saveOriginalState();
+ }
+ }
+
+ this._lendAction(action);
+ }
+ },
+ _deactivateAction: function _deactivateAction(action) {
+ if (this._isActiveAction(action)) {
+ var bindings = action._propertyBindings; // decrement reference counts / sort out state
+
+ for (var i = 0, n = bindings.length; i !== n; ++i) {
+ var binding = bindings[i];
+
+ if (--binding.useCount === 0) {
+ binding.restoreOriginalState();
+
+ this._takeBackBinding(binding);
+ }
+ }
+
+ this._takeBackAction(action);
+ }
+ },
+ // Memory manager
+ _initMemoryManager: function _initMemoryManager() {
+ this._actions = []; // 'nActiveActions' followed by inactive ones
+
+ this._nActiveActions = 0;
+ this._actionsByClip = {}; // inside:
+ // {
+ // knownActions: Array< AnimationAction > - used as prototypes
+ // actionByRoot: AnimationAction - lookup
+ // }
+
+ this._bindings = []; // 'nActiveBindings' followed by inactive ones
+
+ this._nActiveBindings = 0;
+ this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
+
+ this._controlInterpolants = []; // same game as above
+
+ this._nActiveControlInterpolants = 0;
+ var scope = this;
+ this.stats = {
+ actions: {
+ get total() {
+ return scope._actions.length;
+ },
+
+ get inUse() {
+ return scope._nActiveActions;
+ }
+
+ },
+ bindings: {
+ get total() {
+ return scope._bindings.length;
+ },
+
+ get inUse() {
+ return scope._nActiveBindings;
+ }
+
+ },
+ controlInterpolants: {
+ get total() {
+ return scope._controlInterpolants.length;
+ },
+
+ get inUse() {
+ return scope._nActiveControlInterpolants;
+ }
+
+ }
+ };
+ },
+ // Memory management for AnimationAction objects
+ _isActiveAction: function _isActiveAction(action) {
+ var index = action._cacheIndex;
+ return index !== null && index < this._nActiveActions;
+ },
+ _addInactiveAction: function _addInactiveAction(action, clipUuid, rootUuid) {
+ var actions = this._actions,
+ actionsByClip = this._actionsByClip;
+ var actionsForClip = actionsByClip[clipUuid];
+
+ if (actionsForClip === undefined) {
+ actionsForClip = {
+ knownActions: [action],
+ actionByRoot: {}
+ };
+ action._byClipCacheIndex = 0;
+ actionsByClip[clipUuid] = actionsForClip;
+ } else {
+ var knownActions = actionsForClip.knownActions;
+ action._byClipCacheIndex = knownActions.length;
+ knownActions.push(action);
+ }
+
+ action._cacheIndex = actions.length;
+ actions.push(action);
+ actionsForClip.actionByRoot[rootUuid] = action;
+ },
+ _removeInactiveAction: function _removeInactiveAction(action) {
+ var actions = this._actions,
+ lastInactiveAction = actions[actions.length - 1],
+ cacheIndex = action._cacheIndex;
+ lastInactiveAction._cacheIndex = cacheIndex;
+ actions[cacheIndex] = lastInactiveAction;
+ actions.pop();
+ action._cacheIndex = null;
+ var clipUuid = action._clip.uuid,
+ actionsByClip = this._actionsByClip,
+ actionsForClip = actionsByClip[clipUuid],
+ knownActionsForClip = actionsForClip.knownActions,
+ lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1],
+ byClipCacheIndex = action._byClipCacheIndex;
+ lastKnownAction._byClipCacheIndex = byClipCacheIndex;
+ knownActionsForClip[byClipCacheIndex] = lastKnownAction;
+ knownActionsForClip.pop();
+ action._byClipCacheIndex = null;
+ var actionByRoot = actionsForClip.actionByRoot,
+ rootUuid = (action._localRoot || this._root).uuid;
+ delete actionByRoot[rootUuid];
+
+ if (knownActionsForClip.length === 0) {
+ delete actionsByClip[clipUuid];
+ }
+
+ this._removeInactiveBindingsForAction(action);
+ },
+ _removeInactiveBindingsForAction: function _removeInactiveBindingsForAction(action) {
+ var bindings = action._propertyBindings;
+
+ for (var i = 0, n = bindings.length; i !== n; ++i) {
+ var binding = bindings[i];
+
+ if (--binding.referenceCount === 0) {
+ this._removeInactiveBinding(binding);
+ }
+ }
+ },
+ _lendAction: function _lendAction(action) {
+ // [ active actions | inactive actions ]
+ // [ active actions >| inactive actions ]
+ // s a
+ // <-swap->
+ // a s
+ var actions = this._actions,
+ prevIndex = action._cacheIndex,
+ lastActiveIndex = this._nActiveActions++,
+ firstInactiveAction = actions[lastActiveIndex];
+ action._cacheIndex = lastActiveIndex;
+ actions[lastActiveIndex] = action;
+ firstInactiveAction._cacheIndex = prevIndex;
+ actions[prevIndex] = firstInactiveAction;
+ },
+ _takeBackAction: function _takeBackAction(action) {
+ // [ active actions | inactive actions ]
+ // [ active actions |< inactive actions ]
+ // a s
+ // <-swap->
+ // s a
+ var actions = this._actions,
+ prevIndex = action._cacheIndex,
+ firstInactiveIndex = --this._nActiveActions,
+ lastActiveAction = actions[firstInactiveIndex];
+ action._cacheIndex = firstInactiveIndex;
+ actions[firstInactiveIndex] = action;
+ lastActiveAction._cacheIndex = prevIndex;
+ actions[prevIndex] = lastActiveAction;
+ },
+ // Memory management for PropertyMixer objects
+ _addInactiveBinding: function _addInactiveBinding(binding, rootUuid, trackName) {
+ var bindingsByRoot = this._bindingsByRootAndName,
+ bindings = this._bindings;
+ var bindingByName = bindingsByRoot[rootUuid];
+
+ if (bindingByName === undefined) {
+ bindingByName = {};
+ bindingsByRoot[rootUuid] = bindingByName;
+ }
+
+ bindingByName[trackName] = binding;
+ binding._cacheIndex = bindings.length;
+ bindings.push(binding);
+ },
+ _removeInactiveBinding: function _removeInactiveBinding(binding) {
+ var bindings = this._bindings,
+ propBinding = binding.binding,
+ rootUuid = propBinding.rootNode.uuid,
+ trackName = propBinding.path,
+ bindingsByRoot = this._bindingsByRootAndName,
+ bindingByName = bindingsByRoot[rootUuid],
+ lastInactiveBinding = bindings[bindings.length - 1],
+ cacheIndex = binding._cacheIndex;
+ lastInactiveBinding._cacheIndex = cacheIndex;
+ bindings[cacheIndex] = lastInactiveBinding;
+ bindings.pop();
+ delete bindingByName[trackName];
+
+ if (Object.keys(bindingByName).length === 0) {
+ delete bindingsByRoot[rootUuid];
+ }
+ },
+ _lendBinding: function _lendBinding(binding) {
+ var bindings = this._bindings,
+ prevIndex = binding._cacheIndex,
+ lastActiveIndex = this._nActiveBindings++,
+ firstInactiveBinding = bindings[lastActiveIndex];
+ binding._cacheIndex = lastActiveIndex;
+ bindings[lastActiveIndex] = binding;
+ firstInactiveBinding._cacheIndex = prevIndex;
+ bindings[prevIndex] = firstInactiveBinding;
+ },
+ _takeBackBinding: function _takeBackBinding(binding) {
+ var bindings = this._bindings,
+ prevIndex = binding._cacheIndex,
+ firstInactiveIndex = --this._nActiveBindings,
+ lastActiveBinding = bindings[firstInactiveIndex];
+ binding._cacheIndex = firstInactiveIndex;
+ bindings[firstInactiveIndex] = binding;
+ lastActiveBinding._cacheIndex = prevIndex;
+ bindings[prevIndex] = lastActiveBinding;
+ },
+ // Memory management of Interpolants for weight and time scale
+ _lendControlInterpolant: function _lendControlInterpolant() {
+ var interpolants = this._controlInterpolants,
+ lastActiveIndex = this._nActiveControlInterpolants++;
+ var interpolant = interpolants[lastActiveIndex];
+
+ if (interpolant === undefined) {
+ interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);
+ interpolant.__cacheIndex = lastActiveIndex;
+ interpolants[lastActiveIndex] = interpolant;
+ }
+
+ return interpolant;
+ },
+ _takeBackControlInterpolant: function _takeBackControlInterpolant(interpolant) {
+ var interpolants = this._controlInterpolants,
+ prevIndex = interpolant.__cacheIndex,
+ firstInactiveIndex = --this._nActiveControlInterpolants,
+ lastActiveInterpolant = interpolants[firstInactiveIndex];
+ interpolant.__cacheIndex = firstInactiveIndex;
+ interpolants[firstInactiveIndex] = interpolant;
+ lastActiveInterpolant.__cacheIndex = prevIndex;
+ interpolants[prevIndex] = lastActiveInterpolant;
+ },
+ _controlInterpolantsResultBuffer: new Float32Array(1),
+ // return an action for a clip optionally using a custom root target
+ // object (this method allocates a lot of dynamic memory in case a
+ // previously unknown clip/root combination is specified)
+ clipAction: function clipAction(clip, optionalRoot, blendMode) {
+ var root = optionalRoot || this._root,
+ rootUuid = root.uuid;
+ var clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;
+ var clipUuid = clipObject !== null ? clipObject.uuid : clip;
+ var actionsForClip = this._actionsByClip[clipUuid];
+ var prototypeAction = null;
+
+ if (blendMode === undefined) {
+ if (clipObject !== null) {
+ blendMode = clipObject.blendMode;
+ } else {
+ blendMode = NormalAnimationBlendMode;
+ }
+ }
+
+ if (actionsForClip !== undefined) {
+ var existingAction = actionsForClip.actionByRoot[rootUuid];
+
+ if (existingAction !== undefined && existingAction.blendMode === blendMode) {
+ return existingAction;
+ } // we know the clip, so we don't have to parse all
+ // the bindings again but can just copy
+
+
+ prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action
+
+ if (clipObject === null) clipObject = prototypeAction._clip;
+ } // clip must be known when specified via string
+
+
+ if (clipObject === null) return null; // allocate all resources required to run it
+
+ var newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);
+
+ this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager
+
+
+ this._addInactiveAction(newAction, clipUuid, rootUuid);
+
+ return newAction;
+ },
+ // get an existing action
+ existingAction: function existingAction(clip, optionalRoot) {
+ var root = optionalRoot || this._root,
+ rootUuid = root.uuid,
+ clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip,
+ clipUuid = clipObject ? clipObject.uuid : clip,
+ actionsForClip = this._actionsByClip[clipUuid];
+
+ if (actionsForClip !== undefined) {
+ return actionsForClip.actionByRoot[rootUuid] || null;
+ }
+
+ return null;
+ },
+ // deactivates all previously scheduled actions
+ stopAllAction: function stopAllAction() {
+ var actions = this._actions,
+ nActions = this._nActiveActions;
+
+ for (var i = nActions - 1; i >= 0; --i) {
+ actions[i].stop();
+ }
+
+ return this;
+ },
+ // advance the time and update apply the animation
+ update: function update(deltaTime) {
+ deltaTime *= this.timeScale;
+ var actions = this._actions,
+ nActions = this._nActiveActions,
+ time = this.time += deltaTime,
+ timeDirection = Math.sign(deltaTime),
+ accuIndex = this._accuIndex ^= 1; // run active actions
+
+ for (var i = 0; i !== nActions; ++i) {
+ var action = actions[i];
+
+ action._update(time, deltaTime, timeDirection, accuIndex);
+ } // update scene graph
+
+
+ var bindings = this._bindings,
+ nBindings = this._nActiveBindings;
+
+ for (var _i = 0; _i !== nBindings; ++_i) {
+ bindings[_i].apply(accuIndex);
+ }
+
+ return this;
+ },
+ // Allows you to seek to a specific time in an animation.
+ setTime: function setTime(timeInSeconds) {
+ this.time = 0; // Zero out time attribute for AnimationMixer object;
+
+ for (var i = 0; i < this._actions.length; i++) {
+ this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.
+ }
+
+ return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.
+ },
+ // return this mixer's root target object
+ getRoot: function getRoot() {
+ return this._root;
+ },
+ // free all resources specific to a particular clip
+ uncacheClip: function uncacheClip(clip) {
+ var actions = this._actions,
+ clipUuid = clip.uuid,
+ actionsByClip = this._actionsByClip,
+ actionsForClip = actionsByClip[clipUuid];
+
+ if (actionsForClip !== undefined) {
+ // note: just calling _removeInactiveAction would mess up the
+ // iteration state and also require updating the state we can
+ // just throw away
+ var actionsToRemove = actionsForClip.knownActions;
+
+ for (var i = 0, n = actionsToRemove.length; i !== n; ++i) {
+ var action = actionsToRemove[i];
+
+ this._deactivateAction(action);
+
+ var cacheIndex = action._cacheIndex,
+ lastInactiveAction = actions[actions.length - 1];
+ action._cacheIndex = null;
+ action._byClipCacheIndex = null;
+ lastInactiveAction._cacheIndex = cacheIndex;
+ actions[cacheIndex] = lastInactiveAction;
+ actions.pop();
+
+ this._removeInactiveBindingsForAction(action);
+ }
+
+ delete actionsByClip[clipUuid];
+ }
+ },
+ // free all resources specific to a particular root target object
+ uncacheRoot: function uncacheRoot(root) {
+ var rootUuid = root.uuid,
+ actionsByClip = this._actionsByClip;
+
+ for (var clipUuid in actionsByClip) {
+ var actionByRoot = actionsByClip[clipUuid].actionByRoot,
+ action = actionByRoot[rootUuid];
+
+ if (action !== undefined) {
+ this._deactivateAction(action);
+
+ this._removeInactiveAction(action);
+ }
+ }
+
+ var bindingsByRoot = this._bindingsByRootAndName,
+ bindingByName = bindingsByRoot[rootUuid];
+
+ if (bindingByName !== undefined) {
+ for (var trackName in bindingByName) {
+ var binding = bindingByName[trackName];
+ binding.restoreOriginalState();
+
+ this._removeInactiveBinding(binding);
+ }
+ }
+ },
+ // remove a targeted clip from the cache
+ uncacheAction: function uncacheAction(clip, optionalRoot) {
+ var action = this.existingAction(clip, optionalRoot);
+
+ if (action !== null) {
+ this._deactivateAction(action);
+
+ this._removeInactiveAction(action);
+ }
+ }
+ });
+
+ var Uniform = /*#__PURE__*/function () {
+ function Uniform(value) {
+ if (typeof value === 'string') {
+ console.warn('THREE.Uniform: Type parameter is no longer needed.');
+ value = arguments[1];
+ }
+
+ this.value = value;
+ }
+
+ var _proto = Uniform.prototype;
+
+ _proto.clone = function clone() {
+ return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());
+ };
+
+ return Uniform;
+ }();
+
+ function InstancedInterleavedBuffer(array, stride, meshPerAttribute) {
+ InterleavedBuffer.call(this, array, stride);
+ this.meshPerAttribute = meshPerAttribute || 1;
+ }
+
+ InstancedInterleavedBuffer.prototype = Object.assign(Object.create(InterleavedBuffer.prototype), {
+ constructor: InstancedInterleavedBuffer,
+ isInstancedInterleavedBuffer: true,
+ copy: function copy(source) {
+ InterleavedBuffer.prototype.copy.call(this, source);
+ this.meshPerAttribute = source.meshPerAttribute;
+ return this;
+ },
+ clone: function clone(data) {
+ var ib = InterleavedBuffer.prototype.clone.call(this, data);
+ ib.meshPerAttribute = this.meshPerAttribute;
+ return ib;
+ },
+ toJSON: function toJSON(data) {
+ var json = InterleavedBuffer.prototype.toJSON.call(this, data);
+ json.isInstancedInterleavedBuffer = true;
+ json.meshPerAttribute = this.meshPerAttribute;
+ return json;
+ }
+ });
+
+ function GLBufferAttribute(buffer, type, itemSize, elementSize, count) {
+ this.buffer = buffer;
+ this.type = type;
+ this.itemSize = itemSize;
+ this.elementSize = elementSize;
+ this.count = count;
+ this.version = 0;
+ }
+
+ Object.defineProperty(GLBufferAttribute.prototype, 'needsUpdate', {
+ set: function set(value) {
+ if (value === true) this.version++;
+ }
+ });
+ Object.assign(GLBufferAttribute.prototype, {
+ isGLBufferAttribute: true,
+ setBuffer: function setBuffer(buffer) {
+ this.buffer = buffer;
+ return this;
+ },
+ setType: function setType(type, elementSize) {
+ this.type = type;
+ this.elementSize = elementSize;
+ return this;
+ },
+ setItemSize: function setItemSize(itemSize) {
+ this.itemSize = itemSize;
+ return this;
+ },
+ setCount: function setCount(count) {
+ this.count = count;
+ return this;
+ }
+ });
+
+ function Raycaster(origin, direction, near, far) {
+ this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)
+
+ this.near = near || 0;
+ this.far = far || Infinity;
+ this.camera = null;
+ this.layers = new Layers();
+ this.params = {
+ Mesh: {},
+ Line: {
+ threshold: 1
+ },
+ LOD: {},
+ Points: {
+ threshold: 1
+ },
+ Sprite: {}
+ };
+ Object.defineProperties(this.params, {
+ PointCloud: {
+ get: function get() {
+ console.warn('THREE.Raycaster: params.PointCloud has been renamed to params.Points.');
+ return this.Points;
+ }
+ }
+ });
+ }
+
+ function ascSort(a, b) {
+ return a.distance - b.distance;
+ }
+
+ function _intersectObject(object, raycaster, intersects, recursive) {
+ if (object.layers.test(raycaster.layers)) {
+ object.raycast(raycaster, intersects);
+ }
+
+ if (recursive === true) {
+ var children = object.children;
+
+ for (var i = 0, l = children.length; i < l; i++) {
+ _intersectObject(children[i], raycaster, intersects, true);
+ }
+ }
+ }
+
+ Object.assign(Raycaster.prototype, {
+ set: function set(origin, direction) {
+ // direction is assumed to be normalized (for accurate distance calculations)
+ this.ray.set(origin, direction);
+ },
+ setFromCamera: function setFromCamera(coords, camera) {
+ if (camera && camera.isPerspectiveCamera) {
+ this.ray.origin.setFromMatrixPosition(camera.matrixWorld);
+ this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();
+ this.camera = camera;
+ } else if (camera && camera.isOrthographicCamera) {
+ this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera
+
+ this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);
+ this.camera = camera;
+ } else {
+ console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);
+ }
+ },
+ intersectObject: function intersectObject(object, recursive, optionalTarget) {
+ var intersects = optionalTarget || [];
+
+ _intersectObject(object, this, intersects, recursive);
+
+ intersects.sort(ascSort);
+ return intersects;
+ },
+ intersectObjects: function intersectObjects(objects, recursive, optionalTarget) {
+ var intersects = optionalTarget || [];
+
+ if (Array.isArray(objects) === false) {
+ console.warn('THREE.Raycaster.intersectObjects: objects is not an Array.');
+ return intersects;
+ }
+
+ for (var i = 0, l = objects.length; i < l; i++) {
+ _intersectObject(objects[i], this, intersects, recursive);
+ }
+
+ intersects.sort(ascSort);
+ return intersects;
+ }
+ });
+
+ /**
+ * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
+ *
+ * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
+ * The azimuthal angle (theta) is measured from the positive z-axis.
+ */
+
+ var Spherical = /*#__PURE__*/function () {
+ function Spherical(radius, phi, theta) {
+ if (radius === void 0) {
+ radius = 1;
+ }
+
+ if (phi === void 0) {
+ phi = 0;
+ }
+
+ if (theta === void 0) {
+ theta = 0;
+ }
+
+ this.radius = radius;
+ this.phi = phi; // polar angle
+
+ this.theta = theta; // azimuthal angle
+
+ return this;
+ }
+
+ var _proto = Spherical.prototype;
+
+ _proto.set = function set(radius, phi, theta) {
+ this.radius = radius;
+ this.phi = phi;
+ this.theta = theta;
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(other) {
+ this.radius = other.radius;
+ this.phi = other.phi;
+ this.theta = other.theta;
+ return this;
+ } // restrict phi to be betwee EPS and PI-EPS
+ ;
+
+ _proto.makeSafe = function makeSafe() {
+ var EPS = 0.000001;
+ this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));
+ return this;
+ };
+
+ _proto.setFromVector3 = function setFromVector3(v) {
+ return this.setFromCartesianCoords(v.x, v.y, v.z);
+ };
+
+ _proto.setFromCartesianCoords = function setFromCartesianCoords(x, y, z) {
+ this.radius = Math.sqrt(x * x + y * y + z * z);
+
+ if (this.radius === 0) {
+ this.theta = 0;
+ this.phi = 0;
+ } else {
+ this.theta = Math.atan2(x, z);
+ this.phi = Math.acos(MathUtils.clamp(y / this.radius, -1, 1));
+ }
+
+ return this;
+ };
+
+ return Spherical;
+ }();
+
+ /**
+ * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
+ */
+ var Cylindrical = /*#__PURE__*/function () {
+ function Cylindrical(radius, theta, y) {
+ this.radius = radius !== undefined ? radius : 1.0; // distance from the origin to a point in the x-z plane
+
+ this.theta = theta !== undefined ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
+
+ this.y = y !== undefined ? y : 0; // height above the x-z plane
+
+ return this;
+ }
+
+ var _proto = Cylindrical.prototype;
+
+ _proto.set = function set(radius, theta, y) {
+ this.radius = radius;
+ this.theta = theta;
+ this.y = y;
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(other) {
+ this.radius = other.radius;
+ this.theta = other.theta;
+ this.y = other.y;
+ return this;
+ };
+
+ _proto.setFromVector3 = function setFromVector3(v) {
+ return this.setFromCartesianCoords(v.x, v.y, v.z);
+ };
+
+ _proto.setFromCartesianCoords = function setFromCartesianCoords(x, y, z) {
+ this.radius = Math.sqrt(x * x + z * z);
+ this.theta = Math.atan2(x, z);
+ this.y = y;
+ return this;
+ };
+
+ return Cylindrical;
+ }();
+
+ var _vector$8 = /*@__PURE__*/new Vector2();
+
+ var Box2 = /*#__PURE__*/function () {
+ function Box2(min, max) {
+ Object.defineProperty(this, 'isBox2', {
+ value: true
+ });
+ this.min = min !== undefined ? min : new Vector2(+Infinity, +Infinity);
+ this.max = max !== undefined ? max : new Vector2(-Infinity, -Infinity);
+ }
+
+ var _proto = Box2.prototype;
+
+ _proto.set = function set(min, max) {
+ this.min.copy(min);
+ this.max.copy(max);
+ return this;
+ };
+
+ _proto.setFromPoints = function setFromPoints(points) {
+ this.makeEmpty();
+
+ for (var i = 0, il = points.length; i < il; i++) {
+ this.expandByPoint(points[i]);
+ }
+
+ return this;
+ };
+
+ _proto.setFromCenterAndSize = function setFromCenterAndSize(center, size) {
+ var halfSize = _vector$8.copy(size).multiplyScalar(0.5);
+
+ this.min.copy(center).sub(halfSize);
+ this.max.copy(center).add(halfSize);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(box) {
+ this.min.copy(box.min);
+ this.max.copy(box.max);
+ return this;
+ };
+
+ _proto.makeEmpty = function makeEmpty() {
+ this.min.x = this.min.y = +Infinity;
+ this.max.x = this.max.y = -Infinity;
+ return this;
+ };
+
+ _proto.isEmpty = function isEmpty() {
+ // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
+ return this.max.x < this.min.x || this.max.y < this.min.y;
+ };
+
+ _proto.getCenter = function getCenter(target) {
+ if (target === undefined) {
+ console.warn('THREE.Box2: .getCenter() target is now required');
+ target = new Vector2();
+ }
+
+ return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
+ };
+
+ _proto.getSize = function getSize(target) {
+ if (target === undefined) {
+ console.warn('THREE.Box2: .getSize() target is now required');
+ target = new Vector2();
+ }
+
+ return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);
+ };
+
+ _proto.expandByPoint = function expandByPoint(point) {
+ this.min.min(point);
+ this.max.max(point);
+ return this;
+ };
+
+ _proto.expandByVector = function expandByVector(vector) {
+ this.min.sub(vector);
+ this.max.add(vector);
+ return this;
+ };
+
+ _proto.expandByScalar = function expandByScalar(scalar) {
+ this.min.addScalar(-scalar);
+ this.max.addScalar(scalar);
+ return this;
+ };
+
+ _proto.containsPoint = function containsPoint(point) {
+ return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;
+ };
+
+ _proto.containsBox = function containsBox(box) {
+ return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;
+ };
+
+ _proto.getParameter = function getParameter(point, target) {
+ // This can potentially have a divide by zero if the box
+ // has a size dimension of 0.
+ if (target === undefined) {
+ console.warn('THREE.Box2: .getParameter() target is now required');
+ target = new Vector2();
+ }
+
+ return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));
+ };
+
+ _proto.intersectsBox = function intersectsBox(box) {
+ // using 4 splitting planes to rule out intersections
+ return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
+ };
+
+ _proto.clampPoint = function clampPoint(point, target) {
+ if (target === undefined) {
+ console.warn('THREE.Box2: .clampPoint() target is now required');
+ target = new Vector2();
+ }
+
+ return target.copy(point).clamp(this.min, this.max);
+ };
+
+ _proto.distanceToPoint = function distanceToPoint(point) {
+ var clampedPoint = _vector$8.copy(point).clamp(this.min, this.max);
+
+ return clampedPoint.sub(point).length();
+ };
+
+ _proto.intersect = function intersect(box) {
+ this.min.max(box.min);
+ this.max.min(box.max);
+ return this;
+ };
+
+ _proto.union = function union(box) {
+ this.min.min(box.min);
+ this.max.max(box.max);
+ return this;
+ };
+
+ _proto.translate = function translate(offset) {
+ this.min.add(offset);
+ this.max.add(offset);
+ return this;
+ };
+
+ _proto.equals = function equals(box) {
+ return box.min.equals(this.min) && box.max.equals(this.max);
+ };
+
+ return Box2;
+ }();
+
+ var _startP = /*@__PURE__*/new Vector3();
+
+ var _startEnd = /*@__PURE__*/new Vector3();
+
+ var Line3 = /*#__PURE__*/function () {
+ function Line3(start, end) {
+ this.start = start !== undefined ? start : new Vector3();
+ this.end = end !== undefined ? end : new Vector3();
+ }
+
+ var _proto = Line3.prototype;
+
+ _proto.set = function set(start, end) {
+ this.start.copy(start);
+ this.end.copy(end);
+ return this;
+ };
+
+ _proto.clone = function clone() {
+ return new this.constructor().copy(this);
+ };
+
+ _proto.copy = function copy(line) {
+ this.start.copy(line.start);
+ this.end.copy(line.end);
+ return this;
+ };
+
+ _proto.getCenter = function getCenter(target) {
+ if (target === undefined) {
+ console.warn('THREE.Line3: .getCenter() target is now required');
+ target = new Vector3();
+ }
+
+ return target.addVectors(this.start, this.end).multiplyScalar(0.5);
+ };
+
+ _proto.delta = function delta(target) {
+ if (target === undefined) {
+ console.warn('THREE.Line3: .delta() target is now required');
+ target = new Vector3();
+ }
+
+ return target.subVectors(this.end, this.start);
+ };
+
+ _proto.distanceSq = function distanceSq() {
+ return this.start.distanceToSquared(this.end);
+ };
+
+ _proto.distance = function distance() {
+ return this.start.distanceTo(this.end);
+ };
+
+ _proto.at = function at(t, target) {
+ if (target === undefined) {
+ console.warn('THREE.Line3: .at() target is now required');
+ target = new Vector3();
+ }
+
+ return this.delta(target).multiplyScalar(t).add(this.start);
+ };
+
+ _proto.closestPointToPointParameter = function closestPointToPointParameter(point, clampToLine) {
+ _startP.subVectors(point, this.start);
+
+ _startEnd.subVectors(this.end, this.start);
+
+ var startEnd2 = _startEnd.dot(_startEnd);
+
+ var startEnd_startP = _startEnd.dot(_startP);
+
+ var t = startEnd_startP / startEnd2;
+
+ if (clampToLine) {
+ t = MathUtils.clamp(t, 0, 1);
+ }
+
+ return t;
+ };
+
+ _proto.closestPointToPoint = function closestPointToPoint(point, clampToLine, target) {
+ var t = this.closestPointToPointParameter(point, clampToLine);
+
+ if (target === undefined) {
+ console.warn('THREE.Line3: .closestPointToPoint() target is now required');
+ target = new Vector3();
+ }
+
+ return this.delta(target).multiplyScalar(t).add(this.start);
+ };
+
+ _proto.applyMatrix4 = function applyMatrix4(matrix) {
+ this.start.applyMatrix4(matrix);
+ this.end.applyMatrix4(matrix);
+ return this;
+ };
+
+ _proto.equals = function equals(line) {
+ return line.start.equals(this.start) && line.end.equals(this.end);
+ };
+
+ return Line3;
+ }();
+
+ function ImmediateRenderObject(material) {
+ Object3D.call(this);
+ this.material = material;
+
+ this.render = function ()
+ /* renderCallback */
+ {};
+
+ this.hasPositions = false;
+ this.hasNormals = false;
+ this.hasColors = false;
+ this.hasUvs = false;
+ this.positionArray = null;
+ this.normalArray = null;
+ this.colorArray = null;
+ this.uvArray = null;
+ this.count = 0;
+ }
+
+ ImmediateRenderObject.prototype = Object.create(Object3D.prototype);
+ ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;
+ ImmediateRenderObject.prototype.isImmediateRenderObject = true;
+
+ var _vector$9 = /*@__PURE__*/new Vector3();
+
+ var SpotLightHelper = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(SpotLightHelper, _Object3D);
+
+ function SpotLightHelper(light, color) {
+ var _this;
+
+ _this = _Object3D.call(this) || this;
+ _this.light = light;
+
+ _this.light.updateMatrixWorld();
+
+ _this.matrix = light.matrixWorld;
+ _this.matrixAutoUpdate = false;
+ _this.color = color;
+ var geometry = new BufferGeometry();
+ var positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];
+
+ for (var i = 0, j = 1, l = 32; i < l; i++, j++) {
+ var p1 = i / l * Math.PI * 2;
+ var p2 = j / l * Math.PI * 2;
+ positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);
+ }
+
+ geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
+ var material = new LineBasicMaterial({
+ fog: false,
+ toneMapped: false
+ });
+ _this.cone = new LineSegments(geometry, material);
+
+ _this.add(_this.cone);
+
+ _this.update();
+
+ return _this;
+ }
+
+ var _proto = SpotLightHelper.prototype;
+
+ _proto.dispose = function dispose() {
+ this.cone.geometry.dispose();
+ this.cone.material.dispose();
+ };
+
+ _proto.update = function update() {
+ this.light.updateMatrixWorld();
+ var coneLength = this.light.distance ? this.light.distance : 1000;
+ var coneWidth = coneLength * Math.tan(this.light.angle);
+ this.cone.scale.set(coneWidth, coneWidth, coneLength);
+
+ _vector$9.setFromMatrixPosition(this.light.target.matrixWorld);
+
+ this.cone.lookAt(_vector$9);
+
+ if (this.color !== undefined) {
+ this.cone.material.color.set(this.color);
+ } else {
+ this.cone.material.color.copy(this.light.color);
+ }
+ };
+
+ return SpotLightHelper;
+ }(Object3D);
+
+ var _vector$a = /*@__PURE__*/new Vector3();
+
+ var _boneMatrix = /*@__PURE__*/new Matrix4();
+
+ var _matrixWorldInv = /*@__PURE__*/new Matrix4();
+
+ var SkeletonHelper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(SkeletonHelper, _LineSegments);
+
+ function SkeletonHelper(object) {
+ var _this;
+
+ var bones = getBoneList(object);
+ var geometry = new BufferGeometry();
+ var vertices = [];
+ var colors = [];
+ var color1 = new Color(0, 0, 1);
+ var color2 = new Color(0, 1, 0);
+
+ for (var i = 0; i < bones.length; i++) {
+ var bone = bones[i];
+
+ if (bone.parent && bone.parent.isBone) {
+ vertices.push(0, 0, 0);
+ vertices.push(0, 0, 0);
+ colors.push(color1.r, color1.g, color1.b);
+ colors.push(color2.r, color2.g, color2.b);
+ }
+ }
+
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ var material = new LineBasicMaterial({
+ vertexColors: true,
+ depthTest: false,
+ depthWrite: false,
+ toneMapped: false,
+ transparent: true
+ });
+ _this = _LineSegments.call(this, geometry, material) || this;
+ _this.type = 'SkeletonHelper';
+ _this.isSkeletonHelper = true;
+ _this.root = object;
+ _this.bones = bones;
+ _this.matrix = object.matrixWorld;
+ _this.matrixAutoUpdate = false;
+ return _this;
+ }
+
+ var _proto = SkeletonHelper.prototype;
+
+ _proto.updateMatrixWorld = function updateMatrixWorld(force) {
+ var bones = this.bones;
+ var geometry = this.geometry;
+ var position = geometry.getAttribute('position');
+
+ _matrixWorldInv.copy(this.root.matrixWorld).invert();
+
+ for (var i = 0, j = 0; i < bones.length; i++) {
+ var bone = bones[i];
+
+ if (bone.parent && bone.parent.isBone) {
+ _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);
+
+ _vector$a.setFromMatrixPosition(_boneMatrix);
+
+ position.setXYZ(j, _vector$a.x, _vector$a.y, _vector$a.z);
+
+ _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);
+
+ _vector$a.setFromMatrixPosition(_boneMatrix);
+
+ position.setXYZ(j + 1, _vector$a.x, _vector$a.y, _vector$a.z);
+ j += 2;
+ }
+ }
+
+ geometry.getAttribute('position').needsUpdate = true;
+
+ _LineSegments.prototype.updateMatrixWorld.call(this, force);
+ };
+
+ return SkeletonHelper;
+ }(LineSegments);
+
+ function getBoneList(object) {
+ var boneList = [];
+
+ if (object && object.isBone) {
+ boneList.push(object);
+ }
+
+ for (var i = 0; i < object.children.length; i++) {
+ boneList.push.apply(boneList, getBoneList(object.children[i]));
+ }
+
+ return boneList;
+ }
+
+ var PointLightHelper = /*#__PURE__*/function (_Mesh) {
+ _inheritsLoose(PointLightHelper, _Mesh);
+
+ function PointLightHelper(light, sphereSize, color) {
+ var _this;
+
+ var geometry = new SphereGeometry(sphereSize, 4, 2);
+ var material = new MeshBasicMaterial({
+ wireframe: true,
+ fog: false,
+ toneMapped: false
+ });
+ _this = _Mesh.call(this, geometry, material) || this;
+ _this.light = light;
+
+ _this.light.updateMatrixWorld();
+
+ _this.color = color;
+ _this.type = 'PointLightHelper';
+ _this.matrix = _this.light.matrixWorld;
+ _this.matrixAutoUpdate = false;
+
+ _this.update();
+ /*
+ // TODO: delete this comment?
+ const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
+ const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
+ this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
+ this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
+ const d = light.distance;
+ if ( d === 0.0 ) {
+ this.lightDistance.visible = false;
+ } else {
+ this.lightDistance.scale.set( d, d, d );
+ }
+ this.add( this.lightDistance );
+ */
+
+
+ return _this;
+ }
+
+ var _proto = PointLightHelper.prototype;
+
+ _proto.dispose = function dispose() {
+ this.geometry.dispose();
+ this.material.dispose();
+ };
+
+ _proto.update = function update() {
+ if (this.color !== undefined) {
+ this.material.color.set(this.color);
+ } else {
+ this.material.color.copy(this.light.color);
+ }
+ /*
+ const d = this.light.distance;
+ if ( d === 0.0 ) {
+ this.lightDistance.visible = false;
+ } else {
+ this.lightDistance.visible = true;
+ this.lightDistance.scale.set( d, d, d );
+ }
+ */
+
+ };
+
+ return PointLightHelper;
+ }(Mesh);
+
+ var _vector$b = /*@__PURE__*/new Vector3();
+
+ var _color1 = /*@__PURE__*/new Color();
+
+ var _color2 = /*@__PURE__*/new Color();
+
+ var HemisphereLightHelper = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(HemisphereLightHelper, _Object3D);
+
+ function HemisphereLightHelper(light, size, color) {
+ var _this;
+
+ _this = _Object3D.call(this) || this;
+ _this.light = light;
+
+ _this.light.updateMatrixWorld();
+
+ _this.matrix = light.matrixWorld;
+ _this.matrixAutoUpdate = false;
+ _this.color = color;
+ var geometry = new OctahedronGeometry(size);
+ geometry.rotateY(Math.PI * 0.5);
+ _this.material = new MeshBasicMaterial({
+ wireframe: true,
+ fog: false,
+ toneMapped: false
+ });
+ if (_this.color === undefined) _this.material.vertexColors = true;
+ var position = geometry.getAttribute('position');
+ var colors = new Float32Array(position.count * 3);
+ geometry.setAttribute('color', new BufferAttribute(colors, 3));
+
+ _this.add(new Mesh(geometry, _this.material));
+
+ _this.update();
+
+ return _this;
+ }
+
+ var _proto = HemisphereLightHelper.prototype;
+
+ _proto.dispose = function dispose() {
+ this.children[0].geometry.dispose();
+ this.children[0].material.dispose();
+ };
+
+ _proto.update = function update() {
+ var mesh = this.children[0];
+
+ if (this.color !== undefined) {
+ this.material.color.set(this.color);
+ } else {
+ var colors = mesh.geometry.getAttribute('color');
+
+ _color1.copy(this.light.color);
+
+ _color2.copy(this.light.groundColor);
+
+ for (var i = 0, l = colors.count; i < l; i++) {
+ var color = i < l / 2 ? _color1 : _color2;
+ colors.setXYZ(i, color.r, color.g, color.b);
+ }
+
+ colors.needsUpdate = true;
+ }
+
+ mesh.lookAt(_vector$b.setFromMatrixPosition(this.light.matrixWorld).negate());
+ };
+
+ return HemisphereLightHelper;
+ }(Object3D);
+
+ var GridHelper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(GridHelper, _LineSegments);
+
+ function GridHelper(size, divisions, color1, color2) {
+ var _this;
+
+ if (size === void 0) {
+ size = 10;
+ }
+
+ if (divisions === void 0) {
+ divisions = 10;
+ }
+
+ if (color1 === void 0) {
+ color1 = 0x444444;
+ }
+
+ if (color2 === void 0) {
+ color2 = 0x888888;
+ }
+
+ color1 = new Color(color1);
+ color2 = new Color(color2);
+ var center = divisions / 2;
+ var step = size / divisions;
+ var halfSize = size / 2;
+ var vertices = [],
+ colors = [];
+
+ for (var i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {
+ vertices.push(-halfSize, 0, k, halfSize, 0, k);
+ vertices.push(k, 0, -halfSize, k, 0, halfSize);
+ var color = i === center ? color1 : color2;
+ color.toArray(colors, j);
+ j += 3;
+ color.toArray(colors, j);
+ j += 3;
+ color.toArray(colors, j);
+ j += 3;
+ color.toArray(colors, j);
+ j += 3;
+ }
+
+ var geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ var material = new LineBasicMaterial({
+ vertexColors: true,
+ toneMapped: false
+ });
+ _this = _LineSegments.call(this, geometry, material) || this;
+ _this.type = 'GridHelper';
+ return _this;
+ }
+
+ return GridHelper;
+ }(LineSegments);
+
+ var PolarGridHelper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(PolarGridHelper, _LineSegments);
+
+ function PolarGridHelper(radius, radials, circles, divisions, color1, color2) {
+ var _this;
+
+ if (radius === void 0) {
+ radius = 10;
+ }
+
+ if (radials === void 0) {
+ radials = 16;
+ }
+
+ if (circles === void 0) {
+ circles = 8;
+ }
+
+ if (divisions === void 0) {
+ divisions = 64;
+ }
+
+ if (color1 === void 0) {
+ color1 = 0x444444;
+ }
+
+ if (color2 === void 0) {
+ color2 = 0x888888;
+ }
+
+ color1 = new Color(color1);
+ color2 = new Color(color2);
+ var vertices = [];
+ var colors = []; // create the radials
+
+ for (var i = 0; i <= radials; i++) {
+ var v = i / radials * (Math.PI * 2);
+ var x = Math.sin(v) * radius;
+ var z = Math.cos(v) * radius;
+ vertices.push(0, 0, 0);
+ vertices.push(x, 0, z);
+ var color = i & 1 ? color1 : color2;
+ colors.push(color.r, color.g, color.b);
+ colors.push(color.r, color.g, color.b);
+ } // create the circles
+
+
+ for (var _i = 0; _i <= circles; _i++) {
+ var _color = _i & 1 ? color1 : color2;
+
+ var r = radius - radius / circles * _i;
+
+ for (var j = 0; j < divisions; j++) {
+ // first vertex
+ var _v = j / divisions * (Math.PI * 2);
+
+ var _x = Math.sin(_v) * r;
+
+ var _z = Math.cos(_v) * r;
+
+ vertices.push(_x, 0, _z);
+ colors.push(_color.r, _color.g, _color.b); // second vertex
+
+ _v = (j + 1) / divisions * (Math.PI * 2);
+ _x = Math.sin(_v) * r;
+ _z = Math.cos(_v) * r;
+ vertices.push(_x, 0, _z);
+ colors.push(_color.r, _color.g, _color.b);
+ }
+ }
+
+ var geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ var material = new LineBasicMaterial({
+ vertexColors: true,
+ toneMapped: false
+ });
+ _this = _LineSegments.call(this, geometry, material) || this;
+ _this.type = 'PolarGridHelper';
+ return _this;
+ }
+
+ return PolarGridHelper;
+ }(LineSegments);
+
+ var _v1$6 = /*@__PURE__*/new Vector3();
+
+ var _v2$3 = /*@__PURE__*/new Vector3();
+
+ var _v3$1 = /*@__PURE__*/new Vector3();
+
+ var DirectionalLightHelper = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(DirectionalLightHelper, _Object3D);
+
+ function DirectionalLightHelper(light, size, color) {
+ var _this;
+
+ _this = _Object3D.call(this) || this;
+ _this.light = light;
+
+ _this.light.updateMatrixWorld();
+
+ _this.matrix = light.matrixWorld;
+ _this.matrixAutoUpdate = false;
+ _this.color = color;
+ if (size === undefined) size = 1;
+ var geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));
+ var material = new LineBasicMaterial({
+ fog: false,
+ toneMapped: false
+ });
+ _this.lightPlane = new Line(geometry, material);
+
+ _this.add(_this.lightPlane);
+
+ geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));
+ _this.targetLine = new Line(geometry, material);
+
+ _this.add(_this.targetLine);
+
+ _this.update();
+
+ return _this;
+ }
+
+ var _proto = DirectionalLightHelper.prototype;
+
+ _proto.dispose = function dispose() {
+ this.lightPlane.geometry.dispose();
+ this.lightPlane.material.dispose();
+ this.targetLine.geometry.dispose();
+ this.targetLine.material.dispose();
+ };
+
+ _proto.update = function update() {
+ _v1$6.setFromMatrixPosition(this.light.matrixWorld);
+
+ _v2$3.setFromMatrixPosition(this.light.target.matrixWorld);
+
+ _v3$1.subVectors(_v2$3, _v1$6);
+
+ this.lightPlane.lookAt(_v2$3);
+
+ if (this.color !== undefined) {
+ this.lightPlane.material.color.set(this.color);
+ this.targetLine.material.color.set(this.color);
+ } else {
+ this.lightPlane.material.color.copy(this.light.color);
+ this.targetLine.material.color.copy(this.light.color);
+ }
+
+ this.targetLine.lookAt(_v2$3);
+ this.targetLine.scale.z = _v3$1.length();
+ };
+
+ return DirectionalLightHelper;
+ }(Object3D);
+
+ var _vector$c = /*@__PURE__*/new Vector3();
+
+ var _camera = /*@__PURE__*/new Camera();
+ /**
+ * - shows frustum, line of sight and up of the camera
+ * - suitable for fast updates
+ * - based on frustum visualization in lightgl.js shadowmap example
+ * http://evanw.github.com/lightgl.js/tests/shadowmap.html
+ */
+
+
+ var CameraHelper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(CameraHelper, _LineSegments);
+
+ function CameraHelper(camera) {
+ var _this;
+
+ var geometry = new BufferGeometry();
+ var material = new LineBasicMaterial({
+ color: 0xffffff,
+ vertexColors: true,
+ toneMapped: false
+ });
+ var vertices = [];
+ var colors = [];
+ var pointMap = {}; // colors
+
+ var colorFrustum = new Color(0xffaa00);
+ var colorCone = new Color(0xff0000);
+ var colorUp = new Color(0x00aaff);
+ var colorTarget = new Color(0xffffff);
+ var colorCross = new Color(0x333333); // near
+
+ addLine('n1', 'n2', colorFrustum);
+ addLine('n2', 'n4', colorFrustum);
+ addLine('n4', 'n3', colorFrustum);
+ addLine('n3', 'n1', colorFrustum); // far
+
+ addLine('f1', 'f2', colorFrustum);
+ addLine('f2', 'f4', colorFrustum);
+ addLine('f4', 'f3', colorFrustum);
+ addLine('f3', 'f1', colorFrustum); // sides
+
+ addLine('n1', 'f1', colorFrustum);
+ addLine('n2', 'f2', colorFrustum);
+ addLine('n3', 'f3', colorFrustum);
+ addLine('n4', 'f4', colorFrustum); // cone
+
+ addLine('p', 'n1', colorCone);
+ addLine('p', 'n2', colorCone);
+ addLine('p', 'n3', colorCone);
+ addLine('p', 'n4', colorCone); // up
+
+ addLine('u1', 'u2', colorUp);
+ addLine('u2', 'u3', colorUp);
+ addLine('u3', 'u1', colorUp); // target
+
+ addLine('c', 't', colorTarget);
+ addLine('p', 'c', colorCross); // cross
+
+ addLine('cn1', 'cn2', colorCross);
+ addLine('cn3', 'cn4', colorCross);
+ addLine('cf1', 'cf2', colorCross);
+ addLine('cf3', 'cf4', colorCross);
+
+ function addLine(a, b, color) {
+ addPoint(a, color);
+ addPoint(b, color);
+ }
+
+ function addPoint(id, color) {
+ vertices.push(0, 0, 0);
+ colors.push(color.r, color.g, color.b);
+
+ if (pointMap[id] === undefined) {
+ pointMap[id] = [];
+ }
+
+ pointMap[id].push(vertices.length / 3 - 1);
+ }
+
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ _this = _LineSegments.call(this, geometry, material) || this;
+ _this.type = 'CameraHelper';
+ _this.camera = camera;
+ if (_this.camera.updateProjectionMatrix) _this.camera.updateProjectionMatrix();
+ _this.matrix = camera.matrixWorld;
+ _this.matrixAutoUpdate = false;
+ _this.pointMap = pointMap;
+
+ _this.update();
+
+ return _this;
+ }
+
+ var _proto = CameraHelper.prototype;
+
+ _proto.update = function update() {
+ var geometry = this.geometry;
+ var pointMap = this.pointMap;
+ var w = 1,
+ h = 1; // we need just camera projection matrix inverse
+ // world matrix must be identity
+
+ _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target
+
+
+ setPoint('c', pointMap, geometry, _camera, 0, 0, -1);
+ setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near
+
+ setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);
+ setPoint('n2', pointMap, geometry, _camera, w, -h, -1);
+ setPoint('n3', pointMap, geometry, _camera, -w, h, -1);
+ setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far
+
+ setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);
+ setPoint('f2', pointMap, geometry, _camera, w, -h, 1);
+ setPoint('f3', pointMap, geometry, _camera, -w, h, 1);
+ setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up
+
+ setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);
+ setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);
+ setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross
+
+ setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);
+ setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);
+ setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);
+ setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);
+ setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);
+ setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);
+ setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);
+ setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);
+ geometry.getAttribute('position').needsUpdate = true;
+ };
+
+ return CameraHelper;
+ }(LineSegments);
+
+ function setPoint(point, pointMap, geometry, camera, x, y, z) {
+ _vector$c.set(x, y, z).unproject(camera);
+
+ var points = pointMap[point];
+
+ if (points !== undefined) {
+ var position = geometry.getAttribute('position');
+
+ for (var i = 0, l = points.length; i < l; i++) {
+ position.setXYZ(points[i], _vector$c.x, _vector$c.y, _vector$c.z);
+ }
+ }
+ }
+
+ var _box$3 = /*@__PURE__*/new Box3();
+
+ var BoxHelper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(BoxHelper, _LineSegments);
+
+ function BoxHelper(object, color) {
+ var _this;
+
+ if (color === void 0) {
+ color = 0xffff00;
+ }
+
+ var indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
+ var positions = new Float32Array(8 * 3);
+ var geometry = new BufferGeometry();
+ geometry.setIndex(new BufferAttribute(indices, 1));
+ geometry.setAttribute('position', new BufferAttribute(positions, 3));
+ _this = _LineSegments.call(this, geometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ })) || this;
+ _this.object = object;
+ _this.type = 'BoxHelper';
+ _this.matrixAutoUpdate = false;
+
+ _this.update();
+
+ return _this;
+ }
+
+ var _proto = BoxHelper.prototype;
+
+ _proto.update = function update(object) {
+ if (object !== undefined) {
+ console.warn('THREE.BoxHelper: .update() has no longer arguments.');
+ }
+
+ if (this.object !== undefined) {
+ _box$3.setFromObject(this.object);
+ }
+
+ if (_box$3.isEmpty()) return;
+ var min = _box$3.min;
+ var max = _box$3.max;
+ /*
+ 5____4
+ 1/___0/|
+ | 6__|_7
+ 2/___3/
+ 0: max.x, max.y, max.z
+ 1: min.x, max.y, max.z
+ 2: min.x, min.y, max.z
+ 3: max.x, min.y, max.z
+ 4: max.x, max.y, min.z
+ 5: min.x, max.y, min.z
+ 6: min.x, min.y, min.z
+ 7: max.x, min.y, min.z
+ */
+
+ var position = this.geometry.attributes.position;
+ var array = position.array;
+ array[0] = max.x;
+ array[1] = max.y;
+ array[2] = max.z;
+ array[3] = min.x;
+ array[4] = max.y;
+ array[5] = max.z;
+ array[6] = min.x;
+ array[7] = min.y;
+ array[8] = max.z;
+ array[9] = max.x;
+ array[10] = min.y;
+ array[11] = max.z;
+ array[12] = max.x;
+ array[13] = max.y;
+ array[14] = min.z;
+ array[15] = min.x;
+ array[16] = max.y;
+ array[17] = min.z;
+ array[18] = min.x;
+ array[19] = min.y;
+ array[20] = min.z;
+ array[21] = max.x;
+ array[22] = min.y;
+ array[23] = min.z;
+ position.needsUpdate = true;
+ this.geometry.computeBoundingSphere();
+ };
+
+ _proto.setFromObject = function setFromObject(object) {
+ this.object = object;
+ this.update();
+ return this;
+ };
+
+ _proto.copy = function copy(source) {
+ LineSegments.prototype.copy.call(this, source);
+ this.object = source.object;
+ return this;
+ };
+
+ return BoxHelper;
+ }(LineSegments);
+
+ var Box3Helper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(Box3Helper, _LineSegments);
+
+ function Box3Helper(box, color) {
+ var _this;
+
+ if (color === void 0) {
+ color = 0xffff00;
+ }
+
+ var indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
+ var positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];
+ var geometry = new BufferGeometry();
+ geometry.setIndex(new BufferAttribute(indices, 1));
+ geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
+ _this = _LineSegments.call(this, geometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ })) || this;
+ _this.box = box;
+ _this.type = 'Box3Helper';
+
+ _this.geometry.computeBoundingSphere();
+
+ return _this;
+ }
+
+ var _proto = Box3Helper.prototype;
+
+ _proto.updateMatrixWorld = function updateMatrixWorld(force) {
+ var box = this.box;
+ if (box.isEmpty()) return;
+ box.getCenter(this.position);
+ box.getSize(this.scale);
+ this.scale.multiplyScalar(0.5);
+
+ _LineSegments.prototype.updateMatrixWorld.call(this, force);
+ };
+
+ return Box3Helper;
+ }(LineSegments);
+
+ var PlaneHelper = /*#__PURE__*/function (_Line) {
+ _inheritsLoose(PlaneHelper, _Line);
+
+ function PlaneHelper(plane, size, hex) {
+ var _this;
+
+ if (size === void 0) {
+ size = 1;
+ }
+
+ if (hex === void 0) {
+ hex = 0xffff00;
+ }
+
+ var color = hex;
+ var positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];
+ var geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
+ geometry.computeBoundingSphere();
+ _this = _Line.call(this, geometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ })) || this;
+ _this.type = 'PlaneHelper';
+ _this.plane = plane;
+ _this.size = size;
+ var positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];
+ var geometry2 = new BufferGeometry();
+ geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));
+ geometry2.computeBoundingSphere();
+
+ _this.add(new Mesh(geometry2, new MeshBasicMaterial({
+ color: color,
+ opacity: 0.2,
+ transparent: true,
+ depthWrite: false,
+ toneMapped: false
+ })));
+
+ return _this;
+ }
+
+ var _proto = PlaneHelper.prototype;
+
+ _proto.updateMatrixWorld = function updateMatrixWorld(force) {
+ var scale = -this.plane.constant;
+ if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter
+
+ this.scale.set(0.5 * this.size, 0.5 * this.size, scale);
+ this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
+
+ this.lookAt(this.plane.normal);
+
+ _Line.prototype.updateMatrixWorld.call(this, force);
+ };
+
+ return PlaneHelper;
+ }(Line);
+
+ var _axis = /*@__PURE__*/new Vector3();
+
+ var _lineGeometry, _coneGeometry;
+
+ var ArrowHelper = /*#__PURE__*/function (_Object3D) {
+ _inheritsLoose(ArrowHelper, _Object3D);
+
+ function ArrowHelper(dir, origin, length, color, headLength, headWidth) {
+ var _this;
+
+ _this = _Object3D.call(this) || this; // dir is assumed to be normalized
+
+ _this.type = 'ArrowHelper';
+ if (dir === undefined) dir = new Vector3(0, 0, 1);
+ if (origin === undefined) origin = new Vector3(0, 0, 0);
+ if (length === undefined) length = 1;
+ if (color === undefined) color = 0xffff00;
+ if (headLength === undefined) headLength = 0.2 * length;
+ if (headWidth === undefined) headWidth = 0.2 * headLength;
+
+ if (_lineGeometry === undefined) {
+ _lineGeometry = new BufferGeometry();
+
+ _lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));
+
+ _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);
+
+ _coneGeometry.translate(0, -0.5, 0);
+ }
+
+ _this.position.copy(origin);
+
+ _this.line = new Line(_lineGeometry, new LineBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ _this.line.matrixAutoUpdate = false;
+
+ _this.add(_this.line);
+
+ _this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({
+ color: color,
+ toneMapped: false
+ }));
+ _this.cone.matrixAutoUpdate = false;
+
+ _this.add(_this.cone);
+
+ _this.setDirection(dir);
+
+ _this.setLength(length, headLength, headWidth);
+
+ return _this;
+ }
+
+ var _proto = ArrowHelper.prototype;
+
+ _proto.setDirection = function setDirection(dir) {
+ // dir is assumed to be normalized
+ if (dir.y > 0.99999) {
+ this.quaternion.set(0, 0, 0, 1);
+ } else if (dir.y < -0.99999) {
+ this.quaternion.set(1, 0, 0, 0);
+ } else {
+ _axis.set(dir.z, 0, -dir.x).normalize();
+
+ var radians = Math.acos(dir.y);
+ this.quaternion.setFromAxisAngle(_axis, radians);
+ }
+ };
+
+ _proto.setLength = function setLength(length, headLength, headWidth) {
+ if (headLength === undefined) headLength = 0.2 * length;
+ if (headWidth === undefined) headWidth = 0.2 * headLength;
+ this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458
+
+ this.line.updateMatrix();
+ this.cone.scale.set(headWidth, headLength, headWidth);
+ this.cone.position.y = length;
+ this.cone.updateMatrix();
+ };
+
+ _proto.setColor = function setColor(color) {
+ this.line.material.color.set(color);
+ this.cone.material.color.set(color);
+ };
+
+ _proto.copy = function copy(source) {
+ _Object3D.prototype.copy.call(this, source, false);
+
+ this.line.copy(source.line);
+ this.cone.copy(source.cone);
+ return this;
+ };
+
+ return ArrowHelper;
+ }(Object3D);
+
+ var AxesHelper = /*#__PURE__*/function (_LineSegments) {
+ _inheritsLoose(AxesHelper, _LineSegments);
+
+ function AxesHelper(size) {
+ var _this;
+
+ if (size === void 0) {
+ size = 1;
+ }
+
+ var vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];
+ var colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];
+ var geometry = new BufferGeometry();
+ geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
+ geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
+ var material = new LineBasicMaterial({
+ vertexColors: true,
+ toneMapped: false
+ });
+ _this = _LineSegments.call(this, geometry, material) || this;
+ _this.type = 'AxesHelper';
+ return _this;
+ }
+
+ return AxesHelper;
+ }(LineSegments);
+
+ var _floatView = new Float32Array(1);
+
+ var _int32View = new Int32Array(_floatView.buffer);
+
+ var DataUtils = {
+ // Converts float32 to float16 (stored as uint16 value).
+ toHalfFloat: function toHalfFloat(val) {
+ // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
+
+ /* This method is faster than the OpenEXR implementation (very often
+ * used, eg. in Ogre), with the additional benefit of rounding, inspired
+ * by James Tursa?s half-precision code. */
+ _floatView[0] = val;
+ var x = _int32View[0];
+ var bits = x >> 16 & 0x8000;
+ /* Get the sign */
+
+ var m = x >> 12 & 0x07ff;
+ /* Keep one extra bit for rounding */
+
+ var e = x >> 23 & 0xff;
+ /* Using int is faster here */
+
+ /* If zero, or denormal, or exponent underflows too much for a denormal
+ * half, return signed zero. */
+
+ if (e < 103) return bits;
+ /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
+
+ if (e > 142) {
+ bits |= 0x7c00;
+ /* If exponent was 0xff and one mantissa bit was set, it means NaN,
+ * not Inf, so make sure we set one mantissa bit too. */
+
+ bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;
+ return bits;
+ }
+ /* If exponent underflows but not too much, return a denormal */
+
+
+ if (e < 113) {
+ m |= 0x0800;
+ /* Extra rounding may overflow and set mantissa to 0 and exponent
+ * to 1, which is OK. */
+
+ bits |= (m >> 114 - e) + (m >> 113 - e & 1);
+ return bits;
+ }
+
+ bits |= e - 112 << 10 | m >> 1;
+ /* Extra rounding. An overflow will set mantissa to 0 and increment
+ * the exponent, which is OK. */
+
+ bits += m & 1;
+ return bits;
+ }
+ };
+
+ var _ENCODINGS;
+ var LOD_MIN = 4;
+ var LOD_MAX = 8;
+ var SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are
+ // chosen to approximate a Trowbridge-Reitz distribution function times the
+ // geometric shadowing function. These sigma values squared must match the
+ // variance #defines in cube_uv_reflection_fragment.glsl.js.
+
+ var EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
+ var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer
+ // samples and exit early, but not recompile the shader.
+
+ var MAX_SAMPLES = 20;
+ var ENCODINGS = (_ENCODINGS = {}, _ENCODINGS[LinearEncoding] = 0, _ENCODINGS[sRGBEncoding] = 1, _ENCODINGS[RGBEEncoding] = 2, _ENCODINGS[RGBM7Encoding] = 3, _ENCODINGS[RGBM16Encoding] = 4, _ENCODINGS[RGBDEncoding] = 5, _ENCODINGS[GammaEncoding] = 6, _ENCODINGS);
+ var backgroundMaterial = new MeshBasicMaterial({
+ side: BackSide,
+ depthWrite: false,
+ depthTest: false
+ });
+ var backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);
+
+ var _flatCamera = /*@__PURE__*/new OrthographicCamera();
+
+ var _createPlanes2 = /*@__PURE__*/_createPlanes(),
+ _lodPlanes = _createPlanes2._lodPlanes,
+ _sizeLods = _createPlanes2._sizeLods,
+ _sigmas = _createPlanes2._sigmas;
+
+ var _clearColor = /*@__PURE__*/new Color();
+
+ var _oldTarget = null; // Golden Ratio
+
+ var PHI = (1 + Math.sqrt(5)) / 2;
+ var INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the
+ // same axis), used as axis directions evenly spread on a sphere.
+
+ var _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];
+ /**
+ * This class generates a Prefiltered, Mipmapped Radiance Environment Map
+ * (PMREM) from a cubeMap environment texture. This allows different levels of
+ * blur to be quickly accessed based on material roughness. It is packed into a
+ * special CubeUV format that allows us to perform custom interpolation so that
+ * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
+ * chain, it only goes down to the LOD_MIN level (above), and then creates extra
+ * even more filtered 'mips' at the same LOD_MIN resolution, associated with
+ * higher roughness levels. In this way we maintain resolution to smoothly
+ * interpolate diffuse lighting while limiting sampling computation.
+ */
+
+ function convertLinearToRGBE(color) {
+ var maxComponent = Math.max(color.r, color.g, color.b);
+ var fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), -128.0), 127.0);
+ color.multiplyScalar(Math.pow(2.0, -fExp));
+ var alpha = (fExp + 128.0) / 255.0;
+ return alpha;
+ }
+
+ var PMREMGenerator = /*#__PURE__*/function () {
+ function PMREMGenerator(renderer) {
+ this._renderer = renderer;
+ this._pingPongRenderTarget = null;
+ this._blurMaterial = _getBlurShader(MAX_SAMPLES);
+ this._equirectShader = null;
+ this._cubemapShader = null;
+
+ this._compileMaterial(this._blurMaterial);
+ }
+ /**
+ * Generates a PMREM from a supplied Scene, which can be faster than using an
+ * image if networking bandwidth is low. Optional sigma specifies a blur radius
+ * in radians to be applied to the scene before PMREM generation. Optional near
+ * and far planes ensure the scene is rendered in its entirety (the cubeCamera
+ * is placed at the origin).
+ */
+
+
+ var _proto = PMREMGenerator.prototype;
+
+ _proto.fromScene = function fromScene(scene, sigma, near, far) {
+ if (sigma === void 0) {
+ sigma = 0;
+ }
+
+ if (near === void 0) {
+ near = 0.1;
+ }
+
+ if (far === void 0) {
+ far = 100;
+ }
+
+ _oldTarget = this._renderer.getRenderTarget();
+
+ var cubeUVRenderTarget = this._allocateTargets();
+
+ this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
+
+ if (sigma > 0) {
+ this._blur(cubeUVRenderTarget, 0, 0, sigma);
+ }
+
+ this._applyPMREM(cubeUVRenderTarget);
+
+ this._cleanup(cubeUVRenderTarget);
+
+ return cubeUVRenderTarget;
+ }
+ /**
+ * Generates a PMREM from an equirectangular texture, which can be either LDR
+ * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
+ * as this matches best with the 256 x 256 cubemap output.
+ */
+ ;
+
+ _proto.fromEquirectangular = function fromEquirectangular(equirectangular) {
+ return this._fromTexture(equirectangular);
+ }
+ /**
+ * Generates a PMREM from an cubemap texture, which can be either LDR
+ * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
+ * as this matches best with the 256 x 256 cubemap output.
+ */
+ ;
+
+ _proto.fromCubemap = function fromCubemap(cubemap) {
+ return this._fromTexture(cubemap);
+ }
+ /**
+ * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
+ * your texture's network fetch for increased concurrency.
+ */
+ ;
+
+ _proto.compileCubemapShader = function compileCubemapShader() {
+ if (this._cubemapShader === null) {
+ this._cubemapShader = _getCubemapShader();
+
+ this._compileMaterial(this._cubemapShader);
+ }
+ }
+ /**
+ * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
+ * your texture's network fetch for increased concurrency.
+ */
+ ;
+
+ _proto.compileEquirectangularShader = function compileEquirectangularShader() {
+ if (this._equirectShader === null) {
+ this._equirectShader = _getEquirectShader();
+
+ this._compileMaterial(this._equirectShader);
+ }
+ }
+ /**
+ * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
+ * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
+ * one of them will cause any others to also become unusable.
+ */
+ ;
+
+ _proto.dispose = function dispose() {
+ this._blurMaterial.dispose();
+
+ if (this._cubemapShader !== null) this._cubemapShader.dispose();
+ if (this._equirectShader !== null) this._equirectShader.dispose();
+
+ for (var i = 0; i < _lodPlanes.length; i++) {
+ _lodPlanes[i].dispose();
+ }
+ } // private interface
+ ;
+
+ _proto._cleanup = function _cleanup(outputTarget) {
+ this._pingPongRenderTarget.dispose();
+
+ this._renderer.setRenderTarget(_oldTarget);
+
+ outputTarget.scissorTest = false;
+
+ _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
+ };
+
+ _proto._fromTexture = function _fromTexture(texture) {
+ _oldTarget = this._renderer.getRenderTarget();
+
+ var cubeUVRenderTarget = this._allocateTargets(texture);
+
+ this._textureToCubeUV(texture, cubeUVRenderTarget);
+
+ this._applyPMREM(cubeUVRenderTarget);
+
+ this._cleanup(cubeUVRenderTarget);
+
+ return cubeUVRenderTarget;
+ };
+
+ _proto._allocateTargets = function _allocateTargets(texture) {
+ // warning: null texture is valid
+ var params = {
+ magFilter: NearestFilter,
+ minFilter: NearestFilter,
+ generateMipmaps: false,
+ type: UnsignedByteType,
+ format: RGBEFormat,
+ encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
+ depthBuffer: false
+ };
+
+ var cubeUVRenderTarget = _createRenderTarget(params);
+
+ cubeUVRenderTarget.depthBuffer = texture ? false : true;
+ this._pingPongRenderTarget = _createRenderTarget(params);
+ return cubeUVRenderTarget;
+ };
+
+ _proto._compileMaterial = function _compileMaterial(material) {
+ var tmpMesh = new Mesh(_lodPlanes[0], material);
+
+ this._renderer.compile(tmpMesh, _flatCamera);
+ };
+
+ _proto._sceneToCubeUV = function _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {
+ var fov = 90;
+ var aspect = 1;
+ var cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
+ var upSign = [1, -1, 1, 1, 1, 1];
+ var forwardSign = [1, 1, 1, -1, -1, -1];
+ var renderer = this._renderer;
+ var originalAutoClear = renderer.autoClear;
+ var outputEncoding = renderer.outputEncoding;
+ var toneMapping = renderer.toneMapping;
+ renderer.getClearColor(_clearColor);
+ renderer.toneMapping = NoToneMapping;
+ renderer.outputEncoding = LinearEncoding;
+ renderer.autoClear = false;
+ var useSolidColor = false;
+ var background = scene.background;
+
+ if (background) {
+ if (background.isColor) {
+ backgroundMaterial.color.copy(background).convertSRGBToLinear();
+ scene.background = null;
+ var alpha = convertLinearToRGBE(backgroundMaterial.color);
+ backgroundMaterial.opacity = alpha;
+ useSolidColor = true;
+ }
+ } else {
+ backgroundMaterial.color.copy(_clearColor).convertSRGBToLinear();
+
+ var _alpha = convertLinearToRGBE(backgroundMaterial.color);
+
+ backgroundMaterial.opacity = _alpha;
+ useSolidColor = true;
+ }
+
+ for (var i = 0; i < 6; i++) {
+ var col = i % 3;
+
+ if (col == 0) {
+ cubeCamera.up.set(0, upSign[i], 0);
+ cubeCamera.lookAt(forwardSign[i], 0, 0);
+ } else if (col == 1) {
+ cubeCamera.up.set(0, 0, upSign[i]);
+ cubeCamera.lookAt(0, forwardSign[i], 0);
+ } else {
+ cubeCamera.up.set(0, upSign[i], 0);
+ cubeCamera.lookAt(0, 0, forwardSign[i]);
+ }
+
+ _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
+
+ renderer.setRenderTarget(cubeUVRenderTarget);
+
+ if (useSolidColor) {
+ renderer.render(backgroundBox, cubeCamera);
+ }
+
+ renderer.render(scene, cubeCamera);
+ }
+
+ renderer.toneMapping = toneMapping;
+ renderer.outputEncoding = outputEncoding;
+ renderer.autoClear = originalAutoClear;
+ };
+
+ _proto._textureToCubeUV = function _textureToCubeUV(texture, cubeUVRenderTarget) {
+ var renderer = this._renderer;
+
+ if (texture.isCubeTexture) {
+ if (this._cubemapShader == null) {
+ this._cubemapShader = _getCubemapShader();
+ }
+ } else {
+ if (this._equirectShader == null) {
+ this._equirectShader = _getEquirectShader();
+ }
+ }
+
+ var material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
+ var mesh = new Mesh(_lodPlanes[0], material);
+ var uniforms = material.uniforms;
+ uniforms['envMap'].value = texture;
+
+ if (!texture.isCubeTexture) {
+ uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
+ }
+
+ uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
+ uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
+
+ _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
+
+ renderer.setRenderTarget(cubeUVRenderTarget);
+ renderer.render(mesh, _flatCamera);
+ };
+
+ _proto._applyPMREM = function _applyPMREM(cubeUVRenderTarget) {
+ var renderer = this._renderer;
+ var autoClear = renderer.autoClear;
+ renderer.autoClear = false;
+
+ for (var i = 1; i < TOTAL_LODS; i++) {
+ var sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
+ var poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
+
+ this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
+ }
+
+ renderer.autoClear = autoClear;
+ }
+ /**
+ * This is a two-pass Gaussian blur for a cubemap. Normally this is done
+ * vertically and horizontally, but this breaks down on a cube. Here we apply
+ * the blur latitudinally (around the poles), and then longitudinally (towards
+ * the poles) to approximate the orthogonally-separable blur. It is least
+ * accurate at the poles, but still does a decent job.
+ */
+ ;
+
+ _proto._blur = function _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {
+ var pingPongRenderTarget = this._pingPongRenderTarget;
+
+ this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);
+
+ this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);
+ };
+
+ _proto._halfBlur = function _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {
+ var renderer = this._renderer;
+ var blurMaterial = this._blurMaterial;
+
+ if (direction !== 'latitudinal' && direction !== 'longitudinal') {
+ console.error('blur direction must be either latitudinal or longitudinal!');
+ } // Number of standard deviations at which to cut off the discrete approximation.
+
+
+ var STANDARD_DEVIATIONS = 3;
+ var blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
+ var blurUniforms = blurMaterial.uniforms;
+ var pixels = _sizeLods[lodIn] - 1;
+ var radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
+ var sigmaPixels = sigmaRadians / radiansPerPixel;
+ var samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
+
+ if (samples > MAX_SAMPLES) {
+ console.warn("sigmaRadians, " + sigmaRadians + ", is too large and will clip, as it requested " + samples + " samples when the maximum is set to " + MAX_SAMPLES);
+ }
+
+ var weights = [];
+ var sum = 0;
+
+ for (var i = 0; i < MAX_SAMPLES; ++i) {
+ var _x = i / sigmaPixels;
+
+ var weight = Math.exp(-_x * _x / 2);
+ weights.push(weight);
+
+ if (i == 0) {
+ sum += weight;
+ } else if (i < samples) {
+ sum += 2 * weight;
+ }
+ }
+
+ for (var _i = 0; _i < weights.length; _i++) {
+ weights[_i] = weights[_i] / sum;
+ }
+
+ blurUniforms['envMap'].value = targetIn.texture;
+ blurUniforms['samples'].value = samples;
+ blurUniforms['weights'].value = weights;
+ blurUniforms['latitudinal'].value = direction === 'latitudinal';
+
+ if (poleAxis) {
+ blurUniforms['poleAxis'].value = poleAxis;
+ }
+
+ blurUniforms['dTheta'].value = radiansPerPixel;
+ blurUniforms['mipInt'].value = LOD_MAX - lodIn;
+ blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
+ blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
+ var outputSize = _sizeLods[lodOut];
+ var x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
+ var y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
+
+ _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
+
+ renderer.setRenderTarget(targetOut);
+ renderer.render(blurMesh, _flatCamera);
+ };
+
+ return PMREMGenerator;
+ }();
+
+ function _isLDR(texture) {
+ if (texture === undefined || texture.type !== UnsignedByteType) return false;
+ return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
+ }
+
+ function _createPlanes() {
+ var _lodPlanes = [];
+ var _sizeLods = [];
+ var _sigmas = [];
+ var lod = LOD_MAX;
+
+ for (var i = 0; i < TOTAL_LODS; i++) {
+ var sizeLod = Math.pow(2, lod);
+
+ _sizeLods.push(sizeLod);
+
+ var sigma = 1.0 / sizeLod;
+
+ if (i > LOD_MAX - LOD_MIN) {
+ sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
+ } else if (i == 0) {
+ sigma = 0;
+ }
+
+ _sigmas.push(sigma);
+
+ var texelSize = 1.0 / (sizeLod - 1);
+ var min = -texelSize / 2;
+ var max = 1 + texelSize / 2;
+ var uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
+ var cubeFaces = 6;
+ var vertices = 6;
+ var positionSize = 3;
+ var uvSize = 2;
+ var faceIndexSize = 1;
+ var position = new Float32Array(positionSize * vertices * cubeFaces);
+ var uv = new Float32Array(uvSize * vertices * cubeFaces);
+ var faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
+
+ for (var face = 0; face < cubeFaces; face++) {
+ var x = face % 3 * 2 / 3 - 1;
+ var y = face > 2 ? 0 : -1;
+ var coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];
+ position.set(coordinates, positionSize * vertices * face);
+ uv.set(uv1, uvSize * vertices * face);
+ var fill = [face, face, face, face, face, face];
+ faceIndex.set(fill, faceIndexSize * vertices * face);
+ }
+
+ var planes = new BufferGeometry();
+ planes.setAttribute('position', new BufferAttribute(position, positionSize));
+ planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
+ planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
+
+ _lodPlanes.push(planes);
+
+ if (lod > LOD_MIN) {
+ lod--;
+ }
+ }
+
+ return {
+ _lodPlanes: _lodPlanes,
+ _sizeLods: _sizeLods,
+ _sigmas: _sigmas
+ };
+ }
+
+ function _createRenderTarget(params) {
+ var cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
+ cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
+ cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
+ cubeUVRenderTarget.scissorTest = true;
+ return cubeUVRenderTarget;
+ }
+
+ function _setViewport(target, x, y, width, height) {
+ target.viewport.set(x, y, width, height);
+ target.scissor.set(x, y, width, height);
+ }
+
+ function _getBlurShader(maxSamples) {
+ var weights = new Float32Array(maxSamples);
+ var poleAxis = new Vector3(0, 1, 0);
+ var shaderMaterial = new RawShaderMaterial({
+ name: 'SphericalGaussianBlur',
+ defines: {
+ 'n': maxSamples
+ },
+ uniforms: {
+ 'envMap': {
+ value: null
+ },
+ 'samples': {
+ value: 1
+ },
+ 'weights': {
+ value: weights
+ },
+ 'latitudinal': {
+ value: false
+ },
+ 'dTheta': {
+ value: 0
+ },
+ 'mipInt': {
+ value: 0
+ },
+ 'poleAxis': {
+ value: poleAxis
+ },
+ 'inputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ },
+ 'outputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ }
+ },
+ vertexShader: _getCommonVertexShader(),
+ fragmentShader:
+ /* glsl */
+ "\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform int samples;\n\t\t\tuniform float weights[ n ];\n\t\t\tuniform bool latitudinal;\n\t\t\tuniform float dTheta;\n\t\t\tuniform float mipInt;\n\t\t\tuniform vec3 poleAxis;\n\n\t\t\t" + _getEncodings() + "\n\n\t\t\t#define ENVMAP_TYPE_CUBE_UV\n\t\t\t#include <cube_uv_reflection_fragment>\n\n\t\t\tvec3 getSample( float theta, vec3 axis ) {\n\n\t\t\t\tfloat cosTheta = cos( theta );\n\t\t\t\t// Rodrigues' axis-angle rotation\n\t\t\t\tvec3 sampleDirection = vOutputDirection * cosTheta\n\t\t\t\t\t+ cross( axis, vOutputDirection ) * sin( theta )\n\t\t\t\t\t+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );\n\n\t\t\t\treturn bilinearCubeUV( envMap, sampleDirection, mipInt );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );\n\n\t\t\t\tif ( all( equal( axis, vec3( 0.0 ) ) ) ) {\n\n\t\t\t\t\taxis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );\n\n\t\t\t\t}\n\n\t\t\t\taxis = normalize( axis );\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );\n\n\t\t\t\tfor ( int i = 1; i < n; i++ ) {\n\n\t\t\t\t\tif ( i >= samples ) {\n\n\t\t\t\t\t\tbreak;\n\n\t\t\t\t\t}\n\n\t\t\t\t\tfloat theta = dTheta * float( i );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( theta, axis );\n\n\t\t\t\t}\n\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t",
+ blending: NoBlending,
+ depthTest: false,
+ depthWrite: false
+ });
+ return shaderMaterial;
+ }
+
+ function _getEquirectShader() {
+ var texelSize = new Vector2(1, 1);
+ var shaderMaterial = new RawShaderMaterial({
+ name: 'EquirectangularToCubeUV',
+ uniforms: {
+ 'envMap': {
+ value: null
+ },
+ 'texelSize': {
+ value: texelSize
+ },
+ 'inputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ },
+ 'outputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ }
+ },
+ vertexShader: _getCommonVertexShader(),
+ fragmentShader:
+ /* glsl */
+ "\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform vec2 texelSize;\n\n\t\t\t" + _getEncodings() + "\n\n\t\t\t#include <common>\n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\n\t\t\t\tvec3 outputDirection = normalize( vOutputDirection );\n\t\t\t\tvec2 uv = equirectUv( outputDirection );\n\n\t\t\t\tvec2 f = fract( uv / texelSize - 0.5 );\n\t\t\t\tuv -= f * texelSize;\n\t\t\t\tvec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x += texelSize.x;\n\t\t\t\tvec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.y += texelSize.y;\n\t\t\t\tvec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x -= texelSize.x;\n\t\t\t\tvec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\n\t\t\t\tvec3 tm = mix( tl, tr, f.x );\n\t\t\t\tvec3 bm = mix( bl, br, f.x );\n\t\t\t\tgl_FragColor.rgb = mix( tm, bm, f.y );\n\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t",
+ blending: NoBlending,
+ depthTest: false,
+ depthWrite: false
+ });
+ return shaderMaterial;
+ }
+
+ function _getCubemapShader() {
+ var shaderMaterial = new RawShaderMaterial({
+ name: 'CubemapToCubeUV',
+ uniforms: {
+ 'envMap': {
+ value: null
+ },
+ 'inputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ },
+ 'outputEncoding': {
+ value: ENCODINGS[LinearEncoding]
+ }
+ },
+ vertexShader: _getCommonVertexShader(),
+ fragmentShader:
+ /* glsl */
+ "\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform samplerCube envMap;\n\n\t\t\t" + _getEncodings() + "\n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t",
+ blending: NoBlending,
+ depthTest: false,
+ depthWrite: false
+ });
+ return shaderMaterial;
+ }
+
+ function _getCommonVertexShader() {
+ return (
+ /* glsl */
+ "\n\n\t\tprecision mediump float;\n\t\tprecision mediump int;\n\n\t\tattribute vec3 position;\n\t\tattribute vec2 uv;\n\t\tattribute float faceIndex;\n\n\t\tvarying vec3 vOutputDirection;\n\n\t\t// RH coordinate system; PMREM face-indexing convention\n\t\tvec3 getDirection( vec2 uv, float face ) {\n\n\t\t\tuv = 2.0 * uv - 1.0;\n\n\t\t\tvec3 direction = vec3( uv, 1.0 );\n\n\t\t\tif ( face == 0.0 ) {\n\n\t\t\t\tdirection = direction.zyx; // ( 1, v, u ) pos x\n\n\t\t\t} else if ( face == 1.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xz *= -1.0; // ( -u, 1, -v ) pos y\n\n\t\t\t} else if ( face == 2.0 ) {\n\n\t\t\t\tdirection.x *= -1.0; // ( -u, v, 1 ) pos z\n\n\t\t\t} else if ( face == 3.0 ) {\n\n\t\t\t\tdirection = direction.zyx;\n\t\t\t\tdirection.xz *= -1.0; // ( -1, v, -u ) neg x\n\n\t\t\t} else if ( face == 4.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xy *= -1.0; // ( -u, -1, v ) neg y\n\n\t\t\t} else if ( face == 5.0 ) {\n\n\t\t\t\tdirection.z *= -1.0; // ( u, v, -1 ) neg z\n\n\t\t\t}\n\n\t\t\treturn direction;\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\tvOutputDirection = getDirection( uv, faceIndex );\n\t\t\tgl_Position = vec4( position, 1.0 );\n\n\t\t}\n\t"
+ );
+ }
+
+ function _getEncodings() {
+ return (
+ /* glsl */
+ "\n\n\t\tuniform int inputEncoding;\n\t\tuniform int outputEncoding;\n\n\t\t#include <encodings_pars_fragment>\n\n\t\tvec4 inputTexelToLinear( vec4 value ) {\n\n\t\t\tif ( inputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else if ( inputEncoding == 1 ) {\n\n\t\t\t\treturn sRGBToLinear( value );\n\n\t\t\t} else if ( inputEncoding == 2 ) {\n\n\t\t\t\treturn RGBEToLinear( value );\n\n\t\t\t} else if ( inputEncoding == 3 ) {\n\n\t\t\t\treturn RGBMToLinear( value, 7.0 );\n\n\t\t\t} else if ( inputEncoding == 4 ) {\n\n\t\t\t\treturn RGBMToLinear( value, 16.0 );\n\n\t\t\t} else if ( inputEncoding == 5 ) {\n\n\t\t\t\treturn RGBDToLinear( value, 256.0 );\n\n\t\t\t} else {\n\n\t\t\t\treturn GammaToLinear( value, 2.2 );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 linearToOutputTexel( vec4 value ) {\n\n\t\t\tif ( outputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else if ( outputEncoding == 1 ) {\n\n\t\t\t\treturn LinearTosRGB( value );\n\n\t\t\t} else if ( outputEncoding == 2 ) {\n\n\t\t\t\treturn LinearToRGBE( value );\n\n\t\t\t} else if ( outputEncoding == 3 ) {\n\n\t\t\t\treturn LinearToRGBM( value, 7.0 );\n\n\t\t\t} else if ( outputEncoding == 4 ) {\n\n\t\t\t\treturn LinearToRGBM( value, 16.0 );\n\n\t\t\t} else if ( outputEncoding == 5 ) {\n\n\t\t\t\treturn LinearToRGBD( value, 256.0 );\n\n\t\t\t} else {\n\n\t\t\t\treturn LinearToGamma( value, 2.2 );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 envMapTexelToLinear( vec4 color ) {\n\n\t\t\treturn inputTexelToLinear( color );\n\n\t\t}\n\t"
+ );
+ }
+
+ function Face4(a, b, c, d, normal, color, materialIndex) {
+ console.warn('THREE.Face4 has been removed. A THREE.Face3 will be created instead.');
+ return new Face3(a, b, c, normal, color, materialIndex);
+ }
+ var LineStrip = 0;
+ var LinePieces = 1;
+ var NoColors = 0;
+ var FaceColors = 1;
+ var VertexColors = 2;
+ function MeshFaceMaterial(materials) {
+ console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');
+ return materials;
+ }
+ function MultiMaterial(materials) {
+ if (materials === void 0) {
+ materials = [];
+ }
+
+ console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');
+ materials.isMultiMaterial = true;
+ materials.materials = materials;
+
+ materials.clone = function () {
+ return materials.slice();
+ };
+
+ return materials;
+ }
+ function PointCloud(geometry, material) {
+ console.warn('THREE.PointCloud has been renamed to THREE.Points.');
+ return new Points(geometry, material);
+ }
+ function Particle(material) {
+ console.warn('THREE.Particle has been renamed to THREE.Sprite.');
+ return new Sprite(material);
+ }
+ function ParticleSystem(geometry, material) {
+ console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');
+ return new Points(geometry, material);
+ }
+ function PointCloudMaterial(parameters) {
+ console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');
+ return new PointsMaterial(parameters);
+ }
+ function ParticleBasicMaterial(parameters) {
+ console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');
+ return new PointsMaterial(parameters);
+ }
+ function ParticleSystemMaterial(parameters) {
+ console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');
+ return new PointsMaterial(parameters);
+ }
+ function Vertex(x, y, z) {
+ console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');
+ return new Vector3(x, y, z);
+ } //
+
+ function DynamicBufferAttribute(array, itemSize) {
+ console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');
+ return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);
+ }
+ function Int8Attribute(array, itemSize) {
+ console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');
+ return new Int8BufferAttribute(array, itemSize);
+ }
+ function Uint8Attribute(array, itemSize) {
+ console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');
+ return new Uint8BufferAttribute(array, itemSize);
+ }
+ function Uint8ClampedAttribute(array, itemSize) {
+ console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');
+ return new Uint8ClampedBufferAttribute(array, itemSize);
+ }
+ function Int16Attribute(array, itemSize) {
+ console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');
+ return new Int16BufferAttribute(array, itemSize);
+ }
+ function Uint16Attribute(array, itemSize) {
+ console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');
+ return new Uint16BufferAttribute(array, itemSize);
+ }
+ function Int32Attribute(array, itemSize) {
+ console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');
+ return new Int32BufferAttribute(array, itemSize);
+ }
+ function Uint32Attribute(array, itemSize) {
+ console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');
+ return new Uint32BufferAttribute(array, itemSize);
+ }
+ function Float32Attribute(array, itemSize) {
+ console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');
+ return new Float32BufferAttribute(array, itemSize);
+ }
+ function Float64Attribute(array, itemSize) {
+ console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');
+ return new Float64BufferAttribute(array, itemSize);
+ } //
+
+ Curve.create = function (construct, getPoint) {
+ console.log('THREE.Curve.create() has been deprecated');
+ construct.prototype = Object.create(Curve.prototype);
+ construct.prototype.constructor = construct;
+ construct.prototype.getPoint = getPoint;
+ return construct;
+ }; //
+
+
+ Object.assign(Path.prototype, {
+ fromPoints: function fromPoints(points) {
+ console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');
+ return this.setFromPoints(points);
+ }
+ }); //
+
+ function ClosedSplineCurve3(points) {
+ console.warn('THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.');
+ CatmullRomCurve3.call(this, points);
+ this.type = 'catmullrom';
+ this.closed = true;
+ }
+ ClosedSplineCurve3.prototype = Object.create(CatmullRomCurve3.prototype); //
+
+ function SplineCurve3(points) {
+ console.warn('THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.');
+ CatmullRomCurve3.call(this, points);
+ this.type = 'catmullrom';
+ }
+ SplineCurve3.prototype = Object.create(CatmullRomCurve3.prototype); //
+
+ function Spline(points) {
+ console.warn('THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.');
+ CatmullRomCurve3.call(this, points);
+ this.type = 'catmullrom';
+ }
+ Spline.prototype = Object.create(CatmullRomCurve3.prototype);
+ Object.assign(Spline.prototype, {
+ initFromArray: function initFromArray()
+ /* a */
+ {
+ console.error('THREE.Spline: .initFromArray() has been removed.');
+ },
+ getControlPointsArray: function getControlPointsArray()
+ /* optionalTarget */
+ {
+ console.error('THREE.Spline: .getControlPointsArray() has been removed.');
+ },
+ reparametrizeByArcLength: function reparametrizeByArcLength()
+ /* samplingCoef */
+ {
+ console.error('THREE.Spline: .reparametrizeByArcLength() has been removed.');
+ }
+ }); //
+
+ function AxisHelper(size) {
+ console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');
+ return new AxesHelper(size);
+ }
+ function BoundingBoxHelper(object, color) {
+ console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');
+ return new BoxHelper(object, color);
+ }
+ function EdgesHelper(object, hex) {
+ console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');
+ return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({
+ color: hex !== undefined ? hex : 0xffffff
+ }));
+ }
+
+ GridHelper.prototype.setColors = function () {
+ console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');
+ };
+
+ SkeletonHelper.prototype.update = function () {
+ console.error('THREE.SkeletonHelper: update() no longer needs to be called.');
+ };
+
+ function WireframeHelper(object, hex) {
+ console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');
+ return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({
+ color: hex !== undefined ? hex : 0xffffff
+ }));
+ } //
+
+ Object.assign(Loader.prototype, {
+ extractUrlBase: function extractUrlBase(url) {
+ console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');
+ return LoaderUtils.extractUrlBase(url);
+ }
+ });
+ Loader.Handlers = {
+ add: function add()
+ /* regex, loader */
+ {
+ console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');
+ },
+ get: function get()
+ /* file */
+ {
+ console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');
+ }
+ };
+ function XHRLoader(manager) {
+ console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');
+ return new FileLoader(manager);
+ }
+ function BinaryTextureLoader(manager) {
+ console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');
+ return new DataTextureLoader(manager);
+ } //
+
+ Object.assign(Box2.prototype, {
+ center: function center(optionalTarget) {
+ console.warn('THREE.Box2: .center() has been renamed to .getCenter().');
+ return this.getCenter(optionalTarget);
+ },
+ empty: function empty() {
+ console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');
+ return this.isEmpty();
+ },
+ isIntersectionBox: function isIntersectionBox(box) {
+ console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');
+ return this.intersectsBox(box);
+ },
+ size: function size(optionalTarget) {
+ console.warn('THREE.Box2: .size() has been renamed to .getSize().');
+ return this.getSize(optionalTarget);
+ }
+ });
+ Object.assign(Box3.prototype, {
+ center: function center(optionalTarget) {
+ console.warn('THREE.Box3: .center() has been renamed to .getCenter().');
+ return this.getCenter(optionalTarget);
+ },
+ empty: function empty() {
+ console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');
+ return this.isEmpty();
+ },
+ isIntersectionBox: function isIntersectionBox(box) {
+ console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');
+ return this.intersectsBox(box);
+ },
+ isIntersectionSphere: function isIntersectionSphere(sphere) {
+ console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');
+ return this.intersectsSphere(sphere);
+ },
+ size: function size(optionalTarget) {
+ console.warn('THREE.Box3: .size() has been renamed to .getSize().');
+ return this.getSize(optionalTarget);
+ }
+ });
+ Object.assign(Sphere.prototype, {
+ empty: function empty() {
+ console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');
+ return this.isEmpty();
+ }
+ });
+
+ Frustum.prototype.setFromMatrix = function (m) {
+ console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');
+ return this.setFromProjectionMatrix(m);
+ };
+
+ Line3.prototype.center = function (optionalTarget) {
+ console.warn('THREE.Line3: .center() has been renamed to .getCenter().');
+ return this.getCenter(optionalTarget);
+ };
+
+ Object.assign(MathUtils, {
+ random16: function random16() {
+ console.warn('THREE.Math: .random16() has been deprecated. Use Math.random() instead.');
+ return Math.random();
+ },
+ nearestPowerOfTwo: function nearestPowerOfTwo(value) {
+ console.warn('THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().');
+ return MathUtils.floorPowerOfTwo(value);
+ },
+ nextPowerOfTwo: function nextPowerOfTwo(value) {
+ console.warn('THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().');
+ return MathUtils.ceilPowerOfTwo(value);
+ }
+ });
+ Object.assign(Matrix3.prototype, {
+ flattenToArrayOffset: function flattenToArrayOffset(array, offset) {
+ console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
+ return this.toArray(array, offset);
+ },
+ multiplyVector3: function multiplyVector3(vector) {
+ console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');
+ return vector.applyMatrix3(this);
+ },
+ multiplyVector3Array: function multiplyVector3Array()
+ /* a */
+ {
+ console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');
+ },
+ applyToBufferAttribute: function applyToBufferAttribute(attribute) {
+ console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');
+ return attribute.applyMatrix3(this);
+ },
+ applyToVector3Array: function applyToVector3Array()
+ /* array, offset, length */
+ {
+ console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');
+ },
+ getInverse: function getInverse(matrix) {
+ console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
+ return this.copy(matrix).invert();
+ }
+ });
+ Object.assign(Matrix4.prototype, {
+ extractPosition: function extractPosition(m) {
+ console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');
+ return this.copyPosition(m);
+ },
+ flattenToArrayOffset: function flattenToArrayOffset(array, offset) {
+ console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
+ return this.toArray(array, offset);
+ },
+ getPosition: function getPosition() {
+ console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');
+ return new Vector3().setFromMatrixColumn(this, 3);
+ },
+ setRotationFromQuaternion: function setRotationFromQuaternion(q) {
+ console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');
+ return this.makeRotationFromQuaternion(q);
+ },
+ multiplyToArray: function multiplyToArray() {
+ console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');
+ },
+ multiplyVector3: function multiplyVector3(vector) {
+ console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');
+ return vector.applyMatrix4(this);
+ },
+ multiplyVector4: function multiplyVector4(vector) {
+ console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');
+ return vector.applyMatrix4(this);
+ },
+ multiplyVector3Array: function multiplyVector3Array()
+ /* a */
+ {
+ console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');
+ },
+ rotateAxis: function rotateAxis(v) {
+ console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');
+ v.transformDirection(this);
+ },
+ crossVector: function crossVector(vector) {
+ console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');
+ return vector.applyMatrix4(this);
+ },
+ translate: function translate() {
+ console.error('THREE.Matrix4: .translate() has been removed.');
+ },
+ rotateX: function rotateX() {
+ console.error('THREE.Matrix4: .rotateX() has been removed.');
+ },
+ rotateY: function rotateY() {
+ console.error('THREE.Matrix4: .rotateY() has been removed.');
+ },
+ rotateZ: function rotateZ() {
+ console.error('THREE.Matrix4: .rotateZ() has been removed.');
+ },
+ rotateByAxis: function rotateByAxis() {
+ console.error('THREE.Matrix4: .rotateByAxis() has been removed.');
+ },
+ applyToBufferAttribute: function applyToBufferAttribute(attribute) {
+ console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');
+ return attribute.applyMatrix4(this);
+ },
+ applyToVector3Array: function applyToVector3Array()
+ /* array, offset, length */
+ {
+ console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');
+ },
+ makeFrustum: function makeFrustum(left, right, bottom, top, near, far) {
+ console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');
+ return this.makePerspective(left, right, top, bottom, near, far);
+ },
+ getInverse: function getInverse(matrix) {
+ console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
+ return this.copy(matrix).invert();
+ }
+ });
+
+ Plane.prototype.isIntersectionLine = function (line) {
+ console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');
+ return this.intersectsLine(line);
+ };
+
+ Object.assign(Quaternion.prototype, {
+ multiplyVector3: function multiplyVector3(vector) {
+ console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');
+ return vector.applyQuaternion(this);
+ },
+ inverse: function inverse() {
+ console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');
+ return this.invert();
+ }
+ });
+ Object.assign(Ray.prototype, {
+ isIntersectionBox: function isIntersectionBox(box) {
+ console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');
+ return this.intersectsBox(box);
+ },
+ isIntersectionPlane: function isIntersectionPlane(plane) {
+ console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');
+ return this.intersectsPlane(plane);
+ },
+ isIntersectionSphere: function isIntersectionSphere(sphere) {
+ console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');
+ return this.intersectsSphere(sphere);
+ }
+ });
+ Object.assign(Triangle.prototype, {
+ area: function area() {
+ console.warn('THREE.Triangle: .area() has been renamed to .getArea().');
+ return this.getArea();
+ },
+ barycoordFromPoint: function barycoordFromPoint(point, target) {
+ console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
+ return this.getBarycoord(point, target);
+ },
+ midpoint: function midpoint(target) {
+ console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');
+ return this.getMidpoint(target);
+ },
+ normal: function normal(target) {
+ console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
+ return this.getNormal(target);
+ },
+ plane: function plane(target) {
+ console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');
+ return this.getPlane(target);
+ }
+ });
+ Object.assign(Triangle, {
+ barycoordFromPoint: function barycoordFromPoint(point, a, b, c, target) {
+ console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
+ return Triangle.getBarycoord(point, a, b, c, target);
+ },
+ normal: function normal(a, b, c, target) {
+ console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
+ return Triangle.getNormal(a, b, c, target);
+ }
+ });
+ Object.assign(Shape.prototype, {
+ extractAllPoints: function extractAllPoints(divisions) {
+ console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');
+ return this.extractPoints(divisions);
+ },
+ extrude: function extrude(options) {
+ console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');
+ return new ExtrudeGeometry(this, options);
+ },
+ makeGeometry: function makeGeometry(options) {
+ console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');
+ return new ShapeGeometry(this, options);
+ }
+ });
+ Object.assign(Vector2.prototype, {
+ fromAttribute: function fromAttribute(attribute, index, offset) {
+ console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');
+ return this.fromBufferAttribute(attribute, index, offset);
+ },
+ distanceToManhattan: function distanceToManhattan(v) {
+ console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
+ return this.manhattanDistanceTo(v);
+ },
+ lengthManhattan: function lengthManhattan() {
+ console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');
+ return this.manhattanLength();
+ }
+ });
+ Object.assign(Vector3.prototype, {
+ setEulerFromRotationMatrix: function setEulerFromRotationMatrix() {
+ console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');
+ },
+ setEulerFromQuaternion: function setEulerFromQuaternion() {
+ console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');
+ },
+ getPositionFromMatrix: function getPositionFromMatrix(m) {
+ console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');
+ return this.setFromMatrixPosition(m);
+ },
+ getScaleFromMatrix: function getScaleFromMatrix(m) {
+ console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');
+ return this.setFromMatrixScale(m);
+ },
+ getColumnFromMatrix: function getColumnFromMatrix(index, matrix) {
+ console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');
+ return this.setFromMatrixColumn(matrix, index);
+ },
+ applyProjection: function applyProjection(m) {
+ console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');
+ return this.applyMatrix4(m);
+ },
+ fromAttribute: function fromAttribute(attribute, index, offset) {
+ console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');
+ return this.fromBufferAttribute(attribute, index, offset);
+ },
+ distanceToManhattan: function distanceToManhattan(v) {
+ console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
+ return this.manhattanDistanceTo(v);
+ },
+ lengthManhattan: function lengthManhattan() {
+ console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');
+ return this.manhattanLength();
+ }
+ });
+ Object.assign(Vector4.prototype, {
+ fromAttribute: function fromAttribute(attribute, index, offset) {
+ console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');
+ return this.fromBufferAttribute(attribute, index, offset);
+ },
+ lengthManhattan: function lengthManhattan() {
+ console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');
+ return this.manhattanLength();
+ }
+ }); //
+
+ Object.assign(Object3D.prototype, {
+ getChildByName: function getChildByName(name) {
+ console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');
+ return this.getObjectByName(name);
+ },
+ renderDepth: function renderDepth() {
+ console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');
+ },
+ translate: function translate(distance, axis) {
+ console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');
+ return this.translateOnAxis(axis, distance);
+ },
+ getWorldRotation: function getWorldRotation() {
+ console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');
+ },
+ applyMatrix: function applyMatrix(matrix) {
+ console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');
+ return this.applyMatrix4(matrix);
+ }
+ });
+ Object.defineProperties(Object3D.prototype, {
+ eulerOrder: {
+ get: function get() {
+ console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
+ return this.rotation.order;
+ },
+ set: function set(value) {
+ console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
+ this.rotation.order = value;
+ }
+ },
+ useQuaternion: {
+ get: function get() {
+ console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
+ },
+ set: function set() {
+ console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
+ }
+ }
+ });
+ Object.assign(Mesh.prototype, {
+ setDrawMode: function setDrawMode() {
+ console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
+ }
+ });
+ Object.defineProperties(Mesh.prototype, {
+ drawMode: {
+ get: function get() {
+ console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');
+ return TrianglesDrawMode;
+ },
+ set: function set() {
+ console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
+ }
+ }
+ });
+ Object.defineProperties(LOD.prototype, {
+ objects: {
+ get: function get() {
+ console.warn('THREE.LOD: .objects has been renamed to .levels.');
+ return this.levels;
+ }
+ }
+ });
+ Object.defineProperty(Skeleton.prototype, 'useVertexTexture', {
+ get: function get() {
+ console.warn('THREE.Skeleton: useVertexTexture has been removed.');
+ },
+ set: function set() {
+ console.warn('THREE.Skeleton: useVertexTexture has been removed.');
+ }
+ });
+
+ SkinnedMesh.prototype.initBones = function () {
+ console.error('THREE.SkinnedMesh: initBones() has been removed.');
+ };
+
+ Object.defineProperty(Curve.prototype, '__arcLengthDivisions', {
+ get: function get() {
+ console.warn('THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.');
+ return this.arcLengthDivisions;
+ },
+ set: function set(value) {
+ console.warn('THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.');
+ this.arcLengthDivisions = value;
+ }
+ }); //
+
+ PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {
+ console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');
+ if (filmGauge !== undefined) this.filmGauge = filmGauge;
+ this.setFocalLength(focalLength);
+ }; //
+
+
+ Object.defineProperties(Light.prototype, {
+ onlyShadow: {
+ set: function set() {
+ console.warn('THREE.Light: .onlyShadow has been removed.');
+ }
+ },
+ shadowCameraFov: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');
+ this.shadow.camera.fov = value;
+ }
+ },
+ shadowCameraLeft: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');
+ this.shadow.camera.left = value;
+ }
+ },
+ shadowCameraRight: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');
+ this.shadow.camera.right = value;
+ }
+ },
+ shadowCameraTop: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');
+ this.shadow.camera.top = value;
+ }
+ },
+ shadowCameraBottom: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');
+ this.shadow.camera.bottom = value;
+ }
+ },
+ shadowCameraNear: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');
+ this.shadow.camera.near = value;
+ }
+ },
+ shadowCameraFar: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');
+ this.shadow.camera.far = value;
+ }
+ },
+ shadowCameraVisible: {
+ set: function set() {
+ console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');
+ }
+ },
+ shadowBias: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowBias is now .shadow.bias.');
+ this.shadow.bias = value;
+ }
+ },
+ shadowDarkness: {
+ set: function set() {
+ console.warn('THREE.Light: .shadowDarkness has been removed.');
+ }
+ },
+ shadowMapWidth: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');
+ this.shadow.mapSize.width = value;
+ }
+ },
+ shadowMapHeight: {
+ set: function set(value) {
+ console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');
+ this.shadow.mapSize.height = value;
+ }
+ }
+ }); //
+
+ Object.defineProperties(BufferAttribute.prototype, {
+ length: {
+ get: function get() {
+ console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');
+ return this.array.length;
+ }
+ },
+ dynamic: {
+ get: function get() {
+ console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
+ return this.usage === DynamicDrawUsage;
+ },
+ set: function set()
+ /* value */
+ {
+ console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
+ this.setUsage(DynamicDrawUsage);
+ }
+ }
+ });
+ Object.assign(BufferAttribute.prototype, {
+ setDynamic: function setDynamic(value) {
+ console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');
+ this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
+ return this;
+ },
+ copyIndicesArray: function copyIndicesArray()
+ /* indices */
+ {
+ console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');
+ },
+ setArray: function setArray()
+ /* array */
+ {
+ console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
+ }
+ });
+ Object.assign(BufferGeometry.prototype, {
+ addIndex: function addIndex(index) {
+ console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');
+ this.setIndex(index);
+ },
+ addAttribute: function addAttribute(name, attribute) {
+ console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');
+
+ if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {
+ console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');
+ return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));
+ }
+
+ if (name === 'index') {
+ console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');
+ this.setIndex(attribute);
+ return this;
+ }
+
+ return this.setAttribute(name, attribute);
+ },
+ addDrawCall: function addDrawCall(start, count, indexOffset) {
+ if (indexOffset !== undefined) {
+ console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');
+ }
+
+ console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');
+ this.addGroup(start, count);
+ },
+ clearDrawCalls: function clearDrawCalls() {
+ console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');
+ this.clearGroups();
+ },
+ computeOffsets: function computeOffsets() {
+ console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');
+ },
+ removeAttribute: function removeAttribute(name) {
+ console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');
+ return this.deleteAttribute(name);
+ },
+ applyMatrix: function applyMatrix(matrix) {
+ console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');
+ return this.applyMatrix4(matrix);
+ }
+ });
+ Object.defineProperties(BufferGeometry.prototype, {
+ drawcalls: {
+ get: function get() {
+ console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');
+ return this.groups;
+ }
+ },
+ offsets: {
+ get: function get() {
+ console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');
+ return this.groups;
+ }
+ }
+ });
+ Object.defineProperties(InstancedBufferGeometry.prototype, {
+ maxInstancedCount: {
+ get: function get() {
+ console.warn('THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.');
+ return this.instanceCount;
+ },
+ set: function set(value) {
+ console.warn('THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.');
+ this.instanceCount = value;
+ }
+ }
+ });
+ Object.defineProperties(Raycaster.prototype, {
+ linePrecision: {
+ get: function get() {
+ console.warn('THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.');
+ return this.params.Line.threshold;
+ },
+ set: function set(value) {
+ console.warn('THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.');
+ this.params.Line.threshold = value;
+ }
+ }
+ });
+ Object.defineProperties(InterleavedBuffer.prototype, {
+ dynamic: {
+ get: function get() {
+ console.warn('THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.');
+ return this.usage === DynamicDrawUsage;
+ },
+ set: function set(value) {
+ console.warn('THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.');
+ this.setUsage(value);
+ }
+ }
+ });
+ Object.assign(InterleavedBuffer.prototype, {
+ setDynamic: function setDynamic(value) {
+ console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');
+ this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
+ return this;
+ },
+ setArray: function setArray()
+ /* array */
+ {
+ console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
+ }
+ }); //
+
+ Object.assign(ExtrudeGeometry.prototype, {
+ getArrays: function getArrays() {
+ console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');
+ },
+ addShapeList: function addShapeList() {
+ console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');
+ },
+ addShape: function addShape() {
+ console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');
+ }
+ }); //
+
+ Object.assign(Scene.prototype, {
+ dispose: function dispose() {
+ console.error('THREE.Scene: .dispose() has been removed.');
+ }
+ }); //
+
+ Object.defineProperties(Uniform.prototype, {
+ dynamic: {
+ set: function set() {
+ console.warn('THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.');
+ }
+ },
+ onUpdate: {
+ value: function value() {
+ console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');
+ return this;
+ }
+ }
+ }); //
+
+ Object.defineProperties(Material.prototype, {
+ wrapAround: {
+ get: function get() {
+ console.warn('THREE.Material: .wrapAround has been removed.');
+ },
+ set: function set() {
+ console.warn('THREE.Material: .wrapAround has been removed.');
+ }
+ },
+ overdraw: {
+ get: function get() {
+ console.warn('THREE.Material: .overdraw has been removed.');
+ },
+ set: function set() {
+ console.warn('THREE.Material: .overdraw has been removed.');
+ }
+ },
+ wrapRGB: {
+ get: function get() {
+ console.warn('THREE.Material: .wrapRGB has been removed.');
+ return new Color();
+ }
+ },
+ shading: {
+ get: function get() {
+ console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ },
+ set: function set(value) {
+ console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
+ this.flatShading = value === FlatShading;
+ }
+ },
+ stencilMask: {
+ get: function get() {
+ console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
+ return this.stencilFuncMask;
+ },
+ set: function set(value) {
+ console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
+ this.stencilFuncMask = value;
+ }
+ }
+ });
+ Object.defineProperties(MeshPhongMaterial.prototype, {
+ metal: {
+ get: function get() {
+ console.warn('THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.');
+ return false;
+ },
+ set: function set() {
+ console.warn('THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead');
+ }
+ }
+ });
+ Object.defineProperties(MeshPhysicalMaterial.prototype, {
+ transparency: {
+ get: function get() {
+ console.warn('THREE.MeshPhysicalMaterial: .transparency has been renamed to .transmission.');
+ return this.transmission;
+ },
+ set: function set(value) {
+ console.warn('THREE.MeshPhysicalMaterial: .transparency has been renamed to .transmission.');
+ this.transmission = value;
+ }
+ }
+ });
+ Object.defineProperties(ShaderMaterial.prototype, {
+ derivatives: {
+ get: function get() {
+ console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
+ return this.extensions.derivatives;
+ },
+ set: function set(value) {
+ console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
+ this.extensions.derivatives = value;
+ }
+ }
+ }); //
+
+ Object.assign(WebGLRenderer.prototype, {
+ clearTarget: function clearTarget(renderTarget, color, depth, stencil) {
+ console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');
+ this.setRenderTarget(renderTarget);
+ this.clear(color, depth, stencil);
+ },
+ animate: function animate(callback) {
+ console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');
+ this.setAnimationLoop(callback);
+ },
+ getCurrentRenderTarget: function getCurrentRenderTarget() {
+ console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');
+ return this.getRenderTarget();
+ },
+ getMaxAnisotropy: function getMaxAnisotropy() {
+ console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');
+ return this.capabilities.getMaxAnisotropy();
+ },
+ getPrecision: function getPrecision() {
+ console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');
+ return this.capabilities.precision;
+ },
+ resetGLState: function resetGLState() {
+ console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');
+ return this.state.reset();
+ },
+ supportsFloatTextures: function supportsFloatTextures() {
+ console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');
+ return this.extensions.get('OES_texture_float');
+ },
+ supportsHalfFloatTextures: function supportsHalfFloatTextures() {
+ console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');
+ return this.extensions.get('OES_texture_half_float');
+ },
+ supportsStandardDerivatives: function supportsStandardDerivatives() {
+ console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');
+ return this.extensions.get('OES_standard_derivatives');
+ },
+ supportsCompressedTextureS3TC: function supportsCompressedTextureS3TC() {
+ console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');
+ return this.extensions.get('WEBGL_compressed_texture_s3tc');
+ },
+ supportsCompressedTexturePVRTC: function supportsCompressedTexturePVRTC() {
+ console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');
+ return this.extensions.get('WEBGL_compressed_texture_pvrtc');
+ },
+ supportsBlendMinMax: function supportsBlendMinMax() {
+ console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');
+ return this.extensions.get('EXT_blend_minmax');
+ },
+ supportsVertexTextures: function supportsVertexTextures() {
+ console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');
+ return this.capabilities.vertexTextures;
+ },
+ supportsInstancedArrays: function supportsInstancedArrays() {
+ console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');
+ return this.extensions.get('ANGLE_instanced_arrays');
+ },
+ enableScissorTest: function enableScissorTest(boolean) {
+ console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');
+ this.setScissorTest(boolean);
+ },
+ initMaterial: function initMaterial() {
+ console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');
+ },
+ addPrePlugin: function addPrePlugin() {
+ console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');
+ },
+ addPostPlugin: function addPostPlugin() {
+ console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');
+ },
+ updateShadowMap: function updateShadowMap() {
+ console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');
+ },
+ setFaceCulling: function setFaceCulling() {
+ console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');
+ },
+ allocTextureUnit: function allocTextureUnit() {
+ console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');
+ },
+ setTexture: function setTexture() {
+ console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');
+ },
+ setTexture2D: function setTexture2D() {
+ console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');
+ },
+ setTextureCube: function setTextureCube() {
+ console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');
+ },
+ getActiveMipMapLevel: function getActiveMipMapLevel() {
+ console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');
+ return this.getActiveMipmapLevel();
+ }
+ });
+ Object.defineProperties(WebGLRenderer.prototype, {
+ shadowMapEnabled: {
+ get: function get() {
+ return this.shadowMap.enabled;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');
+ this.shadowMap.enabled = value;
+ }
+ },
+ shadowMapType: {
+ get: function get() {
+ return this.shadowMap.type;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');
+ this.shadowMap.type = value;
+ }
+ },
+ shadowMapCullFace: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function set()
+ /* value */
+ {
+ console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
+ }
+ },
+ context: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');
+ return this.getContext();
+ }
+ },
+ vr: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');
+ return this.xr;
+ }
+ },
+ gammaInput: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
+ return false;
+ },
+ set: function set() {
+ console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
+ }
+ },
+ gammaOutput: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
+ return false;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
+ this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;
+ }
+ },
+ toneMappingWhitePoint: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
+ return 1.0;
+ },
+ set: function set() {
+ console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
+ }
+ }
+ });
+ Object.defineProperties(WebGLShadowMap.prototype, {
+ cullFace: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function set()
+ /* cullFace */
+ {
+ console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
+ }
+ },
+ renderReverseSided: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function set() {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
+ }
+ },
+ renderSingleSided: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
+ return undefined;
+ },
+ set: function set() {
+ console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
+ }
+ }
+ });
+ function WebGLRenderTargetCube(width, height, options) {
+ console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');
+ return new WebGLCubeRenderTarget(width, options);
+ } //
+
+ Object.defineProperties(WebGLRenderTarget.prototype, {
+ wrapS: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
+ return this.texture.wrapS;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
+ this.texture.wrapS = value;
+ }
+ },
+ wrapT: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
+ return this.texture.wrapT;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
+ this.texture.wrapT = value;
+ }
+ },
+ magFilter: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
+ return this.texture.magFilter;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
+ this.texture.magFilter = value;
+ }
+ },
+ minFilter: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
+ return this.texture.minFilter;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
+ this.texture.minFilter = value;
+ }
+ },
+ anisotropy: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
+ return this.texture.anisotropy;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
+ this.texture.anisotropy = value;
+ }
+ },
+ offset: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
+ return this.texture.offset;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
+ this.texture.offset = value;
+ }
+ },
+ repeat: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
+ return this.texture.repeat;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
+ this.texture.repeat = value;
+ }
+ },
+ format: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
+ return this.texture.format;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
+ this.texture.format = value;
+ }
+ },
+ type: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
+ return this.texture.type;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
+ this.texture.type = value;
+ }
+ },
+ generateMipmaps: {
+ get: function get() {
+ console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
+ return this.texture.generateMipmaps;
+ },
+ set: function set(value) {
+ console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
+ this.texture.generateMipmaps = value;
+ }
+ }
+ }); //
+
+ Object.defineProperties(Audio.prototype, {
+ load: {
+ value: function value(file) {
+ console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');
+ var scope = this;
+ var audioLoader = new AudioLoader();
+ audioLoader.load(file, function (buffer) {
+ scope.setBuffer(buffer);
+ });
+ return this;
+ }
+ },
+ startTime: {
+ set: function set() {
+ console.warn('THREE.Audio: .startTime is now .play( delay ).');
+ }
+ }
+ });
+
+ AudioAnalyser.prototype.getData = function () {
+ console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');
+ return this.getFrequencyData();
+ }; //
+
+
+ CubeCamera.prototype.updateCubeMap = function (renderer, scene) {
+ console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');
+ return this.update(renderer, scene);
+ };
+
+ CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {
+ console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');
+ return this.renderTarget.clear(renderer, color, depth, stencil);
+ }; //
+
+
+ var GeometryUtils = {
+ merge: function merge(geometry1, geometry2, materialIndexOffset) {
+ console.warn('THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.');
+ var matrix;
+
+ if (geometry2.isMesh) {
+ geometry2.matrixAutoUpdate && geometry2.updateMatrix();
+ matrix = geometry2.matrix;
+ geometry2 = geometry2.geometry;
+ }
+
+ geometry1.merge(geometry2, matrix, materialIndexOffset);
+ },
+ center: function center(geometry) {
+ console.warn('THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.');
+ return geometry.center();
+ }
+ };
+ ImageUtils.crossOrigin = undefined;
+
+ ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {
+ console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');
+ var loader = new TextureLoader();
+ loader.setCrossOrigin(this.crossOrigin);
+ var texture = loader.load(url, onLoad, undefined, onError);
+ if (mapping) texture.mapping = mapping;
+ return texture;
+ };
+
+ ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {
+ console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');
+ var loader = new CubeTextureLoader();
+ loader.setCrossOrigin(this.crossOrigin);
+ var texture = loader.load(urls, onLoad, undefined, onError);
+ if (mapping) texture.mapping = mapping;
+ return texture;
+ };
+
+ ImageUtils.loadCompressedTexture = function () {
+ console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');
+ };
+
+ ImageUtils.loadCompressedTextureCube = function () {
+ console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');
+ }; //
+
+
+ function CanvasRenderer() {
+ console.error('THREE.CanvasRenderer has been removed');
+ } //
+
+ function JSONLoader() {
+ console.error('THREE.JSONLoader has been removed.');
+ } //
+
+ var SceneUtils = {
+ createMultiMaterialObject: function createMultiMaterialObject()
+ /* geometry, materials */
+ {
+ console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
+ },
+ detach: function detach()
+ /* child, parent, scene */
+ {
+ console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
+ },
+ attach: function attach()
+ /* child, scene, parent */
+ {
+ console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
+ }
+ }; //
+
+ function LensFlare() {
+ console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');
+ }
+
+ if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
+ /* eslint-disable no-undef */
+ __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {
+ detail: {
+ revision: REVISION
+ }
+ }));
+ /* eslint-enable no-undef */
+
+ }
+
+ if (typeof window !== 'undefined') {
+ if (window.__THREE__) {
+ console.warn('WARNING: Multiple instances of Three.js being imported.');
+ } else {
+ window.__THREE__ = REVISION;
+ }
+ }
+
+ exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
+ exports.AddEquation = AddEquation;
+ exports.AddOperation = AddOperation;
+ exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
+ exports.AdditiveBlending = AdditiveBlending;
+ exports.AlphaFormat = AlphaFormat;
+ exports.AlwaysDepth = AlwaysDepth;
+ exports.AlwaysStencilFunc = AlwaysStencilFunc;
+ exports.AmbientLight = AmbientLight;
+ exports.AmbientLightProbe = AmbientLightProbe;
+ exports.AnimationClip = AnimationClip;
+ exports.AnimationLoader = AnimationLoader;
+ exports.AnimationMixer = AnimationMixer;
+ exports.AnimationObjectGroup = AnimationObjectGroup;
+ exports.AnimationUtils = AnimationUtils;
+ exports.ArcCurve = ArcCurve;
+ exports.ArrayCamera = ArrayCamera;
+ exports.ArrowHelper = ArrowHelper;
+ exports.Audio = Audio;
+ exports.AudioAnalyser = AudioAnalyser;
+ exports.AudioContext = AudioContext;
+ exports.AudioListener = AudioListener;
+ exports.AudioLoader = AudioLoader;
+ exports.AxesHelper = AxesHelper;
+ exports.AxisHelper = AxisHelper;
+ exports.BackSide = BackSide;
+ exports.BasicDepthPacking = BasicDepthPacking;
+ exports.BasicShadowMap = BasicShadowMap;
+ exports.BinaryTextureLoader = BinaryTextureLoader;
+ exports.Bone = Bone;
+ exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
+ exports.BoundingBoxHelper = BoundingBoxHelper;
+ exports.Box2 = Box2;
+ exports.Box3 = Box3;
+ exports.Box3Helper = Box3Helper;
+ exports.BoxBufferGeometry = BoxGeometry;
+ exports.BoxGeometry = BoxGeometry;
+ exports.BoxHelper = BoxHelper;
+ exports.BufferAttribute = BufferAttribute;
+ exports.BufferGeometry = BufferGeometry;
+ exports.BufferGeometryLoader = BufferGeometryLoader;
+ exports.ByteType = ByteType;
+ exports.Cache = Cache;
+ exports.Camera = Camera;
+ exports.CameraHelper = CameraHelper;
+ exports.CanvasRenderer = CanvasRenderer;
+ exports.CanvasTexture = CanvasTexture;
+ exports.CatmullRomCurve3 = CatmullRomCurve3;
+ exports.CineonToneMapping = CineonToneMapping;
+ exports.CircleBufferGeometry = CircleGeometry;
+ exports.CircleGeometry = CircleGeometry;
+ exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
+ exports.Clock = Clock;
+ exports.ClosedSplineCurve3 = ClosedSplineCurve3;
+ exports.Color = Color;
+ exports.ColorKeyframeTrack = ColorKeyframeTrack;
+ exports.CompressedTexture = CompressedTexture;
+ exports.CompressedTextureLoader = CompressedTextureLoader;
+ exports.ConeBufferGeometry = ConeGeometry;
+ exports.ConeGeometry = ConeGeometry;
+ exports.CubeCamera = CubeCamera;
+ exports.CubeReflectionMapping = CubeReflectionMapping;
+ exports.CubeRefractionMapping = CubeRefractionMapping;
+ exports.CubeTexture = CubeTexture;
+ exports.CubeTextureLoader = CubeTextureLoader;
+ exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
+ exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
+ exports.CubicBezierCurve = CubicBezierCurve;
+ exports.CubicBezierCurve3 = CubicBezierCurve3;
+ exports.CubicInterpolant = CubicInterpolant;
+ exports.CullFaceBack = CullFaceBack;
+ exports.CullFaceFront = CullFaceFront;
+ exports.CullFaceFrontBack = CullFaceFrontBack;
+ exports.CullFaceNone = CullFaceNone;
+ exports.Curve = Curve;
+ exports.CurvePath = CurvePath;
+ exports.CustomBlending = CustomBlending;
+ exports.CustomToneMapping = CustomToneMapping;
+ exports.CylinderBufferGeometry = CylinderGeometry;
+ exports.CylinderGeometry = CylinderGeometry;
+ exports.Cylindrical = Cylindrical;
+ exports.DataTexture = DataTexture;
+ exports.DataTexture2DArray = DataTexture2DArray;
+ exports.DataTexture3D = DataTexture3D;
+ exports.DataTextureLoader = DataTextureLoader;
+ exports.DataUtils = DataUtils;
+ exports.DecrementStencilOp = DecrementStencilOp;
+ exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
+ exports.DefaultLoadingManager = DefaultLoadingManager;
+ exports.DepthFormat = DepthFormat;
+ exports.DepthStencilFormat = DepthStencilFormat;
+ exports.DepthTexture = DepthTexture;
+ exports.DirectionalLight = DirectionalLight;
+ exports.DirectionalLightHelper = DirectionalLightHelper;
+ exports.DiscreteInterpolant = DiscreteInterpolant;
+ exports.DodecahedronBufferGeometry = DodecahedronGeometry;
+ exports.DodecahedronGeometry = DodecahedronGeometry;
+ exports.DoubleSide = DoubleSide;
+ exports.DstAlphaFactor = DstAlphaFactor;
+ exports.DstColorFactor = DstColorFactor;
+ exports.DynamicBufferAttribute = DynamicBufferAttribute;
+ exports.DynamicCopyUsage = DynamicCopyUsage;
+ exports.DynamicDrawUsage = DynamicDrawUsage;
+ exports.DynamicReadUsage = DynamicReadUsage;
+ exports.EdgesGeometry = EdgesGeometry;
+ exports.EdgesHelper = EdgesHelper;
+ exports.EllipseCurve = EllipseCurve;
+ exports.EqualDepth = EqualDepth;
+ exports.EqualStencilFunc = EqualStencilFunc;
+ exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
+ exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
+ exports.Euler = Euler;
+ exports.EventDispatcher = EventDispatcher;
+ exports.ExtrudeBufferGeometry = ExtrudeGeometry;
+ exports.ExtrudeGeometry = ExtrudeGeometry;
+ exports.Face3 = Face3;
+ exports.Face4 = Face4;
+ exports.FaceColors = FaceColors;
+ exports.FileLoader = FileLoader;
+ exports.FlatShading = FlatShading;
+ exports.Float16BufferAttribute = Float16BufferAttribute;
+ exports.Float32Attribute = Float32Attribute;
+ exports.Float32BufferAttribute = Float32BufferAttribute;
+ exports.Float64Attribute = Float64Attribute;
+ exports.Float64BufferAttribute = Float64BufferAttribute;
+ exports.FloatType = FloatType;
+ exports.Fog = Fog;
+ exports.FogExp2 = FogExp2;
+ exports.Font = Font;
+ exports.FontLoader = FontLoader;
+ exports.FrontSide = FrontSide;
+ exports.Frustum = Frustum;
+ exports.GLBufferAttribute = GLBufferAttribute;
+ exports.GLSL1 = GLSL1;
+ exports.GLSL3 = GLSL3;
+ exports.GammaEncoding = GammaEncoding;
+ exports.GeometryUtils = GeometryUtils;
+ exports.GreaterDepth = GreaterDepth;
+ exports.GreaterEqualDepth = GreaterEqualDepth;
+ exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
+ exports.GreaterStencilFunc = GreaterStencilFunc;
+ exports.GridHelper = GridHelper;
+ exports.Group = Group;
+ exports.HalfFloatType = HalfFloatType;
+ exports.HemisphereLight = HemisphereLight;
+ exports.HemisphereLightHelper = HemisphereLightHelper;
+ exports.HemisphereLightProbe = HemisphereLightProbe;
+ exports.IcosahedronBufferGeometry = IcosahedronGeometry;
+ exports.IcosahedronGeometry = IcosahedronGeometry;
+ exports.ImageBitmapLoader = ImageBitmapLoader;
+ exports.ImageLoader = ImageLoader;
+ exports.ImageUtils = ImageUtils;
+ exports.ImmediateRenderObject = ImmediateRenderObject;
+ exports.IncrementStencilOp = IncrementStencilOp;
+ exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
+ exports.InstancedBufferAttribute = InstancedBufferAttribute;
+ exports.InstancedBufferGeometry = InstancedBufferGeometry;
+ exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
+ exports.InstancedMesh = InstancedMesh;
+ exports.Int16Attribute = Int16Attribute;
+ exports.Int16BufferAttribute = Int16BufferAttribute;
+ exports.Int32Attribute = Int32Attribute;
+ exports.Int32BufferAttribute = Int32BufferAttribute;
+ exports.Int8Attribute = Int8Attribute;
+ exports.Int8BufferAttribute = Int8BufferAttribute;
+ exports.IntType = IntType;
+ exports.InterleavedBuffer = InterleavedBuffer;
+ exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
+ exports.Interpolant = Interpolant;
+ exports.InterpolateDiscrete = InterpolateDiscrete;
+ exports.InterpolateLinear = InterpolateLinear;
+ exports.InterpolateSmooth = InterpolateSmooth;
+ exports.InvertStencilOp = InvertStencilOp;
+ exports.JSONLoader = JSONLoader;
+ exports.KeepStencilOp = KeepStencilOp;
+ exports.KeyframeTrack = KeyframeTrack;
+ exports.LOD = LOD;
+ exports.LatheBufferGeometry = LatheGeometry;
+ exports.LatheGeometry = LatheGeometry;
+ exports.Layers = Layers;
+ exports.LensFlare = LensFlare;
+ exports.LessDepth = LessDepth;
+ exports.LessEqualDepth = LessEqualDepth;
+ exports.LessEqualStencilFunc = LessEqualStencilFunc;
+ exports.LessStencilFunc = LessStencilFunc;
+ exports.Light = Light;
+ exports.LightProbe = LightProbe;
+ exports.Line = Line;
+ exports.Line3 = Line3;
+ exports.LineBasicMaterial = LineBasicMaterial;
+ exports.LineCurve = LineCurve;
+ exports.LineCurve3 = LineCurve3;
+ exports.LineDashedMaterial = LineDashedMaterial;
+ exports.LineLoop = LineLoop;
+ exports.LinePieces = LinePieces;
+ exports.LineSegments = LineSegments;
+ exports.LineStrip = LineStrip;
+ exports.LinearEncoding = LinearEncoding;
+ exports.LinearFilter = LinearFilter;
+ exports.LinearInterpolant = LinearInterpolant;
+ exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
+ exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
+ exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
+ exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
+ exports.LinearToneMapping = LinearToneMapping;
+ exports.Loader = Loader;
+ exports.LoaderUtils = LoaderUtils;
+ exports.LoadingManager = LoadingManager;
+ exports.LogLuvEncoding = LogLuvEncoding;
+ exports.LoopOnce = LoopOnce;
+ exports.LoopPingPong = LoopPingPong;
+ exports.LoopRepeat = LoopRepeat;
+ exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
+ exports.LuminanceFormat = LuminanceFormat;
+ exports.MOUSE = MOUSE;
+ exports.Material = Material;
+ exports.MaterialLoader = MaterialLoader;
+ exports.Math = MathUtils;
+ exports.MathUtils = MathUtils;
+ exports.Matrix3 = Matrix3;
+ exports.Matrix4 = Matrix4;
+ exports.MaxEquation = MaxEquation;
+ exports.Mesh = Mesh;
+ exports.MeshBasicMaterial = MeshBasicMaterial;
+ exports.MeshDepthMaterial = MeshDepthMaterial;
+ exports.MeshDistanceMaterial = MeshDistanceMaterial;
+ exports.MeshFaceMaterial = MeshFaceMaterial;
+ exports.MeshLambertMaterial = MeshLambertMaterial;
+ exports.MeshMatcapMaterial = MeshMatcapMaterial;
+ exports.MeshNormalMaterial = MeshNormalMaterial;
+ exports.MeshPhongMaterial = MeshPhongMaterial;
+ exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
+ exports.MeshStandardMaterial = MeshStandardMaterial;
+ exports.MeshToonMaterial = MeshToonMaterial;
+ exports.MinEquation = MinEquation;
+ exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
+ exports.MixOperation = MixOperation;
+ exports.MultiMaterial = MultiMaterial;
+ exports.MultiplyBlending = MultiplyBlending;
+ exports.MultiplyOperation = MultiplyOperation;
+ exports.NearestFilter = NearestFilter;
+ exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
+ exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
+ exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
+ exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
+ exports.NeverDepth = NeverDepth;
+ exports.NeverStencilFunc = NeverStencilFunc;
+ exports.NoBlending = NoBlending;
+ exports.NoColors = NoColors;
+ exports.NoToneMapping = NoToneMapping;
+ exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
+ exports.NormalBlending = NormalBlending;
+ exports.NotEqualDepth = NotEqualDepth;
+ exports.NotEqualStencilFunc = NotEqualStencilFunc;
+ exports.NumberKeyframeTrack = NumberKeyframeTrack;
+ exports.Object3D = Object3D;
+ exports.ObjectLoader = ObjectLoader;
+ exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
+ exports.OctahedronBufferGeometry = OctahedronGeometry;
+ exports.OctahedronGeometry = OctahedronGeometry;
+ exports.OneFactor = OneFactor;
+ exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
+ exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
+ exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
+ exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
+ exports.OrthographicCamera = OrthographicCamera;
+ exports.PCFShadowMap = PCFShadowMap;
+ exports.PCFSoftShadowMap = PCFSoftShadowMap;
+ exports.PMREMGenerator = PMREMGenerator;
+ exports.ParametricBufferGeometry = ParametricGeometry;
+ exports.ParametricGeometry = ParametricGeometry;
+ exports.Particle = Particle;
+ exports.ParticleBasicMaterial = ParticleBasicMaterial;
+ exports.ParticleSystem = ParticleSystem;
+ exports.ParticleSystemMaterial = ParticleSystemMaterial;
+ exports.Path = Path;
+ exports.PerspectiveCamera = PerspectiveCamera;
+ exports.Plane = Plane;
+ exports.PlaneBufferGeometry = PlaneGeometry;
+ exports.PlaneGeometry = PlaneGeometry;
+ exports.PlaneHelper = PlaneHelper;
+ exports.PointCloud = PointCloud;
+ exports.PointCloudMaterial = PointCloudMaterial;
+ exports.PointLight = PointLight;
+ exports.PointLightHelper = PointLightHelper;
+ exports.Points = Points;
+ exports.PointsMaterial = PointsMaterial;
+ exports.PolarGridHelper = PolarGridHelper;
+ exports.PolyhedronBufferGeometry = PolyhedronGeometry;
+ exports.PolyhedronGeometry = PolyhedronGeometry;
+ exports.PositionalAudio = PositionalAudio;
+ exports.PropertyBinding = PropertyBinding;
+ exports.PropertyMixer = PropertyMixer;
+ exports.QuadraticBezierCurve = QuadraticBezierCurve;
+ exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
+ exports.Quaternion = Quaternion;
+ exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
+ exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
+ exports.REVISION = REVISION;
+ exports.RGBADepthPacking = RGBADepthPacking;
+ exports.RGBAFormat = RGBAFormat;
+ exports.RGBAIntegerFormat = RGBAIntegerFormat;
+ exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
+ exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
+ exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
+ exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
+ exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
+ exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
+ exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
+ exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
+ exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
+ exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
+ exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
+ exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
+ exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
+ exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
+ exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
+ exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
+ exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
+ exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
+ exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
+ exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
+ exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
+ exports.RGBDEncoding = RGBDEncoding;
+ exports.RGBEEncoding = RGBEEncoding;
+ exports.RGBEFormat = RGBEFormat;
+ exports.RGBFormat = RGBFormat;
+ exports.RGBIntegerFormat = RGBIntegerFormat;
+ exports.RGBM16Encoding = RGBM16Encoding;
+ exports.RGBM7Encoding = RGBM7Encoding;
+ exports.RGB_ETC1_Format = RGB_ETC1_Format;
+ exports.RGB_ETC2_Format = RGB_ETC2_Format;
+ exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
+ exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
+ exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
+ exports.RGFormat = RGFormat;
+ exports.RGIntegerFormat = RGIntegerFormat;
+ exports.RawShaderMaterial = RawShaderMaterial;
+ exports.Ray = Ray;
+ exports.Raycaster = Raycaster;
+ exports.RectAreaLight = RectAreaLight;
+ exports.RedFormat = RedFormat;
+ exports.RedIntegerFormat = RedIntegerFormat;
+ exports.ReinhardToneMapping = ReinhardToneMapping;
+ exports.RepeatWrapping = RepeatWrapping;
+ exports.ReplaceStencilOp = ReplaceStencilOp;
+ exports.ReverseSubtractEquation = ReverseSubtractEquation;
+ exports.RingBufferGeometry = RingGeometry;
+ exports.RingGeometry = RingGeometry;
+ exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
+ exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
+ exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
+ exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
+ exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
+ exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
+ exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
+ exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
+ exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
+ exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
+ exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
+ exports.Scene = Scene;
+ exports.SceneUtils = SceneUtils;
+ exports.ShaderChunk = ShaderChunk;
+ exports.ShaderLib = ShaderLib;
+ exports.ShaderMaterial = ShaderMaterial;
+ exports.ShadowMaterial = ShadowMaterial;
+ exports.Shape = Shape;
+ exports.ShapeBufferGeometry = ShapeGeometry;
+ exports.ShapeGeometry = ShapeGeometry;
+ exports.ShapePath = ShapePath;
+ exports.ShapeUtils = ShapeUtils;
+ exports.ShortType = ShortType;
+ exports.Skeleton = Skeleton;
+ exports.SkeletonHelper = SkeletonHelper;
+ exports.SkinnedMesh = SkinnedMesh;
+ exports.SmoothShading = SmoothShading;
+ exports.Sphere = Sphere;
+ exports.SphereBufferGeometry = SphereGeometry;
+ exports.SphereGeometry = SphereGeometry;
+ exports.Spherical = Spherical;
+ exports.SphericalHarmonics3 = SphericalHarmonics3;
+ exports.Spline = Spline;
+ exports.SplineCurve = SplineCurve;
+ exports.SplineCurve3 = SplineCurve3;
+ exports.SpotLight = SpotLight;
+ exports.SpotLightHelper = SpotLightHelper;
+ exports.Sprite = Sprite;
+ exports.SpriteMaterial = SpriteMaterial;
+ exports.SrcAlphaFactor = SrcAlphaFactor;
+ exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
+ exports.SrcColorFactor = SrcColorFactor;
+ exports.StaticCopyUsage = StaticCopyUsage;
+ exports.StaticDrawUsage = StaticDrawUsage;
+ exports.StaticReadUsage = StaticReadUsage;
+ exports.StereoCamera = StereoCamera;
+ exports.StreamCopyUsage = StreamCopyUsage;
+ exports.StreamDrawUsage = StreamDrawUsage;
+ exports.StreamReadUsage = StreamReadUsage;
+ exports.StringKeyframeTrack = StringKeyframeTrack;
+ exports.SubtractEquation = SubtractEquation;
+ exports.SubtractiveBlending = SubtractiveBlending;
+ exports.TOUCH = TOUCH;
+ exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
+ exports.TetrahedronBufferGeometry = TetrahedronGeometry;
+ exports.TetrahedronGeometry = TetrahedronGeometry;
+ exports.TextBufferGeometry = TextGeometry;
+ exports.TextGeometry = TextGeometry;
+ exports.Texture = Texture;
+ exports.TextureLoader = TextureLoader;
+ exports.TorusBufferGeometry = TorusGeometry;
+ exports.TorusGeometry = TorusGeometry;
+ exports.TorusKnotBufferGeometry = TorusKnotGeometry;
+ exports.TorusKnotGeometry = TorusKnotGeometry;
+ exports.Triangle = Triangle;
+ exports.TriangleFanDrawMode = TriangleFanDrawMode;
+ exports.TriangleStripDrawMode = TriangleStripDrawMode;
+ exports.TrianglesDrawMode = TrianglesDrawMode;
+ exports.TubeBufferGeometry = TubeGeometry;
+ exports.TubeGeometry = TubeGeometry;
+ exports.UVMapping = UVMapping;
+ exports.Uint16Attribute = Uint16Attribute;
+ exports.Uint16BufferAttribute = Uint16BufferAttribute;
+ exports.Uint32Attribute = Uint32Attribute;
+ exports.Uint32BufferAttribute = Uint32BufferAttribute;
+ exports.Uint8Attribute = Uint8Attribute;
+ exports.Uint8BufferAttribute = Uint8BufferAttribute;
+ exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
+ exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
+ exports.Uniform = Uniform;
+ exports.UniformsLib = UniformsLib;
+ exports.UniformsUtils = UniformsUtils;
+ exports.UnsignedByteType = UnsignedByteType;
+ exports.UnsignedInt248Type = UnsignedInt248Type;
+ exports.UnsignedIntType = UnsignedIntType;
+ exports.UnsignedShort4444Type = UnsignedShort4444Type;
+ exports.UnsignedShort5551Type = UnsignedShort5551Type;
+ exports.UnsignedShort565Type = UnsignedShort565Type;
+ exports.UnsignedShortType = UnsignedShortType;
+ exports.VSMShadowMap = VSMShadowMap;
+ exports.Vector2 = Vector2;
+ exports.Vector3 = Vector3;
+ exports.Vector4 = Vector4;
+ exports.VectorKeyframeTrack = VectorKeyframeTrack;
+ exports.Vertex = Vertex;
+ exports.VertexColors = VertexColors;
+ exports.VideoTexture = VideoTexture;
+ exports.WebGL1Renderer = WebGL1Renderer;
+ exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
+ exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
+ exports.WebGLRenderTarget = WebGLRenderTarget;
+ exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
+ exports.WebGLRenderer = WebGLRenderer;
+ exports.WebGLUtils = WebGLUtils;
+ exports.WireframeGeometry = WireframeGeometry;
+ exports.WireframeHelper = WireframeHelper;
+ exports.WrapAroundEnding = WrapAroundEnding;
+ exports.XHRLoader = XHRLoader;
+ exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
+ exports.ZeroFactor = ZeroFactor;
+ exports.ZeroSlopeEnding = ZeroSlopeEnding;
+ exports.ZeroStencilOp = ZeroStencilOp;
+ exports.sRGBEncoding = sRGBEncoding;
+
+ Object.defineProperty(exports, '__esModule', { value: true });
+
+})));