-\r
- previousPositions = [];\r
- time = 0;\r
- /**\r
- * \r
- * @param {number} dt \r
- */\r
- simulate(dt) {\r
-\r
-\r
-\r
- for (let i in this.geometry.vertices) {\r
- let currentPosition;\r
- let acceleration = this.getAcceleration(i, dt);\r
- \r
- currentPosition = this.verlet(this.geometry.vertices[i], this.previousPositions[i], acceleration, dt/2000);\r
- \r
- this.previousPositions[i] = currentPosition;\r
- this.geometry.vertices[i] = currentPosition;\r
- \r
- }\r
- console.log(this.geometry.vertices[0]);\r
- this.time += dt;\r
-\r
- /**\r
- * let THREE JS compute bounding sphere around generated mesh\r
- * needed for View Frustum Culling internally\r
- */\r
-\r
- this.geometry.verticesNeedUpdate = true;\r
- this.geometry.elementsNeedUpdate = true;\r
- this.geometry.computeBoundingSphere();\r
-\r
- }\r
-\r
-\r
-\r
-/**\r
- * Equation of motion for each vertex which represents the acceleration \r
- * @param {number} vertexIndex The index of the current vertex whose acceleration should be calculated\r
- * @param {number} dt The time passed since last frame\r
- */\r
-getAcceleration(vertexIndex, dt) {\r
-\r
- let vertex = this.geometry.vertices[vertexIndex];\r
-\r
- // Mass of vertex\r
- let M = this.vertexWeights[vertexIndex];\r
- // constant gravity\r
- let g = new THREE.Vector3(0, -1.8, 0);\r
- // stiffness\r
- let k = 5;\r
-\r
- // Wind vector\r
- let fWind = new THREE.Vector3(\r
- Math.sin(vertex.x * vertex.y * this.time),\r
- Math.cos(vertex.z* this.time),\r
- Math.sin(Math.cos(5 * vertex.x * vertex.y * vertex.z))\r
- );\r
-\r
- /**\r
- * constant determined by the properties of the surrounding fluids (air)\r
- * achievement of cloth effects through try out\r
- * */\r
- let a = 1;\r
-\r
- let velocity = new THREE.Vector3(\r
- (vertex.x - this.previousPositions[vertexIndex].x) / dt,\r
- (vertex.y - this.previousPositions[vertexIndex].y) / dt,\r
- (vertex.z - this.previousPositions[vertexIndex].z) / dt\r
- );\r
-\r
-\r
- let fAirResistance = velocity.multiplyScalar(-a);\r
-\r
- let springSum = new THREE.Vector3(0, 0, 0);\r
-\r
- // Get the bounding springs and add them to the needed springs\r
- for (let i in this.faces) {\r
- if (this.faces[i].a == vertexIndex || this.faces[i].b == vertexIndex || this.faces[i].c == vertexIndex || this.faces[i].d == vertexIndex) {\r
- for (let j in this.faces[i].springs) {\r
- if (this.faces[i].springs[j].index1 == vertexIndex || this.faces[i].springs[j].index2 == vertexIndex) {\r
-\r
- let spring = this.faces[i].springs[j];\r
- let springDirection = spring.getDirection(this.geometry.vertices);\r
-\r
-\r
- if (this.faces[i].springs[j].index1 == vertexIndex)\r
- springDirection.multiplyScalar(-1);\r
-\r
- springSum.add(springDirection.multiplyScalar(k * (spring.currentLength - spring.restLength)));\r
-\r
- }\r
- }\r
- }\r
- }\r
-\r
- \r
- let result = new THREE.Vector3(1, 1, 1);\r
-\r
- \r
- result.multiplyScalar(M).multiply(g).add(fWind).add(fAirResistance).sub(springSum);\r
- \r
-\r
- return result;\r
-\r
-\r
-}\r
-\r
-/**\r
- * The Verlet algorithm as an integrator \r
- * to get the next position of a vertex \r
- * @param {Vector3} currentPosition \r
- * @param {Vector3} previousPosition \r
- * @param {Vector3} acceleration \r
- * @param {number} passedTime The delta time since last frame\r
- */\r
-verlet(currentPosition, previousPosition, acceleration, passedTime) {\r
- // verlet algorithm\r
- // next position = 2 * current Position - previous position + acceleration * (passed time)^2\r
- // acceleration (dv/dt) = F(net)\r
- // Dependency for one vertex: gravity, fluids/air, springs\r
-\r
- let nextPosition = new THREE.Vector3(\r
- 2 * currentPosition.x - previousPosition.x + acceleration.x * (passedTime * passedTime),\r
- 2 * currentPosition.y - previousPosition.y + acceleration.y * (passedTime * passedTime),\r
- 2 * currentPosition.z - previousPosition.z + acceleration.z * (passedTime * passedTime),\r
- );\r
-\r
- return nextPosition;\r
-}\r
-\r
-\r
-}\r
-\r