const DAMPING = 0.03; const DRAG = 1 - DAMPING; const MASS = 0.1; const GRAVITY = new THREE.Vector3(0, -9.81 * MASS, 0); const K = 1; let tmpCorrection; class Constraint { constructor(p1, p2, restDist) { this.p1 = p1; this.p2 = p2; this.restDist = restDist; } satisfy() { const diff = this.p2.position.clone().sub(this.p1.position); const currentDist = diff.length(); if (currentDist == 0) return; if (currentDist <= this.restDist) return; const correction = diff.multiplyScalar(1 - (this.restDist / currentDist)); correction.multiplyScalar(K); tmpCorrection = correction; const correctionHalf = correction.multiplyScalar(0.5); this.p1.position.add(correctionHalf); this.p2.position.sub(correctionHalf); } } class Particle { movable = true; constructor(x, y, z, mass) { this.position = new THREE.Vector3(x, y, z); this.previous = new THREE.Vector3(x, y, z); this.acceleration = new THREE.Vector3(0, 0, 0); this.mass = mass; } addForce(force) { this.acceleration.add( force.clone().multiplyScalar(1/this.mass) ); } verlet(dt) { // verlet algorithm // next position = 2 * current Position - previous position + acceleration * (passed time)^2 // acceleration (dv/dt) = F(net) const nextPosition = this.position.clone().sub(this.previous); nextPosition.multiplyScalar(DRAG); nextPosition.add(this.position); nextPosition.add(this.acceleration.multiplyScalar(dt*dt)); this.previous = this.position; this.position = nextPosition; this.acceleration.set(0, 0, 0); } } class Cloth { constructor(width, height, numPointsWidth, numPointsHeight) { this.width = width; this.height = height; this.numPointsWidth = numPointsWidth; this.numPointsHeight = numPointsHeight; this.windFactor = new THREE.Vector3(0.5, 0.2, 0.2); /** * distance between two vertices horizontally/vertically * divide by the number of points minus one * because there are (n - 1) lines between n vertices */ let stepWidth = width / (numPointsWidth - 1); let stepHeight = height / (numPointsHeight - 1); /** * iterate over the number of vertices in x/y axis * and add a new Particle to "particles" */ this.particles = []; for (let y = 0; y < numPointsHeight; y++) { for (let x = 0; x < numPointsWidth; x++) { this.particles.push( new Particle( (x - ((numPointsWidth-1)/2)) * stepWidth, height - (y + ((numPointsHeight-1)/2)) * stepHeight, 0, MASS) ); } } this.particles[this.getVertexIndex(0, 0)].movable = false; this.particles[this.getVertexIndex(0, numPointsHeight-1)].movable = false; this.particles[this.getVertexIndex(numPointsWidth-1, 0)].movable = false; const REST_DIST_X = width / (numPointsWidth-1); const REST_DIST_Y = height / (numPointsHeight-1); /** * generate constraints (springs) */ this.constraints = []; for (let y = 0; y < numPointsHeight; y++) { for (let x = 0; x < numPointsWidth; x++) { if (x < numPointsWidth-1) { this.constraints.push(new Constraint( this.particles[this.getVertexIndex(x, y)], this.particles[this.getVertexIndex(x+1, y)], REST_DIST_X )); } if (y < numPointsHeight-1) { this.constraints.push(new Constraint( this.particles[this.getVertexIndex(x, y)], this.particles[this.getVertexIndex(x, y+1)], REST_DIST_Y )); } } } } generateGeometry() { const geometry = new THREE.BufferGeometry(); const vertices = []; const normals = []; const indices = []; for (let particle of this.particles) { vertices.push( particle.position.x, particle.position.y, particle.position.z); } const numPointsWidth = this.numPointsWidth; const numPointsHeight = this.numPointsHeight; /** * generate faces based on 4 vertices * and 6 springs each */ for (let y = 0; y < numPointsHeight - 1; y++) { for (let x = 0; x < numPointsWidth - 1; x++) { indices.push( this.getVertexIndex(x, y), this.getVertexIndex(x+1, y), this.getVertexIndex(x+1, y+1) ); indices.push( this.getVertexIndex(x, y), this.getVertexIndex(x+1, y+1), this.getVertexIndex(x, y+1) ); } } geometry.setIndex(indices); geometry.setAttribute('position', new THREE.Float32BufferAttribute(vertices, 3)); //geometry.setAttribute('normal', new THREE.Float32BufferAttribute(normals, 3)); geometry.computeBoundingSphere(); geometry.computeVertexNormals(); return geometry; } updateGeometry(geometry) { const positions = geometry.attributes.position.array; for (let i in this.particles) { let p = this.particles[i]; if (p.movable) { positions[i*3+0] = p.position.x; positions[i*3+1] = p.position.y; positions[i*3+2] = p.position.z; } else { p.position = p.previous; } } geometry.attributes.position.needsUpdate = true; geometry.computeBoundingSphere(); geometry.computeVertexNormals(); } simulate(dt) { let now = performance.now(); for (let particle of this.particles) { let vertex = particle.position; let fWind = new THREE.Vector3( this.windFactor.x * (Math.sin(vertex.x * vertex.y * now)+1), this.windFactor.y * Math.cos(vertex.z * now), this.windFactor.z * Math.sin(Math.cos(5 * vertex.x * vertex.y * vertex.z)) ); // normalize then multiply? particle.addForce(fWind); // calculate wind with normal? particle.addForce(GRAVITY); particle.verlet(dt); } for (let constraint of this.constraints) { constraint.satisfy(); } //console.log(tmpCorrection); } /** * helper function to calculate index of vertex * in "vertices" array based on its x and y positions * in the mesh * @param {number} x - x index of vertex * @param {number} y - y index of vertex */ getVertexIndex(x, y) { return y * this.numPointsWidth + x; } }